
Online local communities with motifs
Mrudula Murali

Department of Computer Science,
San Jose State University,

San Jose, USA
Email: mrudula.murali@sjsu.edu

Katerina Potika
Department of Computer Science,

San Jose State University,
San Jose, USA

Email: katerina.potika@sjsu.edu

Chris Pollett
Department of Computer Science,

San Jose State University,
San Jose, USA

Email: chris@pollett.org

Abstract—A community in a network is a set of nodes that
are densely and closely connected within the set, yet sparsely
connected to nodes outside of it. Detecting communities in
large networks helps solve many real-world problems. However,
detecting such communities in a complex network by focusing
on the whole network is costly. Instead, one can focus on finding
overlapping communities starting from one or more seed nodes
of interest. Moreover, on the online setting the network is given
as a stream of higher order structures, i.e., triangles of nodes to
be clustered into communities.

In this paper, we propose an on online local graph community
detection algorithm that uses motifs, such as triangles of nodes.
We provide experimental results and compare it to another
algorithm named COEUS. We use two public datasets, one of
Amazon data and the other of DBLP data. Furthermore, we
create and experiment on a new dataset that consists of web
pages and their links by using the Internet Archive. This latter
dataset provides insights to better understand how working with
motifs is different than working with edges.

Keywords - Community detection, Local communities, Online
community, Motifs, Triangles, Higher order structures, seed sets,
graph streams

I. INTRODUCTION

Graphs model real-world systems, like social networks,
where nodes are users and edges are friendships or inter-
ests. One way to analyze complex networks is by finding
communities (clusters). The community detection problem is
defined as the one where we seek to partition the nodes into
groups: sometimes disjoint [1], [2] sometimes overlapping [3],
[4]. In the overlapping setting a node can belong to multiple
communities. We focus our attention in this work on online
local graph community detection that produces overlapping
communities, by considering streams of motifs (also called
higher order structures), such as triangles of nodes. With the
use of two public datasets, the Amazon and the DBLP dataset,
and a new Webpage dataset, we test the accuracy of the
proposed method and compare it to the COEUS method for
finding online local communities from a stream of edges.

Detecting such communities is very important in many fields
in order to understand and extract information from such
complex systems. The problem is very hard and has been
studied extensively for the past few years.

With the increasing popularity of online social networking
services, such as Facebook and Twitter, detecting communities
becomes more relevant in the study of networks. In this era
of big data, processing massive networks by considering it as

a static graph poses a problem. Therefore, it is realistic to
consider a data stream model, in which the edges of a graph
is considered as streams [5]. Moreover, processing the whole
graph is often inefficient and we can focus on subgraphs and
local communities of special nodes, called seeds.

Detecting communities can help solve many real-world
problems. Some of the applications of community detection
are:

∙ Social networks - To preform recommendations to users,
understand the interests of users so that we can provide
specific feeds to them.

∙ Fraudulent websites - Many false websites tend to link
to each other. Finding communities of such websites is
extremely useful because the whole network of fraudulent
websites can be exposed by finding one.

∙ Marketing networks - Learning preferences of a user to
display related, useful ads.

∙ Citation network - Identify the citation patterns of the
authors and uncover the relationship among disciplines.

In this paper, we follow a recent approach on finding
communities starting from specific seed nodes, focusing on
local communities [6]. Additionally, we consider the online
setting, where the graph evolves. In this setting we have to
decide in a greedy manner, which communities to keep and
which to discard.

Our contribution consists of two parts: we create a Web
pages dataset, by considering WARC files from the Internet
Archive, and we design a local stream graph community
detection algorithm that considers motifs, such as triangles.

The paper is organized as follows. In Section II, we define
some preliminaries. Section III provides an overview of the re-
lated work. Section IV describes the created new web dataset.
In Section V we present our designed method. Section VI
contains the experimental results and the various datasets.
Finally, Section VII concludes.

II. PRELIMINARIES

We now introduce the definitions and data structures that
we will use for the rest of this paper.

A. Conductance

We begin by introducing the notion of conductance. Con-
ductance is a popular objective function that is used for local
community detection by many algorithms.

Let 𝐺 = (𝑉,𝐸) be an undirected graph and let 𝑆 ⊂ 𝑉 be
a set of graph nodes.

Conductance is defined over a cut (𝑆, 𝑆) (a cut is a
partition of the nodes into two sets 𝑆 and 𝑆 = 𝑉 ∖ 𝑆) as:

𝜑 =
𝑎𝑑𝑗(𝑆, 𝑉 ∖ 𝑆)

𝑚𝑖𝑛(𝑎𝑑𝑗(𝑆, 𝑆), 𝑎𝑑𝑗(𝑉 ∖ 𝑆, 𝑉 ∖ 𝑆))
(1)

where:

𝑎𝑑𝑗(𝑆𝑖, 𝑆𝑗) =| {(𝑢, 𝑣) ∈ 𝐸 : 𝑢 ∈ 𝑆𝑖, 𝑣 ∈ 𝑆𝑗} | .

For community detection, we are interested in the conduc-
tance of a community, and the cut we use is over the nodes
in a community 𝐶 and the remaining nodes 𝑉 ∖ 𝐶. A lower
conductance indicates that a greater proportion of edges are
within either the community or outside of the community
than between the community and its outside. The minimum
conductance over all cuts is called the graph conductance
𝜑𝐺.

We define by 𝑑𝑒𝑔(𝑢) the degree of node 𝑢 in graph 𝐺, i.e.,
the number of adjacent nodes to 𝑢 and we define by 𝑑𝑒𝑔𝐶(𝑢)
the community degree of node 𝑢 in the community 𝐶 as the
number of adjacent nodes of 𝑢 that are in the same community
𝐶.

B. Community Participation

The community participation 𝑐𝑝(𝑢) of a node 𝑢 in a com-
munity 𝐶, defined in [5], measures a node’s 𝑢 participation
level in 𝐶. It is defined as:

𝑐𝑝(𝑢) =
| {(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ∈ 𝐶} |
| {(𝑢, 𝑣) ∈ 𝐸} |

=
𝑑𝑒𝑔𝐶(𝑢)

𝑑𝑒𝑔𝑉 (𝑢)
(2)

The community participation of a node measures the fraction
of a node’s adjacent nodes in the graph that are part of the
same community. If the community participation of a node 𝑣
is higher than a node 𝑢, then node 𝑣 is more closely connected
to its community than node 𝑢.

C. Count-Min Sketch

A Count-Min sketch is a well-known sub-linear space
data structure for the representation of a high-dimensional
vector �⃗�. Count-Min sketches enable the answering of queries,
such as the value of a component 𝑎𝑖, efficiently, and with
strong guarantees of accuracy. We use Count-Min sketches
to summarize data streams because Count-Min sketches can
handle updates at high rates. A Count-Min (CM) sketch with
parameters (𝜀, 𝛿) is represented as a two-dimensional array
of width 𝑤 and depth 𝑑: 𝑐𝑜𝑢𝑛𝑡[1, 1] . . . 𝑐𝑜𝑢𝑛𝑡[𝑑,𝑤] together
with a collection of 𝑑 hash functions. Here 𝑤 =

⌈︀
𝑒
𝜀

⌉︀
and

𝑑 =
⌈︀
ln 1

𝛿

⌉︀
. Each entry in the array is initially zero. The hash

functions
ℎ1 . . . ℎ𝑑 : {1 . . . 𝑛} → {1 . . . 𝑤}

are selected randomly from a pairwise-independent family [7].
An update to the CM sketch is a pair (𝑖𝑡, 𝑐𝑡) which

represents item 𝑎𝑖𝑡 is updated by a quantity of 𝑐𝑡. To carry
out this update we set ∀𝑗, where 1 ≤ 𝑗 ≤ 𝑑

𝑐𝑜𝑢𝑛𝑡[𝑗, ℎ𝑗(𝑖𝑡)]← 𝑐𝑜𝑢𝑛𝑡[𝑗, ℎ𝑗(𝑖𝑡)] + 𝑐𝑡

The value of 𝑎𝑖 can be estimated according to the formula:

𝑎𝑖 = min
𝑗

𝑐𝑜𝑢𝑛𝑡[𝑗, ℎ𝑗(𝑖)]

It can be shown 𝑎𝑖 ≤ 𝑎𝑖 + 𝜖𝑁 , where 𝑁 = 𝑠𝑢𝑚𝑖𝑎𝑖, with
probability 1−𝛿. The array of 𝑤×𝑑 counts used by Count-Min
sketches takes 𝑤 ·𝑑 words to store. The defining parameters of
the 𝑑 pairwise hash functions can be stored with two words [7].

III. RELATED WORK

In this section, we discuss previous related work for streams
of graphs and local communities detection through seed sets.
Additionally, we will review some works on Page Rank based
algorithms used for community detection. Instead of Page
Rank we use a modified version in our methods to measure
the importance of a node in the community.

In the work of [5], the authors propose a local community
detection algorithm that receives the graph as an edge stream.
They call their algorithm COEUS. By processing a stream of
edges, without restriction on the arrival order, and maintaining
limited information about the respective graph, such as the
node’s degrees, the community participation of nodes and the
nodes in each community, they manage to stay in sub-linear
space to the number of edges. Additionally, they have two
versions of their algorithm. In the first one, they greedily merge
the endpoints of the new arriving edge to the same communi-
ties and check after some steps that their communities are not
very big. In the second version the quality of the new edge
is considered. They introduce and use a new node centrality,
called community participation 𝑐𝑝, instead of page rank. As
a last step, they determine in dynamically the size of each
community by removing some nodes. In their experiments,
they measure time and space. Summarizing, their approach is
one that can deal with large-scale community detection. In the
description of our methods, more details will be given in order
to compare and contrast.

A local graph partitioning algorithm in presented in [8] that
finds cuts with an approximate computation and use of the
PageRank vectors. Each of the PageRank vectors they compute
uses a seed node and then can use that vector to determine a
cut that partitions the local graph into two communities. This
cut is found through a sweep method over the vector and the
computation of the conductance of the resulting sets.

Regarding other successful methods for community de-
tection in this setting, where overlapping communities are
also sought, BigClam [9] is closely related to our approach.
However, this method uses matrix factorization in order to
discover overlapping and non overlapping communities in
large scale networks

Another approach by Ahn, Bagrow and Lehmann [4] that
discovers overlapping communities by partitioning edges in-
stead of nodes. Both these approaches work on the global
structure of the network.

A network motif is a higher-order structure and such struc-
tures are important aspects of the graph. A motif can be an
edge or a triangle of nodes. In the work of [6], they first
generalize the conductance to one that is a motif conductance

and then extend the approximate Personalized PageRank with
motifs, which they name the MAPPR algorithm, starting from
a seed node and finding a local community such that the
minimal motif conductance is achieved.

PageRank vectors can be computed to calculate the impor-
tance of node 𝑢 on other nodes. Jeh and Widom [10] presented
an algorithm for computing these PageRank vectors. Making
use of this PageRank vector technique, Andersen et al. [11]
proposed a local graph partitioning algorithm. It can be used to
find communities in an undirected graph for given seed nodes.
The sweep technique is used again in this algorithm to sweep
over the PageRank vectors, which selects a set that minimizes
or maximizes some scoring function. Conductance is one such
scoring function. To find a good high-quality cluster, they
select a set with low conductance. Later, Andersen et al. [12]
extend the local graph partitioning algorithm to accommodate
strongly connected directed graphs.

IV. INTERNET ARCHIVE DATASET

We obtained WARC files from the Internet Archive 1. The
WARC, or Web ARChive, is a successor to the previous ARC
format used by the 1996 Internet Archive to store web crawls.
The WARC format is standardized by the International Internet
Preservation Consortium (IIPC), a consortium of national
libraries, research laboratories, and technology organizations,
with Version 1.1 being the latest version.

The Internet Archive makes many of its web crawls avail-
able to the public. A typical web crawl is stored as a WARC
file sequence where each WARC file, in turn, consists of
a sequence of WARC records. Usually, a WARC file is
used to store a gigabyte of data. Each record in it is often
compressed using gzip, and these compressed records are
concatenated, allowing the entire file to be decompressed using
gzip -d, but also allowing individual records to be read and
uncompressed without the need to decompress the entire file
if an offset and a compressed length are known. A record
starts with a line declaring the WARC format in use followed
by a sequence of header-name value lines specifying record
properties such as the type and date of the record. This is
followed by a line of Content-Length and the actual content
of the record is followed in turn. This content is a web page
most often.

A smaller file called a CDX file is used to facilitate random
access within a WARC file. It consists of a sequence of one
line index records for a WARC file. Each index record has
meta information which summarizes a single web document in
a WARC file. The first line in the CDX file is a legend to used
to interpret the CDX records, this is followed by the records
themselves. The file’s first character is the field delimiter used
in the rest of the file. It is followed by the literal “CDX” and
a space-separated list of letters used as column type codes.
For example, the letter ‘U’ indicates that the column is for
a canonized URL, ‘D’ indicates that the columns provide an
offset byte of a record in the WARC file, and ‘n’ indicates

1https://web.archive.org/web/*/warc

that the columns are used for lengths of WARC record. Then
the CDX record lines consist of space-separated fields in this
format. For a 1 GB WARC (see Table I), a compressed CDX
file is about 20-30 MB, which is more manageable to analyze.

TABLE I: Description of the WARC column type codes

Column type Meaning
A canonized url
B news group
C rulespace category
D compressed dat file offset
F canonized frame
G multi-columm language description
H canonized host
I canonized image
J canonized jump point
K FBIS what’s changed
L canonized link
M* meta tags (AIF)
N* massaged url
P canonized path
Q language string
R canonized redirect
S* compressed record size
U uniqness
V* compressed arc file offset
X canonized url in other href tages
Y canonized url in other src tags
Z canonized url found in script
a* original url
b* date
c old style checksum
d uncompressed dat file offset
e IP
f frame
g* file name
h original host
i image
j original jump point
k* new style checksum
l link
m* mime type of original document
n arc document length
o port
p original path
r* redirect
s* response code
t title
v uncompressed arc file offset
x url in other href tages
y url in other src tags
z url found in script
comment

* indicates the column codes used in our WARC CDX file.
Decompressing the whole WARC file takes a lot of time

and is not an efficient approach. So we decompress only part
of the WARC file where the web document is stored. This
can be done by using the offset and the record size available
in each of the CDX record for respective web document. In
the creation of our dataset, we were interested only in HTML
pages. So the file type helps us to filter out only the HTML
file type and ignore the rest. After we decompress part of
the WARC file for a web document, we scan it to check
for the web page links. The origina_url field helps us make
a connection between the URL and the links the webpage
contains. Let’s call each link in the webpage of a URL as
linked_url . This process is detailed in Algorithm 1.

Algorithm 1 FetchWebLinks

1: Procedure FETCHWEBLINKS(cdx)
2: for each 𝑙𝑖𝑛𝑒 in 𝑐𝑑𝑥 file do
3: open WARC file
4: seek(offset)
5: read(record size)
6: 𝑤𝑒𝑏𝑝𝑎𝑔𝑒 = Decompress the read section of

WARC file
7: Scan the 𝑤𝑒𝑏𝑝𝑎𝑔𝑒 to get the links cited in the

webpage
8: end for
9: end Procedure

Each of the URLs (webpage) and the linked urls correspond
to a node in the graph and the link between original_url and
the linked_url represent an edge in the graph.

V. METHODOLOGY

A community is generally thought to be a set of graph
nodes that are closely connected and have fewer outside
links to the rest of the nodes of the graph [13]. A widely
used [14], [15] community detection function is the conduc-
tance of a community. Several methods attempt to detect low-
conductance communities in an effort to develop a set of
nodes with a limited number of non-community node ties.
However, in terms of time and space, tracking the behavior
of all possible communities as we process the edges of the
stream is inefficient. Rather, we use community participation
𝑐𝑝(𝑢) of a node 𝑢 in a community, which measures the level
of participation of a node in a community. The intuition here
is that the low conductance for the community is equivalent
to adding nodes that have high values of 𝑐𝑝 to a community
C.

The motivation behind graph stream algorithms is that many
real-world networks are now reaching sizes that are just too
big. Graph algorithms are therefore unable to store and process
the entire graph [16]. Graph stream algorithms, on the other
hand, process a stream comprising the graph edges in the order
in which these edges arrive over time using limited memory.

Fig. 1: A stream comprising the edges of an undirected graph
and a set of communities initialized with a few seed nodes.

Due to a large amount of data, Count-Min sketches are used
to store the frequency data.

A. Example of the stream of edges

The COEUS method proposed by Liakos et al. [5] considers
a stream of edges as the input. Consider using Figure 1 as
an example to demonstrate how this algorithm works with
three communities to be detected. It begins with three seed
sets describing these communities, namely {2, 5, 8},{3, 6, 8},
and {1, 4, 7}. COEUS creates three community sets consisting
of these nodes in this setting. When edge {9, 8} arrives, the
degree of both nodes 8 and 9 will first be increased by 1. After
that, for each community, we examine whether nodes 9 or 8
are community members. This is true for two communities
with node 8. Therefore, for both communities we increase
the community degree of node 9 by 1. Furthermore, to both
communities to which node 8 belongs we add node 9.

B. Motif-COEUS

In our proposed method we will consider the stream of
triangles, i.e., motifs, of nodes as the input.

We propose the Motif-COEUS method that takes two inputs:
1) A set of community seeds 𝐾 ′ = {𝐾1,𝐾2, . . . ,𝐾𝑘},

each of which is 𝐾𝑖 = {𝑘1, 𝑘2, . . . , 𝑘𝑙} ∈ 𝑉 and
2) a stream of triangles 𝑆 = (𝑡1, 𝑡2, . . . , 𝑡𝑚), where 𝑡𝑖 ∈ 𝑇 ,

and 𝑇 is the set of triangles of the undirected graph 𝐺 =
{𝑉,𝐸} defined by 𝑆 and 𝑇 is of the form (𝑒1, 𝑒2, 𝑒3),
where (𝑒1, 𝑒2), (𝑒2, 𝑒3), and (𝑒1, 𝑒3) ∈ 𝐸.

Each triangle in the graph stream is processed one at a time
and added to the initial seed-set communities 𝐾 ′ to extend
it. At the end of this algorithm, we get a set of communities
𝐶 = {𝐶1, 𝐶2, ..., 𝐶𝑘}, with community 𝐶𝑖 corresponding to
𝐾𝑖’s seed set, as the output. This output is available at any
point in time during the processing.

Motif-COEUS (Algorithm 2) does the initialization of the
seed-set communities (Line 1 − 7 of Algorithm 2) as the
COEUS Algorithm does. In contrast to COEUS our Motif-
COEUS is now ready to process the stream of trianges instead
of edges. Because of the size of the network, we do not
keep the entire triangle stream. Instead, we keep track of the

Algorithm 2 Motif-COEUS (S,K’)

Input: A set of community seed-sets 𝐾 ′, and a triangle graph
stream 𝑆.

Output: A set of communities 𝐶 ′.
1: for each 𝐾 ∈ 𝐾 ′ do
2: 𝐶 ← {};
3: for each 𝑘 ∈ 𝐾 do
4: 𝐶[𝑘] = 1;
5: end for
6: 𝐶 ′.𝑝𝑢𝑡(𝐶);
7: end for
8: while ∃(𝑢, 𝑣, 𝑤) ∈ 𝑆 do
9: 𝑑𝑒𝑔𝑉 [𝑢]+ = 2;

10: 𝑑𝑒𝑔𝑉 [𝑣]+ = 2;
11: 𝑑𝑒𝑔𝑉 [𝑤]+ = 2;
12: for each 𝐶 ∈ 𝐶 ′ do
13: if 𝑢 ∈ 𝐶 then
14: 𝑑𝑒𝑔𝐶 [𝑣]+ = 2;
15: 𝑑𝑒𝑔𝐶 [𝑤]+ = 2;
16: end if
17: if 𝑣 ∈ 𝐶 then
18: 𝑑𝑒𝑔𝐶 [𝑢]+ = 2;
19: 𝑑𝑒𝑔𝐶 [𝑤]+ = 2;
20: end if
21: if 𝑤 ∈ 𝐶 then
22: 𝑑𝑒𝑔𝐶 [𝑢]+ = 2;
23: 𝑑𝑒𝑔𝐶 [𝑣]+ = 2;
24: end if
25: if 𝑢 ∈ 𝐶 then
26: 𝐶.𝑝𝑢𝑡(𝑣);𝐶.𝑝𝑢𝑡(𝑤);
27: end if
28: if 𝑣 ∈ 𝐶 then
29: 𝐶.𝑝𝑢𝑡(𝑢);𝐶.𝑝𝑢𝑡(𝑤);
30: end if
31: if 𝑤 ∈ 𝐶 then
32: 𝐶.𝑝𝑢𝑡(𝑢);𝐶.𝑝𝑢𝑡(𝑣);
33: end if
34: 𝑝𝑟𝑜𝑐𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠+ = 1;
35: if 𝑝𝑟𝑜𝑐𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 mod 𝑊 == 0 then
36: 𝐶 ← 𝑝𝑟𝑢𝑛𝑒(𝐶, 𝑠, 𝑑𝑒𝑔𝑉 , 𝑑𝑒𝑔𝐶)
37: end if
38: end for
39: end while

following aspects as we process the stream of edges as in
COEUS:

1) Each node’s degree in a graph
2) Community degree
3) Nodes that form the community

We first increase the degree of each node in the incoming
triangle of edges of the stream (Lines 8−11). We then examine
whether each of the nodes in the triangle is a member of
a community already. If this is the case, we will increase
the other nodes’ community degree. Furthermore, if the other

nodes are not community members, the nodes will be added
to that community (Lines 12− 32).

As the diameters exhibited by real-world networks are
small and often decrease as the network grows, the size
of communities often grows considerably through the above
process. However, we want to focus on nodes for each
community that is closely connected to each other. Therefore,
after processing a number of 𝑊 triangles, called the window,
we prune (Lines 33 − 37) all the communities in order to
keep in each community the most highly involved nodes as
done in COEUS. The prune process, calculates for each node
in a community the 𝑐𝑝(𝑐). A min-heap holds the nodes with
the highest values for community involvement. Additionally, a
maximum size 𝑠 of each community is used as a threshold. We
use the same as in the COEUS, i.e., 𝑠 = 100 and 𝑊 = 10𝑘.

Instead of increasing the node’s community degree by 2
(SIMPLE approach) for all adjacent nodes that are community
members we can adapt Eq. 2 which is equal to the fraction
of the node adjacent nodes which are also members of the
community concerned in order to get the degree. This fraction
is essentially an estimate of the likelihood that a one-step
random walk starting from the node will result in a node being
a community member in question. Therefore, the involvement
of each node in the community increases. If this value is
high, then there is also a high likelihood of an adjacent node
being a community member. Increment the community degree
of a node using the community participation value of its
adjacent node instead of 2 enables to maintain the focus in
the community. In particular, this variation (EDGE_QUALITY
approach) favors nodes that are adjacent to well-established
members of the community, as such nodes receive a signifi-
cant increment to their community degree. In contrast, nodes
that exhibit low values of community participation provide
insignificant increments to the participation levels of their
adjacent nodes. Thus, the potential that nodes exhibiting low
values of community participation will shift the focus of the
community is limited.

Thus, by replacing Lines 12 − 24 of Algorithm 2 by the
steps in Procedure 3 we deal with triangles and we get the
𝐸𝑑𝑔𝑒_𝑄𝑢𝑎𝑙𝑖𝑡𝑦 approach for motifs.

Furthermore, we follow the approach of finding a smaller
size community by removing any irrelevant nodes. This ap-
proach is the DROP_TAIL of [5] (see Procedure 4). It is based
on the fact that irrelevant nodes have weak ties to the actual
community and therefore their respective values of community
participation are insignificant compared to the values of other
nodes included in the community. The distribution of values
of community participation 𝑐𝑝 varies depending on the graph,
as well as the community concerned. Therefore, it is not an
option to set a constant threshold values and must discard
nodes that exhibit lower values of community participation to
remove such tails. Instead, it is adjusted to each particular
community and isolate the nodes that belong to the tail
through clustering. In order to do that, it calculates the average
distance between two consecutive nodes by their associated
community participation values after ranking them. Then, the

Algorithm 3 𝐸𝑑𝑔𝑒_𝑄𝑢𝑎𝑙𝑖𝑡𝑦 Motifs

1: Procedure ADDTOCOMMBYEDGEQUALITYMOTIF
◁ (𝑢, 𝑣, 𝑤) a triangle

2: for each 𝐶 ∈ 𝐶 ′ do
3: if 𝑢 ∈ 𝐶 then
4: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑣]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑢]

𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑢] ;

5: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑤]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑢]
𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑢] ;

6: end if
7: if 𝑣 ∈ 𝐶 then
8: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑢]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑣]

𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑣] ;

9: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑤]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑣]
𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑣] ;

10: end if
11: if 𝑤 ∈ 𝐶 then
12: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑢]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑤]

𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑤] ;

13: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑣]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑤]
𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑤] ;

14: end if
15: end for
16: end Procedure

Algorithm 4 DROP_TAIL [5]

1: Procedure DROPTAIL
2: 𝐶 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑜𝑟𝑡(𝐶);
3: 𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒← 0;
4: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠← 0;
5: for each 𝐶 ∈ 𝐶 do
6: if 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 > 0 then
7: 𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒← 𝑐𝑝(𝑐)− 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠;
8: end if
9: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠← 𝑐𝑝(𝑐);

10: end for
11: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒← 𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐶.𝑠𝑖𝑧𝑒()−1
;

12: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠← 0;
13: for each 𝐶 ∈ 𝐶 do
14: if 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 > 0 then
15: 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒← 𝑐𝑝(𝑐)− 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠;
16: end if
17: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠← 𝑐𝑝(𝑐);
18: if 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 < 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 then
19: 𝐶.𝑟𝑒𝑚𝑜𝑣𝑒(𝑐);
20: else
21: break;
22: end if
23: end for
24: end Procedure

DROP_TAIL examines iteratively, starting from the last node,
the value distance of two nodes in this ranking. When this
distance is found to be greater than the average node distance,
DROP_TAIL stops because it has found a significant gap
between the two consecutive node values.

VI. EXPERIMENTAL RESULTS

We now describe some experiments we conducted to eval-
uate our algorithms. We start by detailing the three network
datasets used and how we ran our algorithms on these datasets.
Finally, we present and compare the results of our algorithms
to the ones from COEUS.

A. Datasets

Our experiments include three datasets. Two of the them are
publicly available [17]: the Amazon co-purchasing network
and the DBLP co-authorship network. Both of these datasets
are undirected and contain ground-truth communities. Our
last dataset is the one we created from a crawl of webpages
(Section IV). The details of the provided datasets are listed in
Table II.

TABLE II: Graphs of our dataset

Dataset Type Nodes Edges
Amazon Co-purchasing 334,863 925,872
DBLP Co-authorship 317,080 1,049,866
Webpages Link citation 1,977,975 2,484,651

1) Amazon: The Amazon co-purchasing network dataset
is obtained from the SNAP library [17]. The SNAP library
collected this data by crawling the Amazon website. The data
is based on Amazon website’s feature ‘Customers Who Bought
This Item Also Bought’. If a product 𝑖 is often co-purchased
with product 𝑗, an undirected edge from 𝑖 to 𝑗 exists in
the graph. Each category of products provided by Amazon
defines each community of ground-truth. They considered each
connected component to be a separate ground-truth community
in a product category. Then they removed communities with
less than 3 nodes of ground-truth.

2) DBLP: The DBLP co-authorship network dataset is also
obtained from the SNAP library [17]. The bibliography of
the DBLP computer science provides a comprehensive list of
computer science research papers. The SNAP library built a
network of co-authorships where two authors are connected
if at least one paper is published together. Publication venue
like journal or conference was used to define an individual
ground-truth community; a community is formed by authors
who have published in a particular journal or conference.

They considered each connected component in a group
to be a separate community of ground-truth. They removed
communities with less than 3 nodes of ground-truth.

3) Webpages: The webpages dataset is obtained from the
web crawl as described in Section IV. The graphical represen-
tation of a subset of the network is shown in Figure 2, and
one can see a lot of one degree nodes.

The degree distribution of the whole network is shown in
Figure 3. We observe that the number of nodes with degree

Fig. 2: A subset of the Webpage network.

Fig. 3: Degree distribution of the Webpage network.

1(100) is large which we will see pose a problem in detecting
communities when we use streams of motifs.

B. COEUS

We used the three datasets described above to run exper-
iments on the existing COEUS approach. We initialized the
following parameters so that we obtain 99% confidence and
𝜖 < 0.00001: 𝑑 = 7 and 𝑤 = 200, 000.

We considered three random nodes of each ground truth
community as the input seed set. Since we have the ground
truth communities for the publicly available data sets we
use the 𝐹1 score to measure the accuracy of the algorithm.
There are two approaches in the COEUS algorithm as in
our. Let’s call it SIMPLE approach when we increment the
community degree of a node by 1 and EDGE_QUALITY
approach when the community degree of a node is incremented
by the community degree of the adjacent node. The results of
each of this technique is compared against the ground-truth
community, GROUND_TRUTH, and the 𝐹1 score is calculated.
The DROP_TAIL approach is applied to the resulting COEUS
community to separate the nodes that exhibit weak community
ties and are removed. We compare the efficiency of COEUS
with streams of edges comparing the 𝐹1 scores of DROP_TAIL
and EDGE_QUALITY. We have three test cases:

∙ Case 1: SIMPLE, GROUND_TRUTH
∙ Case 2: EDGE_QUALITY, GROUND_TRUTH

∙ Case 3: EDGE_QUALITY, DROP_TAIL

The results of this approach for the Amazon dataset is listed
in the 2nd column of Table III and the results of this approach
for the DBLP dataset is listed in the 2nd column of Table IV.
The results of this approach for the webpage dataset is listed
in the 2nd column of Table V. Note that since for this later
dataset we don’t have the ground truth we use as ground truth
a naïve one in which once two nodes are connected by an
edge they belong to the same community.

TABLE III: F1-scores on Amazon dataset

Case COEUS [5] Motif-COEUS
1 0.76 0.83
2 0.85 0.83
3 0.80 0.81

TABLE IV: F1-scores on DBLP dataset

Case COEUS [5] Motif-COEUS
1 0.38 0.40
2 0.43 0.40
3 0.25 0.33

TABLE V: F1-scores on Webpage dataset

Case COEUS [5] Motif-COEUS
1 0.90 0.47
2 0.90 0.47
3 0.74 0.47

C. Motif-COEUS

In the Motif-COEUS we consider a stream of triangles
instead of edges. So first we need to find all triangles in
each dataset. We added the edges of the network to a MySQL
database, where two nodes of the edges were considered as
two columns and named 𝑛𝑜𝑑𝑒1 and 𝑛𝑜𝑑𝑒2. The database is
named ‘edge_data’, then the following SQL returns all the
triangles for a given network.

SELECT e1.node1 as U, e2.node1 as V, e3.node2
as W
FROM edge_data e1, edge_data e2, edge_data e3

WHERE e1.node2 = e2.node1 AND
e2.node2 = e3.node2 AND
e3.node1 = e1.node1;

The number of triangles for the provided datasets are listed
in Table VI.

TABLE VI: Graphs of our dataset with triangles

Dataset Type Nodes Triangles
Amazon Co-purchasing 334,863 667,129
DBLP Co-authorship 317,080 2,224,385
Webpages Link citation 1,977,975 1,269,112

We maintained the same setting for 𝑑 and 𝑤 as before and
initialized the following parameters so that we obtain 99%
confidence and 𝜖 < 0.00001.

The results of Motif-COEUS for the Amazon dataset is
listed in the 3rd column of Table III. The results of the Motif-
COEUS for the DBLP dataset is listed in the 3rd column of
Table IV. The results of the Motif-COEUS for the webpage
dataset created is listed in the 3rd column of Table V.

D. Comparing results of COEUS and Motif COEUS

Comparing the 2nd and 3rd column of Table III we see that
for Case 1 the Motif-COEUS gives much better result than the
existing COEUS for the Amazon dataset. Case 3 gives almost
the same result for both COEUS implementations. However,
test Case 2 does not provide better result for the Motif-COEUS
compared to existing COEUS.

Similarly, comparing the 2nd and 3rd column of Table IV
we see that for Case 1 and Case 3 the Motif-COEUS gives
better result than the existing COEUS for the DBLP dataset.
Again, Case 2 does not provide better result for the Motif-
COEUS compared to existing COEUS.

Comparing the 2nd and 3rd column of Table V we see that
Motif-COEUS fails to perform better than the existing COEUS
for all the test cases. The ratio of nodes to edges in the Web-
page dataset is high and this might be one of the reasons for
the failure of the Motif-COEUS. The Motif-COEUS considers
triangles as the input stream and the Webpage dataset has less
number of triangles due to the large number of nodes with
degree 1. We also do not have a ground-truth community for
the Webpage dataset which is used to pick the initial seed-set.
Note that the accuracy of existing COEUS and Motif COEUS
is calculated by comparing the output of these methods against
the ground-truth communities.

VII. CONCLUSION AND FUTURE WORK

We propose Motif-COEUS method which detects online
local overlapping graph communities by using streams of
motifs, such as triangles of nodes, and seed nodes. We provide
experimental results and compare it to another algorithm
named COEUS, which was the motivation of our work. We
use two public datasets, one of Amazon data and the other of
DBLP data. Furthermore, we create and experiment on a new
dataset that consists of web pages and their links by using the
Internet Archive. This latter dataset provides insights to better
understand how working with motifs is different than working
with edges.

We experimented with three datasets, two publicly available
from Amazon and DBLP, and one that we constructed based
on web pages. We conclude that by considering triangles we
get better communities structures, closer to the ones given
in the ground truth or through the DROP_TAIL approach.
Notably, we see that Motif-COEUS failed to perform well
for any of the test cases on our new Webpage dataset. One
of the reasons for this was that Motif-COEUS use triangles
as the input stream and the Webpage dataset as a stream has
fewer triangles as compared to nodes due to the generally
dispersive nature of web crawling. Specifically, the triangles
might be present, but the nodes and relevant edges are only
witnessed much further in the crawl data stream, potentially

in a different WARC file then the ones analyzed. We also do
not have a ground-truth community for the Webpage dataset,
and uses one that is simplistic which our algorithm uses to
pick the initial seed-set.

In future work, we will try to improve the accuracy of our
algorithms by incorporating higher order structures such as
cliques of size 4 as well as lower order structures. Another
future direction would be to refine our web data by taking the
initial WARC files and filtering the whole data set on the first
𝑋 many distinct nodes found to capture this graph structure
in a smaller stream.

REFERENCES

[1] M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, no. 2, p. 026113,
2004.

[2] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[3] R. Andersen and K. J. Lang, “Communities from seed sets,” in Proceed-
ings of the 15th international conference on World Wide Web, WWW
2006, Edinburgh, Scotland, UK, May 23-26, 2006, pp. 223–232, 2006.

[4] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal
multiscale complexity in networks,” nature, vol. 466, no. 7307, pp. 761–
764, 2010.

[5] P. Liakos, A. Ntoulas, and A. Delis, “COEUS: community detection
via seed-set expansion on graph streams,” in 2017 IEEE International
Conference on Big Data, BigData 2017, Boston, MA, USA, December
11-14, 2017, pp. 676–685, 2017.

[6] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-
order graph clustering,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Halifax, NS, Canada, August 13 - 17, 2017, pp. 555–564, 2017.

[7] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[8] R. Andersen, F. R. K. Chung, and K. J. Lang, “Using pagerank to locally
partition a graph,” Internet Mathematics, vol. 4, no. 1, pp. 35–64, 2007.

[9] J. Yang and J. Leskovec, “Overlapping community detection at scale: a
nonnegative matrix factorization approach,” in 6th ACM WSDM 2013,
pp. 587–596, 2013.

[10] G. Jeh and J. Widom, “Scaling personalized web search,” in Proceedings
of the Twelfth International World Wide Web Conference, WWW 2003,
Budapest, Hungary, May 20-24, 2003, pp. 271–279, 2003.

[11] R. Andersen, F. R. K. Chung, and K. J. Lang, “Local graph partitioning
using pagerank vectors,” in 47th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley,
California, USA, Proceedings, pp. 475–486, 2006.

[12] R. Andersen, F. R. K. Chung, and K. J. Lang, “Local partitioning for
directed graphs using pagerank,” Internet Mathematics, vol. 5, no. 1,
pp. 3–22, 2008.

[13] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, vol. 69, p. 026113, Feb. 2004.

[14] J. J. Whang, D. F. Gleich, and I. S. Dhillon, “Overlapping commu-
nity detection using seed set expansion,” in 22nd ACM International
Conference on Information and Knowledge Management, CIKM’13, San
Francisco, CA, USA, October 27 - November 1, 2013, pp. 2099–2108,
2013.

[15] T. S. Evans and R. Lambiotte, “Line graphs, link partitions, and
overlapping communities,” Phys. Rev. E, vol. 80, p. 016105, Jul 2009.

[16] A. McGregor, “Graph stream algorithms: a survey,” SIGMOD Record,
vol. 43, no. 1, pp. 9–20, 2014.

[17] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection.” http://snap.stanford.edu/data, June 2014.

