Video Game Engines

Chris Pollett
San Jose State University
Dec. 1, 2005.



Outline

Introduction

Managing Game Resources
Game Physics

Game Al



Introduction

* A Game Engine provides the core functionalities
of a game:

— It manages the objects, game levels, and other resources

in the game world

— It renders the viewable portion of the world to the user
— It handles updating of the positions of objects

— It also manages the behavior of non-player characters

I'he same game engine can be used for many
different games. For example, the Quake engine,

la B

T'orque engine, etc.



Why study how to make game
engines”?

Building a usable game engine involves skills
from many different branches of computer
science.

This 1s because a game engine 1s like a highly
multimedia operating system.

Or to put 1t another way, the goal of a game engine
1s to provide a flexible way to simulate a fantasy
reality quickly.

For the rest of this talk I will briefly go over some
of the things involved in making a game engine.



Managing Game Resources

e There are two aspects to this:

— Loading in resources from secondary media
such as models, textures, sounds files

— Keeping track of resources once they loaded as
well as keep tracking of objects that use those
resources.



3D Models

One particular kind of resource we’d like to be able to
store and load from disk are the games 3D models.

e To store such a model on disk we usually store:
— header information (such as its name),
— a skeleton

— a sequence of frames

* need a list vertices (points (x,y,z) in 3D) together with which
skeleton joint associated with

e need to say which texture to use and a sequence of 2D texture
points associated with each vertex

* need to list indexes of three vertices to make up the triangles of
the figure

— filenames of textures to use.



Keeping Track of Our Objects

A game engine will typically load in the necessary resources when it
starts running.

These will be encapsulated into objects or structures. For instance, we
might have a class or struct called Model3D.

Instances of Model3D would be used to hold particular models we
read from disk.

All the models we’ll use might then be stored in a data structure such
as a hash table.

We would use other data structures to store loaded sound files, etc.

Finally, we would have a struct’s or class’s like Creature for the actual
characters in the game and these would also be stored in a data
structure like a list or array.

A Creature might have a reference to which Model3D object it uses.



AVAVY

Rendering a Scene

e To keep the number of frames we can draw a
second high, we want to draw as few objects as
possible.

* We want to determine which objects are viewable
from the player viewpoint and draw only those.

e Further, we might use different models for an
object depending on how far away it is.

e The far away model typically has fewer triangles.

e Lastly, we might organize our triangles into
arrangements like strips so the number of calls to
the graphics layer 1s kept small



@/ - Game Physics

e Although games are a fantasy world, we expect
game objects to behave roughly like similar
objects 1n the real world.

e For instance, if a character jumps, we generally
expect it to fall back down.

e It is useful for the Creature objects in our game
engine thus to have a list of force objects such as
gravity, friction, etc. which apply to them.



Collisions

A game engine needs to be able also to detect when two
objects collide and if so handle what to do next.

If you have n objects any pair of which might collide this
means we need at each step to do n(n-1)/2 checks.

So for example, if there are a 100 objects in our scene we
need to 100(99)/2 = 4950 checks.

So we need to try to keep n small. To do this we could
break scene into regions and only check collisions within
those regions.

We also want to keep the collision check fast. We might
use bounding spheres or boxes and check for collisions on
among these first.



00

© Game Al

We would like our non-playing characters to behave in an intelligent
manner.

— For instance, monsters should be able to find a short path around
objects to get to you.

— Al techniques like the A* algorithm can be used for this.

We’d also like non-player characters to have goals and maybe even
emotions. (Tamagotchi pets)

— To some degree this can be faked with rule based Al. Or using
finite automata. 1.e., state(hungry) <-- last_ate(T), T> 5 min.

— Some engines have mini-compilers to parse such rules.
We’d like our non-player-characters to learn.

— For instance, if a player tends to kick high and then block, the non-
playing character should learn this and come up with an
appropriate response.

— One way to do this is to use a technique called n-grams.



Conclusion

 Today, we’ve talked about some of the
major components of a game engine:

— resource management
— game physics and collision handling

— game Al



