
Video Game Engines

Chris Pollett
San Jose State University

Dec. 1, 2005.



Outline

• Introduction
• Managing Game Resources
• Game Physics
• Game AI



Introduction

• A Game Engine provides the core functionalities
of a game:
– It manages the objects, game levels, and other resources

in the game world
– It renders the viewable portion of the world to the user
– It handles updating of the positions of objects
– It also manages the behavior of non-player characters

• The same game engine can be used for many
different games. For example, the Quake engine,
Torque engine, etc.



Why study how to make game
engines?

• Building a usable game engine involves skills
from many different branches of computer
science.

• This is because a game engine is like a highly
multimedia operating system.

• Or to put it another way, the goal of a game engine
is to provide a flexible way to simulate a fantasy
reality quickly.

• For the rest of this talk I will briefly go over some
of the things involved in making a game engine.



Managing Game Resources

• There are two aspects to this:
– Loading in resources from secondary media

such as models, textures, sounds files
– Keeping track of resources once they loaded as

well as keep tracking of objects that use those
resources.



3D Models
• One particular kind of resource we’d like to be able to

store and load from disk are the games 3D models.
• To store such a model on disk we usually store:

– header information (such as its name),
– a skeleton
– a sequence of frames

• need a list vertices (points (x,y,z) in 3D) together with which
skeleton joint associated with

• need to say which texture to use and a sequence of 2D texture
points associated with each vertex

• need to list indexes of three vertices to make up the triangles of
the figure

– filenames of textures to use.



Keeping Track of Our Objects
• A game engine will typically load in the necessary resources when it

starts running.
• These will be encapsulated into objects or structures. For instance, we

might have a class or struct called Model3D.
• Instances of Model3D would be used to hold particular models we

read from disk.
• All the models we’ll use might then be stored in a data structure such

as a hash table.
• We would use other data structures to store loaded sound files, etc.
• Finally, we would have a struct’s or class’s like Creature for the actual

characters in the game and these would also be stored in a data
structure like a list or array.

• A Creature might have a reference to which Model3D object it uses.



Rendering a Scene

• To keep the number of frames we can draw a
second high, we want to draw as few objects as
possible.

• We want to determine which objects are viewable
from the player viewpoint and draw only those.

• Further, we might use different models for an
object depending on how far away it is.

• The far away model typically has fewer triangles.
• Lastly, we might organize our triangles into

arrangements like strips so the number of calls to
the graphics layer is kept small



Game Physics

• Although games are a fantasy world, we expect
game objects to behave roughly like similar
objects in the real world.

• For instance, if a character jumps, we generally
expect it to fall back down.

• It is useful for the Creature objects in our game
engine thus to have a list of force objects such as
gravity, friction, etc. which apply to them.



Collisions
• A game engine needs to be able also to detect when two

objects collide and if so handle what to do next.
• If you have n objects any pair of which might collide this

means we need at each step to do n(n-1)/2 checks.
• So for example, if there are a 100 objects in our scene we

need to 100(99)/2 = 4950 checks.
• So we need to try to keep n small. To do this we could

break scene into regions and only check collisions within
those regions.

• We also want to keep the collision check fast. We might
use bounding spheres or boxes and check for collisions on
among these first.



Game AI
• We would like our non-playing characters to behave in an intelligent

manner.
– For instance, monsters should be able to find a short path around

objects to get to you.
– AI techniques like the A* algorithm can be used for this.

• We’d also like non-player characters to have goals and maybe even
emotions. (Tamagotchi pets)
– To some degree this can be faked with rule based AI. Or using

finite automata. i.e., state(hungry) <-- last_ate(T), T> 5 min.
– Some engines have mini-compilers to parse such rules.

• We’d like our non-player-characters to learn.
– For instance, if a player tends to kick high and then block, the non-

playing character should learn this and come up with an
appropriate response.

– One way to do this is to use a technique called n-grams.



Conclusion

• Today, we’ve talked about some of the
major components of a game engine:
– resource management
– game physics and collision handling
– game AI


