
On Proofs About Threshold Circuits and
Counting Hierarchies (Extended Abstract)

Jan Johannsen∗ Chris Pollett

Department of Mathematics Department of Computer Science
University of California, San Diego Boston University

La Jolla, CA 91093-0112 Boston, MA 02215

Abstract
We define theories of Bounded Arithmetic charac-

terizing classes of functions computable by constant-
depth threshold circuits of polynomial and quasipoly-
nomial size. Then we define certain second-order the-
ories and show that they characterize the functions in
the Counting Hierarchy. Finally we show that the for-
mer theories are isomorphic to the latter via the so-
called RSUV -isomorphism.

1 Introduction
A phenomenon that is commonly observed in Com-

plexity Theory is that proofs of results about counting
complexity classes (#P , ModpP etc.) can often be
scaled down to yield results about small depth cir-
cuit classes with the corresponding counting gates.
For example, Toda’s result [17] that every problem in
the Polynomial Hierarchy can be solved in polynomial
time with an oracle for #P corresponds to Allender’s
theorem [1] that polynomial size constant-depth cir-
cuits with unbounded fan-in AND and OR gates can
be simulated by quasi-polynomial size depth 3 thresh-
old circuits.

We give a logical explanation for this phenomenon
and turn the observation into a theorem by defin-
ing bounded arithmetic theories corresponding to the
Counting Hierarchy FCH (which is the union of #P ,
#P#P , #P#P#P

. . . and can be viewed as the largest
counting class) on the one hand and constant-depth
threshold circuits (TC0-circuits) of quasi-polynomial
size on the other hand, and showing that they are iso-
morphic.

The paper is organized as follows: First
we give characterizations of the classes of func-
tions computable by constant-depth threshold cir-
cuits of polynomial and quasi-polynomial size,
and more generally of size exp(exp((log log n)O(1))),

∗ Supported by DFG grant No. Jo 291/1-1

exp(exp(exp((log log log n)O(1)))) . . . , by function al-
gebras. In order to do that, we give a new proof of
Clote and Takeuti’s [9] function algebra characteriza-
tion of the functions computed by polynomial size TC0

circuits. Unlike the original proof, ours can be gener-
alized to the case of quasi-polynomial and the above
larger size bounds.

We then define a hierarchy of bounded arithmetic
theories C0

k for k ≥ 2, and show that these theories
characterize the above classes of threshold circuits.
More precisely, the functions whose graphs are defined
by bounded existential formulas and that are provably
total in the theories C0

2 and C0
3 are precisely those

in computable by polynomial size and quasipolyno-
mial size TC0-circuits, and analogous relations hold
between the theories C0

k for k > 3 and the larger size
threshold circuit classes mentioned above. This sim-
plifies and generalizes earlier work by the first author
[10].

Next we define another hierarchy of second-order
bounded arithmetic theories D0

k for k ≥ 1. Using the
function algebra characterization of the counting hi-
erarchy FCH by Vollmer and Wagner [18], we then
show that the theory D0

2 characterizes FCH: The
functions provably total in D0

2 whose graphs are defin-
able by second-order existential bounded formulas are
exactly the functions in FCH. Similarly, the theories
D0

k with k > 2 correspond to classes defined analogous
to FCH, but using machines with quasi-polynomial
(for k = 3) and longer running times. The witnessing
argument that we use to prove these results is simpler
than the second-order witnessing of Buss [3] and could
also be applied to give simpler proofs of earlier results
concerning second-order bounded arithmetic.

Finally we show that for every k ≥ 1, the theories
C0

k+1 and D0
k are isomorphic via the so-called RSUV -

isomorphism [14, 16]. The idea behind this isomor-
phism is that a number a can be viewed as the set

{ i ; the ith bit in a is 1 }, and vice versa a finite set A
can be viewed as representing the number

∑
a∈A 2a.

This way, the numbers in a second-order theory corre-
spond to the small numbers in a first-order theory, i.e.
those in the range of the logarithm function, whereas
the sets in a second-order theory correspond to all
numbers in a first-order theory.

Technically, this means that there are translations
mapping a first-order formula A to a second-order for-
mula AH , and a second-order formula B to a first-
order formula BL such that D0

k proves AH for every
theorem A of C0

k+1, and C0
k+1 proves BL for every

theorem B of D0
k. These statements are proved by

induction on the lengths of proofs, so that a proof in
one of the theories can be translated step by step into
a proof in the other theory. Moreover A and AHL are
provably equivalent in C0

k+1, and for a bounded for-
mula B, B and BLH are provably equivalent in D0

k,
so the translations indeed form a kind of isomorphism
between theories.

2 Function Algebras
We define a hierarchy of growth rates by τ1(n) :=

O(n), and then inductively τk+1(n) := 2τk(log n). In
particular, τ2(n) are the polynomial and τ3(n) are the
quasi-polynomial growth functions.

Let TC0(f(n)) denote the set of functions com-
putable by Dlogtime-uniform families of threshold cir-
cuits of constant depth and size O(f(n)), and let TC0

abbreviate TC0(τ2(n)) = TC0(nO(1)) and qTC0 =
TC0(τ3(n)). Thus TC0 has its usual meaning, and
qTC0 denotes the class of functions computed by
quasi-polynomial size TC0 circuits.

The model of a Threshold Turing Machines (TTM)
was introduced by Parberry and Schnitger [13]. A
TTM is similar to an alternating machine, but instead
of existential and universal states it has deterministic
and threshold states, and it has a distinguished read-
only guess tape. The successor configurations of a con-
figuration in a threshold state all have the same state,
but the initial segment of the guess tape through the
position of the head is filled with zeroes and ones in
all possible ways. Hence if the head on the guess tape
is over the mth cell, there are 2m successor configura-
tions. The configuration is accepting if the majority of
its successors are. A TTM also has a read-only input
tape with random access via an index tape to allow for
sub-linear runtimes. In the following, all TTMs are
required to perform only constantly many threshold
operations on each computation path. The following
was noted by Allender [2]:

Proposition 1. The class of languages accepted in

time O(t(n)) on a TTM coincides with TC0(2O(t(n))),
for every complexity function t(n) = Ω(log n).

Thus TC0(τk(n)) is equal to τk−1(log n) time on
a TTM , and in particular, TC0 is equal to O(log n)
time on a TTM , and polylogarithmic time on a TTM
is the same as qTC0.

The scheme of concatenation recursion on notation
(CRN) was introduced by Clote [7]. We say that a
function f is defined by CRN from g and h0, h1 if

f(~x, 0) = g(~x)
f(~x, s0(y)) = 2 · f(~x, y) + h0(~x, y) for y > 0
f(~x, s1(y)) = 2 · f(~x, y) + h1(~x, y)

provided that hi(~x, y) ≤ 1 for all ~x, y and i = 0, 1.
Let s0(x) := 2x, s1(x) := 2x + 1, |x| :=

dlog2(x + 1)e, Bit(x, i) := bx/2ic mod 2, and for
j ≤ n let πn

j (x1, . . . , xn) := xj . Furthermore let
x#2y := 2|x|·|y|, and for k ≥ 2 let x#k+1y := 2|x|#k|y|.
For k ≥ 2, let Tk denote the least class of functions
that contains the set

{0, s0, s1, |.|, Bit, ·, #2, . . . , #k} ∪ {πn
j ; j ≤ n}

and is closed under composition and CRN . Clote and
Takeuti [9] showed that T2 = TC0. We generalize this
to:

Theorem 2. Tk = TC0(τk(n)) for every k ≥ 2. In
particular, T2 = TC0 and T3 = qTC0.

Proof. For the inclusion Tk ⊆ TC0(τk(n)) the proof
in [9] for the case k = 2 can be used to show that
TC0(τk(n)) is closed under CRN . Then it is easy to
see that the function #k can be computed by circuits
of the required size.

For the reverse inclusion, it is shown how to
code the computation of a TTM operating in time
τk−1(log n) by a function in Tk. This is done analo-
gous to Clote’s proof in [8] that the algebra A0, which
is T2 without multiplication, is equal to the alternat-
ing logarithmic time hierarchy. The idea is to code
sequences of instructions instead of configurations and
to use the closure of Tk under sharply bounded ma-
jority quantifiers. The details will be presented in the
full version of the paper.

3 First-Order Theories
For k ≥ 1, the language Lk comprises the usual

signature of arithmetic 0, S, +, . , ·,≤ plus function
symbols for b 1

2xc, |x|, MSP (x, i) := bx/2ic and, if
k ≥ 2, the functions #2, . . . , #k.

A quantifier of the form ∀x≤ t , ∃x≤ t with x not
occurring in t is called a bounded quantifier. Further-
more, the quantifier is called sharply bounded if the
bounding term t is of the form |s| for some term s. A
formula is called (sharply) bounded if all quantifiers
in it are (sharply) bounded.

We denote the class of quantifier-free formulas in
Lk by openk. The class of sharply bounded for-
mulas in Lk is denoted Σb

0,k or Πb
0,k. For i ∈ N,

Σb
i+1,k (resp. Πb

i+1,k) is the least class containing Πb
i,k

(resp. Σb
i,k) and closed under conjunction, disjunction,

sharply bounded quantification and bounded existen-
tial (resp. universal) quantification. We usually omit
the index k from the names of these classes, the value
of k will always be clear from the context.

BASICk denotes a set of quantifier-free axioms
specifying the interpretations of the function symbols
of Lk. It can most conveniently be taken as the set
BASIC from [3] together with the axioms for MSP
and . from [16] and the two axioms

|x#jy| = S(|x|#j−1|y|)
z < x#jy → |z| < |x#jy|

for 3 ≤ j ≤ k.
For a class of formulas Φ, the axiom schema Φ-

LIND is

A(0) ∧ ∀x (A(x) → A(Sx)) → ∀x A(|x|)
for each A(x) ∈ Φ. By Φ-IND we denote the usual
induction scheme for formulas in Φ.

The theory Si
k is the theory in the language Lk ax-

iomatized by the BASICk axioms and the Σb
i -LIND

scheme, and T i
k is the theory given by BASICk and

Σb
i -IND. The results from [3, 4, 12, 11, 5] show a

close connection between the theories Si
2 and T i

2 and
polynomial time computations.

Before we can introduce the theories we are going
to consider, we have to define some frequently used
terms. Let

2|x| := 1#2 x

mod2(x) := x
.

2 · b1
2
xc

Bit(x, i) := mod2(MSP (x, i))

2min(x,|y|) := MSP (2|y|, |y| .
x)

LSP (x, i) := x
.

2min(i,|x|) ·MSP (x, i)

βa(w, i) := MSP (LSP (w, Si · |a|), i · |a|)
so that LSP (x, |y|) returns the number consisting

of the last |y| bits of x, and if w codes a sequence

〈b1, . . . , b`〉 with |bi| ≤ |a| for all i, then βa(w, i) = bi.
Thus the code for such a sequence is simply the num-
ber w whose binary representation consists of a 1 fol-
lowed by the binary representations of the bi concate-
nated, each padded with zeroes to be of exact length
|a|. The replacement scheme BBΦ is then

∀x≤|s| ∃y≤ t(x) A(x, y) →
∃w<2(t∗#2 2s) ∀x≤|s| βt∗(w, x) ≤ t(x)

∧A(x, βt∗(w, x))

for each A(x, y) ∈ Φ, where t∗ := tM (|s|) for some
monotone term tM that, provably in BASICk +
open-LIND, surpasses t. The comprehension scheme
Φ-COMP is

∃y<2|a| ∀x< |a| (Bit(y, x) = 1 ↔ A(x))

for each A(x) ∈ Φ.
The theory C0

k is the theory in the language
Lk given by BASICk, the open-LIND scheme and
BBΣb

0. The following proposition is easily proved:

Proposition 3. C0
k proves the Σb

0-COMP axioms
and the Σb

0-LIND axioms.

For a class of formulas Φ, a function f is said to be
Φ-definable in a theory T if there is a formula A(~x, y) ∈
Φ, describing the graph of f in the standard model,
and a term t(~x), such that T proves

∀~x ∃!y≤ t(~x) A(~x, y) .

In [10], the theory R̄0
2 was defined as S0

2 plus Σb
0-

COMP and BBΣb
0, and it was shown that the Σb

1-
definable functions of R̄0

2 are precisely the functions
in TC0. By Prop. 3, the theory C0

2 is equal to R̄0
2,

and thus the Σb
1-definable functions of C0

2 are also the
functions in TC0. This can be generalized as follows:

Theorem 4. The Σb
1-definable functions of C0

k are
exactly the functions in TC0(τk(n)).

Proof. Using Proposition 3, we can do the same proof
as in [10], showing that the Σb

1-definable functions of
C0

k are the function algebra Tk, hence the result follows
from Theorem 2 above.

In particular, the Σb
1-definable functions of C0

3 are
the functions in qTC0.

4 Counting Hierarchies
The counting hierarchy is the following hierarchy of

functions: At the first level one has 1#P := #P , the
class of those functions computable as the number of
accepting paths of an NP machine. The higher levels

are defined inductively by (i + 1)#P = #P i#P . The
counting hierarchy is FCH =

⋃
i≥1 i#P . We define

FCH(f(n)) similarly to FCH except rather than us-
ing NP machines we use O(f(n)) time bounded non-
deterministic machines. Another characterization of
FCH(f(n)) is those functions computed by a TTM
with runtime bounded by O(f(n)). If Ψ is a set of
functions then FCH(Ψ) = ∪f∈ΨFCH(f(n)).
Definition: Let Ψ be a set of unary functions. A
Ψ-sum is a sum of the form

f(|x|)∑
z=0

g(x, z)

where f is in Ψ. We write Exp for the set {2nk

; k ∈
N}.

Let FCA(Ψ) denote the smallest class of functions
that contains the arithmetic operations 0, 1, +, .

and · and the projection functions πn
j , and is closed

under composition and Ψ-sums.
Corollary 4.4 in Vollmer and Wagner [18] shows

that FCA(Exp) = FCH. Their proof generalizes in
a straightforward manner to show:

Theorem 5. Let Ψ be a set of complexity functions
of at least polynomial growth. Then

FCH(Ψ) = FCA(2Ψ)

where 2Ψ := {2f ; f ∈ Ψ}.
We define the class FCA~α(Ψ) in the same way as

FCA(Ψ) except now we also let the predicate variables
~α viewed as 0-1-valued functions be initial functions in
the algebra. We define CA~α(Ψ) to be the 0-1 valued
functions in FCA~α(Ψ).

Lemma 6. Suppose A(z, ~x, ~α) is a predicate in
CA~α(2τk(n)). Then

f(y, ~x, ~α) = µz≤y A(z, ~x, ~α)

is in FCA~α(2τk(n)).

5 Second-Order Theories
Let Lk be the language Lk extended to allow

second-order unary predicate variables αt
i for i ∈ N

and Lk-term t. The idea is t is a bound on the range
of true values of this variable. A second-order for-
mula is called bounded if all its first-order quantifiers
are bounded. We usually omit the index i and use
other lower case Greek letters as names for predicate
variables instead.

Σ1,b
0,k = Π1,b

0,k is the class of formulas with only
bounded first-order quantifiers. Then for every i, the

class Σ1,b
i+1,k (Π1,b

i+1,k) is the least class that contains
Π1,b

i,k (resp. Σ1,b
i,k) and is closed under conjunction, dis-

junction, bounded first-order quantification and ex-
istential (resp. universal) second-order quantification.
A formula B is a ∆1,b

i,k in a theory T if B is provably
in T equivalent to both a Σ1,b

i,k and a Π1,b
i,k-formula.

We will use the following boundedness axioms for
predicate variables in our theories:

∀x (αt(x) → x < t) .

We write {x}V t for the abstract {x}(x ≤ t ∧ V). Let
〈 , 〉 be a pairing function with inverses ()1 and ()2,
and let bd(s, t) be a term that bounds all pairs of the
form 〈i, j〉 where i ≤ t and j ≤ s. Let ββ(b, α) be the
abstract for the second-order β function {x}α(〈b, x〉),
and let Sα be the abstract {x}[α(x) ↔ ∃y≤x¬α(y)

]
.

Then the counting axiom is given by

∃ϕbd(t,|t|) ∀j≤|t| (ββ(0, ϕ)(j) ↔ j = 0 ∧ αt(0))

∧ ∀i<t
[(¬αt(Si) ∧ ββ(Si, ϕ) ≡|t| ββ(i, ϕ)

)

∨
(
αt(Si) ∧ ββ(Si, ϕ) ≡|t| Sββ(i, ϕ)

)]

where α1 ≡t α2 := ∀j≤ t α1(j) ↔ α2(j).
Definition:

1. Φ-BCA, Φ-bounded comprehension axiom is the
following scheme:

∃αt ∀x≤ t (α(x) ↔ A(x))

where A is in Φ and does not contain the variable
α.

2. Φ-BCR, Φ-bounded comprehension rule is the
following inference:

Γ ⇒ A(V t),∆
Γ ⇒ ∃ϕt A(ϕt),∆

where V is a Φ-abstract.

3. Φ-AC, Φ-second-order replacement is the follow-
ing scheme

∀x≤s ∃αt B(x, α)
↔ ∃ψu ∀x≤s B(x, ββ(x, ψu))

where A is in Φ and u := bd(s, t).

4. Φ-ACR, Φ-second-order replacement rule is the
following inference

Γ ⇒ ∀x≤s ∃ϕt A(x, ϕt), ∆
Γ ⇒ ∃ψu ∀x≤s A(x, ββ(x, ψu)), ∆

where A is in Φ and u := bd(s, t).

The theories D0
k over the language Lk are axiom-

atized as BASICk together with counting axioms,
open-IND, open-BCA and Σ1,b

0 -AC. We could have
alternatively characterized this theory as those state-
ments provable in the second-order sequent calculus
with BASICk axioms, counting axioms, open-IND,
Σ1,b

0 -ACR, and open-BCR.

Theorem 7. D0
k proves the following extensionality

axioms, where u ≥ max(s, t):

∀x≤u (αs(x) ↔ γt(x)) → ∀x (αs(x) ↔ γt(x)) .

This follows immediately from the boundedness ax-
iom. Using an abstract to code a pair of predicates
into a single predicate, one can show the following:

Theorem 8. D0
k proves Σ1,b

1 -AC.

Similar to Proposition 3, we have

Lemma 9. D0
k proves ∆1,b

1 -BCA and ∆1,b
1 -IND.

Proof. Let A(x) be ∆1,b
1 in D0

k, and consider the
formula A(x) ↔ α0(0), which is equivalent in D0

k

to a Σ1,b
1 -formula B(x, α0). Now D0

k proves ∀x ≤
t ∃α0 B(x, α0), hence by Σ1,b

1 -AC there is a predicate
ψbd(t,0) such that ∀x≤ tββ(x, ψ)(0) ↔ A(x), and hence
by open-BCA there is ϕt such that ∀x ≤ t ϕt(x) ↔
A(x), which proves ∆1,b

1 -BCA. Now ∆1,b
1 -IND fol-

lows immediately from ∆1,b
1 -BCA and open-IND.

Using ∆1,b
1 -BCA, it is possible to show:

Theorem 10. D0
k can Σ1,b

1 -define the functions in
FCA~α(2τk(n)). Moreover, D0

k can Σ1,b
1 -define any

f ∈ FCA(2τk(n)) using a formula not containing free
predicate variables.

Proof. The only nontrivial thing to prove is the closure
of the Σ1,b

1 -definable functions under summation. So
let g(x) be Σ1,b

1 -definable in D0
k, and let s be a term

bounding g. Now y < g(x) is ∆1,b
1 in D0

k, so by ∆1,b
1 -

BCA we can define a predicate αbd(s,t) with

∀x, y≤ t α(〈y, x〉) ↔ y < g(x) .

Now note that the number of x ≤ bd(s, t) with α(x) is∑t
i=0 g(i), and this number can be counted by use of

the counting axiom.

This implies also that every predicate in
CA~α(2τk(n)) is ∆1,b

1 in D0
k.

6 A Witnessing Argument
The following closure properties of ∆1,b

1 formulas in
D0

k are easily verified.

Lemma 11. The class of ∆1,b
1 -formulas in D0

k is
closed under boolean combinations, bounded first-order
quantification, substitution of ∆1,b

1 -abstracts for free
predicate variables and substitution of terms contain-
ing Σ1,b

1 -defined functions for free first-order variables.

Let Σ̃1,b
1 be the class consisting of formulas of the

form ∃x≤ t∃ϕA or of the form ∀x≤ t∃ϕA where A is
Σ1,b

0 . Suppose D0
k defines some function f by proving

∀x ∃y ∃ϕ A where A is in Σ1,b
0 . Then by Parikh’s

Theorem, D0
k proves ⇒ ∃y ≤ t ∃ϕ A and given the

form of D0
k’s axioms and rules of inference, by cut-

elimination we can assume all sequents in this proof
contain only Σ̃1,b

1 -formulas. We define a witnessing
predicate for Σ̃1,b

1 -formulas as follows:

1. If A(~a, ~α) ∈ Σ1,b
0 then Wit2A(γ,~a, ~α) := A(~a, ~α).

2. If A(~a, ~α) is of the form ∃ϕt B where B ∈ Σ1,b
0 ,

then

Wit2A(γt,~a, ~α) := B(γt,~a, ~α).

3. If A(~a, ~α) is of the form ∃x≤ s ∃ϕt B where B ∈
Σ1,b

0 , then

Wit2A(γt,~a, ~α) := ∃x≤s B(γt, x,~a, ~α)

4. If A(~a, ~α) is of the form ∀x≤ s ∃ϕt B where B ∈
Σ1,b

0 , then Wit2A(γbd(s,t),~a, ~α) is

∀x≤s B(ββ(x + 1, γbd(s,t)), x,~a, ~α) .

Lemma 12. Let A(~a, ~α) be a Σ̃1,b
1 -formula. Then D0

k

proves
A(~a, ~α) ↔ ∃ψt Wit2A(ψt,~a, ~α)

The statement is trivial if A falls under the first
three cases listed above. For the fourth case it follows
by Σ1,b

1 -AC.

Lemma 13. Any Σ1,b
0 -formula with free variables

among γt, ~α is in CAγt,~α(2τk(n)). In particular, for
a Σ̃1,b

1 -formula A(~a, ~α), Wit2A(γt,~a, ~α) is a predicate
in CAγt,~α(2τk(n)).

For a cedent of Σ̃1,b
1 -formulas Γ = A1, . . . , An we

define Wit2∧Γ(γtΓ ,~a, ~α) to be
∧

i
Wit2Ai(ββ(i, γtΓ),~a, ~α) ,

where tΓ := bd(n,max(t1, ..., tn)) and ti is the bound
on the witnessing predicate for Ai. Likewise, we define
Wit2∨Γ(γtΓ ,~a, ~α) to be

∨
i
Wit2Ai

(ββ(i, γtΓ),~a, ~α) .

Theorem 14. Suppose D0
k ` Γ ⇒ ∆ where Γ

and ∆ are cedents of Σ̃1,b
1 -formulas having free vari-

ables among ~c,~γ. Then there is a predicate M t′ in
CAαtΓ ,~γ(2τk(n)) which is ∆1,b

1 in D0
k such that:

D0
k ` Wit2∧Γ(αtΓ ,~c,~γ) →

Wit2∨∆({x}M t∆(x,~c, αtΓ , ~γ),~c,~γ).

Proof. We can assume that any D0
k proof of a sequent

of Σ̃1,b
1 -formulas contains only Σ̃1,b

1 -formulas. Also, we
can assume that no predicate variable on the right
hand side of a sequent in the proof is eliminated by
an second-order existential introduction or open-BCR
inference, because otherwise we could replace it ev-
erywhere by the abstract {x}(1 = 1) and add some
weakenings to make the resulting figure a valid proof.

The proof proceeds by induction on a D0
k sequent

calculus proof of Γ ⇒ ∆. The induction base is trivial
for the logical, BASIC and boundedness axioms since
these consist of Σ1,b

0 -formulas. For the counting axiom,
note that the predicate Cbd(t,|t|)(x, αt) defined by

Bit
((x)1∑

j=0

αt(j) , (x)2
)

= 1

is in CAαt

(2τk(n)) and hence ∆1,b
1 in D0

k, and that
Cbd(t,|t|)(x, αt) witnesses the counting axiom. For the
induction step, we only treat the cases where the last
inference is a right bounded-universal introduction,
open-BCR, open-IND or Σ1,b

0 -ACR. For sake of read-
ability we also do not display the free variables ~c,~γ.

Suppose the last inference is

b ≤ t,Γ ⇒ A(b),∆
Γ ⇒ ∀x≤ t A(x),∆

.

By the hypothesis there is a ∆1,b
1 -abstract M

tA,∆
1 in

CAαr

(2τk(n)) such that

D0
k ` Wit2b≤t ∧ Γ(αr, b)

→ Wit2A ∨∆({x}M tA,∆
1 (x, b, αr), b) ,

where r is tb≤t,Γ. Now either A is in Σ1,b
0 , or A is

of the form ∃ϕ B where B is Σ1,b
0 . In both cases

let α̃r := {x}αr
(〈(x)1 . 1, (x)2〉

)
, and let g(x) =

µy ≤ t ¬Wit2A(ββ(1, {x}M1(x, y, α̃r)), y), which is in

FCAαr

(2τk(n)) by Lemma 6. In the first case, we de-
fine

Ms(x, αr) := M1(x, g(x), α̃r)

where s = t(∀x≤t)A(x,~c),∆. If g(x) < t + 1 this abstract
will provide a witness to ∆. Otherwise, notice that
∀x≤ t A is a true Σ1,b

0 -formula so any ∆1,b
1 -abstract in

CAαr,~γ(2τk(n)) witnesses the succedent. So

D0
k ` Wit2 ∧ Γ(αr)

→ Wit2∀x≤tA ∨∆({x}Ms(x, αr)) .

In the second case, A is of the form (∃ϕ)B where
B ∈ Σ1,b

0 . Let m be the number of formulas in the
lower succedent. We define Ms(x, αr) where s is as
before to be

((x)1 = 1 ∧M1(〈1, ((x)2)2〉, ((x)2)1, α̃r,))
∨ (2 ≤ (x)1 ≤ m ∧M1(x, g(x), α̃r)))

Now either ∀x≤ t A(x) holds or there is some b ≤ t
that ¬A(b). In the first case, the ββ(1,Ms) witnesses
∀x≤ t A(x). Otherwise ∆ is witnessed by the rest of
Ms. So

D0
k ` Wit2 ∧ Γ(αr)

→ Wit2∀x≤tA ∨∆({x}Ms(x, αr)).

Suppose the final inference is an open-BCR

Γ ⇒ A(V t),∆
Γ ⇒ (∃ϕt)A(ϕ), ∆

where V t is an open-abstract. By hypothesis there is
a ∆1,b

1 -abstract M
tA,∆
1 ∈ CAαr

(2τ
k(n)) such that

D0
k ` Wit2∧Γ(αr)

→ Wit2A ∨∆({x}M tA,∆
1 (x, αr)),

where r is tΓ. Let Ms(x, αr) be

((x)1 = 1 ∧ V t((x)2) ∨ ((x)1 > 1 ∧M
tA,∆
1 (x, αr))

where s := bd(m + 1,max(t, tA,∆). It is now easy to
see that

D0
k ` Wit2∧Γ(αr)

→ Wit2(∃ϕ)A ∨∆({x}Ms(x, αr)).

Suppose the final inference is an open-IND:

A(y), Γ ⇒ A(Sy), ∆
A(0), Γ ⇒ A(t), ∆

By induction there is a ∆1,b
1 -predicate Ms

1 ∈
CAαr

(2τk(n)) such that

D0
k ` Wit2A(y) ∧ Γ(αr, y)

→ Wit2A(Sy) ∨∆({x}Ms
1 (x, y, αr), y),

where r = tA(y),Γ and s = tA(Sy),∆. Since A(y)
is open, we can define a function g(x, αr) = µy <
t ¬A(Sy), so that g ∈ FCAαr

(2τk(n)) by Lemma 6.
Now define M to be

Ms := Ms
1 (x, g(x, αr), αr).

By Σ1,b
0 -IND either A(t) holds or ¬A(0) holds or g

returns a value such that A(y) and ¬A(Sy). In the
first two cases, Ms trivially witnesses the succedent.
In the last case, by the induction hypothesis Ms will
produce a witness for some formula in ∆.

For the case where the final inference is
Σ1,b

0 -ACR, note that Wit2∃ψ ∀x<t A(x,ββ(x,ψ)) and
Wit2∀x<t ∃ϕ A(x,ϕ) are the same predicate, so any ab-
stract witnessing the upper sequent will also witness
the lower sequent.

¿From the witnessing theorem we get the following
result immediately.

Theorem 15. Suppose A(~x, y) is a Σ1,b
1 -formula

where ~x, y are all the free variables of A such that
D0

k ` ∀~x ∃y A(~x, y). Then there is a Σ1,b
1 -formula

B(~x, y), a term t and a function f ∈ FCA(2τk(n)) so
that

1. D0
k ` ∀~x ∀y B(~x, y) → A(~x, y)

2. D0
k ` ∀~x ∃!y≤ t B(~x, y)

3. For all ~n, N |= B(~n, f(~n))

In particular, this implies that any Σ1,b
1,k-definable

function of D0
k is in FCA(2τk(n)). Together with The-

orem 10, this gives the characterization of the Σ1,b
1,k-

definable functions in D0
k.

7 RSUV -isomorphism
First we define a translation mapping every Lk+1-

formula A to a Lk-formula AH . The translation is
essentially the same as the one defined in [15, 16].

Inductively, we define for each Lk+1-term t a ∆1,b
1 -

formula At(x) and a Lk-term Tt. Then tH is the ab-
stract {x}(x ≤ Tt ∧At(x)). The idea is that the value
of t is

∑Tt

i=0 At(i)2i, i.e. At codes t in binary.
First, T0 := 0 and A0 is 0 = 1. For a variable a,

Ta := a and Aa is a second-order variable αa. Then
for each function symbol f , Tf(t̄) and Af(t̄) are defined

according to the computation of the bits of f(t̄) from
the bits of t̄. E.g. Tb 1

2 tc := Tt
. 1 and Ab 1

2 tc(x) :=
At(x + 1), and TSt := Tt + 1 and

ASt(x) := At(x) ↔ ∃y≤x ¬At(y) .

The most intriguing case is multiplication. First let
2yα(x) be x ≥ y ∧ α(x . y), and let (α +H β) be an
abstract such that As+t(x) is (sH +H tH)(x). Now we
define Ts·t := Ts + Tt, and As·t as

∃γm Table(sH , tH , γm, Ts) ∧ ββ(Ts + 1, γm)(x)

where m := bd(Ts + 1, Ts·t) and the formula
Table(sH , tH , γ, a) is defined as

∀y≤Ts·t ¬ββ(0, γ)(y) ∧

∀y≤a
((¬sH(y) ∧ ββ(Sy, γ) ≡Ts·t ββ(y, γ)

)
∨

(
sH(y) ∧ ββ(Sy, γ) ≡Ts·t (ββ(y, γ) +H 2ytH)

))

i.e. γ codes the computation of s · t as the sum of the
vector of numbers t ·Bit(s, i) · 2i for i < |s|.

To see that As·t is ∆1,b
1 we need to prove in D0

k that
given sH , tH and a ≤ Ts+1, there is a unique predicate
γbd(a+1,Ts·t) such that Table(sH , tH , γ, a) holds. Then
the Σ1,b

1 -formula As·t is equivalent to the Π1,b
1 -formula

∀γm Table(sH , tH , γm, Ts) → ββ(Ts + 1, γm)(x).

Now the existence of γ is proved from the counting ax-
iom by formalizing in D0

k a reduction of vector sum-
mation to counting such as the one in [6], and the
uniqueness follows from extensionality.

The definitions for the other function symbols can
be found in [15, 16]. To define AH for a formula A,
first (s ≤ t)H is defined as sH ≤H tH , where ≤ H ex-
presses the lexicographic ordering of predicates. Then
(s = t)H is (s ≤ t)H ∧ (t ≤ s)H . The translation
commutes with the propositional connectives. For
quantified formulas note that B(a)H is of the form
BH(a, αa). Now (∃x≤ t B(x))H is

∃x≤Tt ∃ϕx
(
xH ≤H tH ∧BH(x, ϕx)

)

and (∀x≤ t B(x))H is

∀x≤Tt ∀ϕx
(
xH ≤H tH → BH(x, ϕx)

)
,

where Ax is ϕx. Finally define (∃x B(x))H as
∃x∃ϕxBH(x, ϕx) and (∀xB(x))H as ∀x∀ϕxBH(x, ϕx).

Theorem 16. If C0
k+1 ` A, then D0

k ` AH , for every
Lk+1-formula A.

Proof. By induction on the length of a proof of A in
C0

k+1. The translations of BASIC axioms can all be
proved in D0

k by use of ∆1,b
1 -IND, where for those

axioms concerning multiplication the counting axiom
has to be applied. The translation of open-LIND are
proved by ∆1,b

1 -IND, and the translation of BBΣb
0 is

proved by use of Σ1,b
1 -AC.

Next we define a translation mapping a Lk-formula
B to a Lk+1-formula BL. The translation is the same
used in [16].

For a term t, tL is constructed by replacing every
variable a in t by |a|. Then (s = t)L is sL = tL and
(s ≤ t)L is sL ≤ tL. For A = αt(s), AL is defined as
sL ≤ tL ∧ Bit(a, sL) = 1. The translation commutes
with the propositional connectives. For the quanti-
fiers, we have three cases:

• If A is ∀x B or ∃x B, then AL is simply ∀x BL

resp. ∃x BL.

• If A is ∀ϕt B(ϕt) or ∃ϕt B(ϕt), then AL is ∀x<

2tL+1 BL(x) resp. ∃x<2tL+1 BL(x).

• If A is ∀x ≤ t B or ∃x ≤ t B, and BL is B̃(|x|),
then AL is ∀x≤ tL B̃(x) resp. ∃x≤ tL B̃(x).

Note that due to the presence of the function #k+1

every term of the form tL for Lk-term t can be written
in the form |s| for some Lk+1-term s. Hence the bound
2tL+1 can be expressed by a term, and the translations
of first-order bounded quantifiers are sharply bounded,
which gives the following crucial property of the trans-
lation.

Lemma 17. If B is a Σ1,b
i,k-formula, then AL is equiv-

alent to a Σb
i,k+1-formula in C0

k+1.

Theorem 18. If D0
k ` B, then C0

k+1 ` BL, for every
Lk-formula B.

Proof. By induction on the length of a proof of B
in D0

k. Note that BASIC axioms are translated to
instances of BASIC axioms and the translation of
the boundedness axiom is tautological. Applications
of open-IND and open-BCA are provable by open-
LIND and open-COMP respectively, where the lat-
ter is provable in C0

k+1 by Lemma 3. The translation
of Σ1,b

0 -AC is provable by use of BBΣb
0. Finally the

translation of the counting axiom can be proved in
C0

k+1 by use of the reduction of counting to multipli-
cation in [6].

Finally, we show that the translations H and L are
inverse to each other. There are very easy translations

∗ from Lk+1 to itself and 2 from Lk to itself such that
the following holds.

Theorem 19. 1. C0
k+1 ` A ↔ AHL∗ for every

Lk+1-formula A.

2. D0
k ` B ↔ BLH2, for every bounded Lk-formula

B.

Proof. For both statements, one direction follows by
applying Theorems 16 and 18 in succession. The other
direction is by induction on the complexity of A or B.
The proof is the same as in [16].

This together with Theorems 16 and 18 immedi-
ately yields the following.

Corollary 20. 1. For every Lk+1-formula A,
C0

k+1 ` A iff D0
k ` AH .

2. For every bounded Lk-formula B, D0
k ` B iff

C0
k+1 ` BL.

Acknowledgments
We would like to thank the following people: Jan

Kraj́ıček and an anonymous referee for the paper [10]
suggested that R̄2

0 = C0
2 might be RSUV -isomorphic

to a certain subtheory of D0
1, which was the starting

point of this paper. Peter Clote brought [18] to our
attention, and Eric Allender referred us to the concept
of Threshold Turing Machines and his [2].

References
[1] E. Allender. A note on the power of threshold

circuits. In Proceedings of the 30th FOCS, pages
580–584, 1989.

[2] E. Allender. The permanent requires large uni-
form threshold circuits. Manuscript. Preliminary
Version appeared in COCOON’96, 1996.

[3] S. R. Buss. Bounded Arithmetic. Bibliopolis,
Napoli, 1986.

[4] S. R. Buss. Axiomatizations and conservation re-
sults for fragments of bounded arithmetic. In
Logic and Computation, volume 106 of Con-
temporary Mathematics, pages 57–84. American
Mathematical Society, Providence, 1990.

[5] S. R. Buss and J. Kraj́ıček. An application of
boolean complexity to separation problems in
bounded arithmetic. Proceedings of the Lon-
don Mathematical Society — 3rd Series, 69:1–21,
1994.

[6] A. C. Chandra, L. Stockmeyer, and U. Vishkin.
Constant depth reducibility. SIAM Journal of
Computing, 13:423–439, 1984.

[7] P. Clote. Sequential, machine independent char-
acterizations of the parallel complexity classes
ALogTIME, ACk, NCk and NC. In S. R. Buss
and P. J. Scott, editors, Feasible Mathematics,
pages 49–69. Birkhäuser, Boston, 1990.

[8] P. Clote. Computation models and function al-
gebras. to appear in E. Griffor (ed.) Handbook of
Recursion Theory, 1996.

[9] P. Clote and G. Takeuti. First order bounded
arithmetic and small boolean circuit complexity
classes. In P. Clote and J. Remmel, editors, Fea-
sible Mathematics II, pages 154–218. Birkhäuser,
Boston, 1995.

[10] J. Johannsen. A bounded arithmetic theory for
constant depth threshold circuits. In P. Hájek, ed-
itor, GÖDEL ‘96, pages 224–234, 1996. Springer
Lecture Notes in Logic 6.

[11] J. Kraj́ıček. Fragments of bounded arithmetic
and bounded query classes. Transactions of the
AMS, 338:587–598, 1993.

[12] J. Kraj́ıček, P. Pudlák, and G. Takeuti. Bounded
arithmetic and the polynomial hierarchy. Annals
of Pure and Applied Logic, 52:143–153, 1991.

[13] I. Parberry and G. Schnitger. Parallel computa-
tion with threshold functions. Journal of Com-
puter and System Sciences, 36:278–302, 1988.

[14] A. A. Razborov. An equivalence between sec-
ond order bounded domain bounded arithmetic
and first order bounded arithmetic. In P. Clote
and J. Kraj́ıček, editors, Arithmetic, Proof The-
ory and Computational Complexity, volume 23 of
Oxford Logic Guides, pages 247–277. Clarendon
Press, Oxford, 1993.

[15] G. Takeuti. Si
3 and

◦
V i

2 (BD). Archive for Math-
ematical Logic, 29:149–169, 1990.

[16] G. Takeuti. RSUV isomorphisms. In P. Clote
and J. Kraj́ıček, editors, Arithmetic, Proof The-
ory and Computational Complexity, volume 23 of
Oxford Logic Guides, pages 364–386. Clarendon
Press, Oxford, 1993.

[17] S. Toda. On the computational power of PP and
⊕P . In Proceedings of the 30th FOCS, pages 26–
35, 1989.

[18] H. Vollmer and K. Wagner. Recursion theo-
retic characterizations of complexity classes of
counting functions. Theoretical Computer Sci-
ence, 163:245–258, 1996.

