Circuit Principles, The Weak Pigeonhole Principle, and RSA

Chris Pollett
CS Colloquium, SJSU

(Joint work with Norman Danner, Wesleyan)
Outline

• Motivation
• Weak Pigeonhole Principles
• Connections to RSA
• Connections to Circuit Lower Bounds
• Some new results
Motivation

1. Answer Clay Math Institute question of whether P = NP, earn a $1,000,000 + academic glory.

2. If attempt to answer (1) fails, then show major cryptographic algorithm is breakable. Be paid mega-bucks to keep it quiet.
Strategy

- Krajicek and Pudlak [KP98] show there is a polynomial time algorithm that makes use of a black box for injective weak pigeonhole “collisions” that can break the RSA cryptographic scheme [RSA77].

- Jerabek [J04] shows that over certain weak systems of arithmetic the existence of strings hard for circuits of size n^k is equivalent to the provability of the surjective weak pigeonhole principle. So if one could prove the weak pigeonhole principle in these systems one might be one step closer to showing $P \neq NP$.

- These results aren’t immediately connected because they use different pigeonhole variants, but maybe finding connections would solve one or the other of the motivational problems.
Weak Pigeonhole Principles

Given a relation \(R(x,y,z) \) (sometimes \(R := f(x,z) = y \) for some \(f \).)

- \(iWPHP(R) :\)
 \[\forall x < n^2 \exists! y < n R(x,y,z) \supset \exists x_1, x_2 < n^2 \exists y < n [x_1 \neq x_2 \land R(x_1,y,z) \land R(x_2,y,z)] \]
 If \(R \) is a function from \(n^2 \) into \(n \), it is not one-to-one (two points map to the same value).

- \(sWPHP(R) :\)
 \[\forall x < n \exists! y < n^2 R(x,y,z) \supset \exists y < n^2 \forall x < n \neg R(x,y,z) \]
 If \(R \) is a function from \(n \) into \(n^2 \), then it is not onto (some value for \(y \) is missed).

- \(mWPHP(R) :\)
 \[\forall x < n^2 \exists y < n R(x,y,z) \supset \exists x_1, x_2 < n^2 \exists y < n [x_1 \neq x_2 \land R(x_1,y,z) \land R(x_2,y,z)] \]
 If \(R \) is a multifunction from \(n^2 \) into \(n \) it is not one-to-one (two points map to the same value).
Relationships between Principles

• Using essentially just logic can show:

\[m\text{WPHP}(R) \supset i\text{WPHP}(R) \]

and

\[m\text{WPHP}(R) \supset s\text{WPHP}(R) \]

• Depending on what formal system you are using it is not known the exact relationship between \(i\text{WPHP}(R) \) and \(s\text{WPHP}(R) \). (More on this later)
RSA

• Public key crypto scheme proposed by Rivest, Shamir, Adleman 1977.

• For this talk, an RSA instance consists of (1) \(n = pq \) (where p and q are primes), (2) d and e which are inverse modulo \((p-1)(q-1)\), (3) a message \(m < n \) and a ciphertext \(c < n \) such that \(c \equiv m^e \mod n \) and \(m \equiv c^d \mod n \).

• Can solve this instance if given \(n, e, \) and \(c \) one can compute \(m \).
RSA and the iWPHP(f) (Krajicek and Pudlak)

• Assume gcd(c, n) = 1; otherwise, trivial.
• Suppose had a black box that given the function \(f(x) = c^x \mod n \) computes \(x_1 < x_2 < n^2 \) such that \(c^{x_1} \equiv c^{x_2} \mod n \). Let \(r_0 = x_1 - x_2 \).
• Now calculate \(r_1 = r_0 / \gcd(e, r_0) \) … \(r_v = r_{v-1} / \gcd(e, r_{v-1}) \) until \(r_v = r_{v-1} \) (at most \(\log r_0 \) steps). Call this last value \(r \). (gcd is p-time using Euclid’s Algorithm.)
• If \(s \) is order of \(c \mod n \), then can show \(\gcd(e, s) = 1 \). So also have that \(s \) divides \(r_i \) for each \(i \). Hence \(s \) divides \(r \).
More RSA and iWPHP

- Since by construction $\gcd(e, r) = 1$ can using Euclid to get a d' such that $d'e = 1 + \text{tr}$.
- Now calculate $c^{d'} \mod n$.
- Done.
- This works since s divides r and $c^{d'} \equiv m^{ed'} \equiv m^{1+\text{tr}} \equiv m \mod n$
Circuits

- We will assume our circuits use AND, OR, and NOT for gates. A family of 0-1 valued circuits \{F_n\} has size less than t(n) if each F_n can be written down as a string of length less than t(n). If t is a polynomial, we say the family \{F_n\} is in P/poly.

- How hard is it to show there is a circuit that requires size n^2?

- Not known if any relation in NP requires n^2 size circuit families. R(x) is an NP relation if R is of the form \exists y, \text{len}(y) <p(\text{len}(x)) Q(x,y) where Q is p-time computable.
What is a hard relation for circuits of size n^k?

• Consider the p-time function f whose input is a 0-1 valued circuit $C(x_1…x_n)$ of size $< n^k$ and whose output is a string $S=s_1…s_m$ where s_i is the output of C on input i (where i is suitably padded with 0’s).

• By our definition of size C can be written as a binary string of length $<n^k$. This in turn is a number less than $<2^{n^k}$. If $m=2n^k$, then S is a number $< 2^{2n^k}$, and we can apply $sWPHP(f)$, to get a string which disagrees on some input $i<m$ with any circuit of size n^k.

• Once we know such an S exists we can search for the least such S and use it to get a hard relation.

• Can use this idea to show there are hard relations for n^k sized circuits in NP^{NP}. (There is a slightly stronger result original noticed by Kannan.)
Proving Lower Bounds

• We are interested in how strong a formal system is needed to prove the previous result.

• NP $\not\subset P/\text{poly} \Rightarrow P \neq \text{NP}$. If a formal system can’t prove lower bounds, it can’t prove NP $\not\subset P/\text{poly}$; therefore, $P=\text{NP}$ is consistent with the system.

• Understanding why such a consistency might be possible might shed light on how to prove $P \neq \text{NP}$.
Weak Arithmetics

• Have BASIC axioms like:
 \[y \leq x \implies y \leq S(x) \]
 \[x+Sy = S(x+y) \]
 for the symbols 0, S, +, \(*, 2^{\lfloor y \rfloor}, \lfloor x \rfloor, -, [x/2^i], \leq \]

• Have IND_m induction axioms of the form:
 \[A(0) \land \forall x < \lfloor t \rfloor_\text{m} [A(x) \implies A(S(x))] \implies A(\lfloor t \rfloor_\text{m}) \]
 Here t is a term made of compositions of variables and our function symbols and \(\lfloor x \rfloor_0 = x, \lfloor x \rfloor_1 = \lfloor \lfloor x \rfloor_0 \rfloor_1 \).

• For example, S_1 has BASIC axioms together with induction IND_1 axioms for formulas of the form:
 \[\exists y \leq s \forall z \leq \lfloor u \rfloor A(x,y,z) \]
 where s, u terms and A is a quantifier free formula. These kind of predicates are exactly the NP ones.

• R_2 has BASIC axioms together with induction IND_2 for formulas of the form \[\exists y \leq s \forall z \leq u \exists w \leq \lfloor v \rfloor A(x,y,z,w) \]
Equivalences

- Let \(\text{HARD}_k \) be the formalization of the statement: “There is a string \(S \) of size \(2n^k \) which is not computed correctly on all values \(<2n^k \) by a circuit of size \(n^k \).”
- Let \(\text{FP} \) be the class of p-time functions. It is open whether \(S_1^2 \) can prove \(\text{sWPHP}(\text{FP}) \).
- Jerabek [J04] shows over \(S_1^2 \) the statements \(\text{HARD}_k \) for \(k>0 \) are equivalent to \(\text{sWPHP}(\text{FP}) \).
- We’ve essentially seen one direction of this. The idea of the other direction is that given a p-time function for which the \(\text{sWPHP} \) fails we can find a \(n^{k'} \) size circuit computing this function. For any \(k>k' \), by iterating this function \(O(lnl) \) times, we can get a circuit \(C' \) of size \(n^{k'+1} \) whose domain is \(n \)-bit numbers but whose range is all strings of size \(2n^k \). Let \(C \) be the circuit which on input \(i <2n^k \) and \(s \) and an \(n \) bit number computes the \(i \)th bit of \(C' \). For any fixed \(S \) of length \(<2n^k \) we can now hard code the \(s \) that maps to it in \(C \) to get a circuit showing \(S \) does not satisfy \(\text{HARD}_k \).
Towards our results

• As mentioned before the relationship between sWPHP and iWPHP is not known for weak theories like S^1_2.

• The witnessing theorem for S^1_2 says if S^1_2 proves a formula like $\exists y \leq s \forall z \leq |u| A(x,y,z)$ then there is a p-time function $f(x)$ such that $\forall z \leq |u| A(x,f(x),z)$. For R^2_2 the analogous result gives an f contained in quasi-polynomial time.

• Using this Krajicek and Pudlak showed if S^1_2 proves iWPHP(FP) then RSA is insecure against p-time attacks.

• We asked two questions: (1) Can similar results be obtained for sWPHP variants. (2) What happens when take relations in the pigeonhole principles rather than functions.
Our Results I

- Let $\text{HardBlks}(k)$ be the formula which says there is a string S of length $2n^k$ such that there is no circuit $C(i,s)$ of size n^k which outputs true iff s is the ith block of n bits from S.
- We show for each $k > 0$, $S_1 + s\text{WPHP}(P^{NP}(\log))$ proves $\text{HardBlks}(k)$.
- On the other hand, $S_1 + U_k \text{HardBlks}(k)$ proves $s\text{WPHP}(NP)$.
- This does not yet give a connection with RSA. For that we needed to look at $m\text{WPHP}$ since it implies both $i\text{WPHP}$ and $s\text{WPHP}$.
Our Results II

- Given a relation R suppose we know there is a value for y of length $< p(x)$ for some polynomial p such that $R(x, y)$. Could then imagine the relation which computes $R(B(z), y_1) \land R(y_1, y_2) \land \ldots \land R(y_m, E(z))$.
- The class $\text{Iter}(\text{PV}, \text{polylog})$ consists of such relations where R is p-time and iterate at most polylog times.
- Similarly, we define an $\text{IterHardBlks}(k)$ which says an iterated circuit of size n^k cannot block recognize some string of size $2n^k$.
- We show R^2_2 proves $\text{IterHardBlks}(k)$ is equivalent to $\text{mWPHP}(\text{Iter}(\text{PV}, \text{polylog}))$ and implies $\text{iWPHP}(\text{FP})$.
- Therefore, if R^2_2 prove lower bounds for iterated circuits, then RSA is vulnerable to quasi-polynomial time attacks.