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Motivation

1. Answer Clay Math Institute question of
whether P = NP, earn a $1,000,000 +
academic glory.

2. If attempt to answer (1) fails, then show
major cryptographic algorithm is
breakable. Be paid mega-bucks to keep it
quiet.



Strategy
• Krajicek and Pudlak [KP98] show there is a polynomial

time algorithm that makes use of a black box for  injective
weak pigeonhole  “collisions” that can break the RSA
cryptographic scheme [RSA77].

• Jerabek [J04] shows that over certain weak systems of
arithmetic the existence of strings hard for  circuits of size
nk is equivalent to the provability of the surjective weak
pigeonhole principle. So if one could prove the weak
pigeonhole principle in these systems one might be one
step closer to showing P  ≠ NP.

•  These results aren’t immediately connected because they
use different pigeonhole variants, but maybe finding
connections would solve one or the other of the
motivational problems.



Weak Pigeonhole Principles
Given a relation R(x,y,z) (sometimes R := f(x,z) = y for some f.)
• iWPHP(R):

∀ x < n2 ∃! y < n R(x,y,z) ⊃
 ∃ x1,x2 < n2 ∃ y < n [x1 ≠ x2 Λ R(x1,y, z) Λ R(x2,y, z) ]

If R is a function from n2 into n, it is not one-to-one (two points map
to the same value).

• sWPHP(R):
∀ x < n ∃! y < n2 R(x,y,z) ⊃ ∃ y < n2 ∀ x < n¬R(x,y,z)
If R is a function from n into n2, then it is not onto (some value for y is

missed).
• mWPHP(R):

∀ x < n2 ∃ y < n R(x,y,z) ⊃
 ∃ x1,x2 < n2 ∃ y < n [x1 ≠ x2 Λ R(x1,y, z) Λ R(x2,y, z) ]

If R is a multifunction from n2 into n it is not one-to-one (two points
map to the same value).



Relationships between Principles

• Using essentially just logic can show:

mWPHP(R) ⊃ iWPHP(R)

and

mWPHP(R) ⊃ sWPHP(R)

• Depending on what formal system you are using it
is not known the exact relationship between
iWPHP(R) and sWPHP(R). (More on this later)



RSA

• Public key crypto scheme proposed by Rivest,
Shamir, Adleman 1977.

• For this talk, an RSA  instance consists of  (1)
n=pq (where p and q are primes), (2) d and e
which are inverse modulo (p-1)(q-1), (3) a
message m < n and a ciphertext c < n such that c≡
me mod n and m ≡ cd mod n.

• Can solve this instance if given n, e, and c one can
compute m.



RSA and the iWPHP(f) (Krajicek
and Pudlak)

• Assume gcd(c,n) = 1; otherwise, trivial.
• Suppose had a black box that given the function

f(x) = cx mod n computes x1<x2< n2 such that cx1 ≡
cx2 mod n. Let r0= x1-x2.

• Now calculate r1= r0/gcd(e, r0) … rv= rv-1/gcd(e, rv-
1) until rv= rv-1 (at most log r0 steps). Call this last
value r. (gcd is p-time using Euclid’s Algorithm.)

• If s is order of c mod n, then can show  gcd(e,s) =
1. So also have that s divides ri for each i. Hence s
divides r.



More RSA and iWPHP

• Since by construction gcd(e, r) = 1 can
using Euclid to get a d' such that d'e =  1 +
tr.

• Now calculate cd' mod n.
• Done.
• This works since s divides r and cd' ≡ med' ≡

m1+tr ≡ m mod n



Circuits

• We will assume our circuits use AND, OR, and
NOT for gates. A family of 0-1 valued circuits
{Fn} has size less than t(n) if each Fn can be
written down as a string of length less than t(n). If
t is a polynomial, we say the family {Fn} is in
P/poly.

• How hard is it to show there is a circuit that
requires size n2?

• Not known if any relation in NP requires n2 size
circuit families. R(x) is an NP relation if R is of
the form ∃ y, len(y) <p(len(x)) Q(x,y) where Q is
p-time computable.
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 What is a hard relation for
circuits of size nk?

• Consider the p-time function f whose input is a 0-1 valued
circuit C(x1…xn) of size < nk and whose output is a string
S=s1…sm where si is the output of C on input i (where i is
suitably padded with 0’s).

• By our definition of size C can be written as a binary string
of length <nk. This in turn is a number less than <2n^k. If
m=2nk, then S is a number < 22n^k, and we can apply
sWPHP(f), to get a string which disagrees on some input
i<m with any circuit of size nk.

• Once we know such an S exists we can search for the least
such S and use it to get a hard relation.

• Can use this idea to show there are hard relations for nk

sized circuits in NPNP. (There is a slightly stronger result
original noticed by Kannan.)



Proving Lower Bounds

• We are interested in how strong a formal system is
needed to prove the previous result.

• NP  ⊄ P/poly => P  ≠ NP. If a formal system can’t
prove lower bounds, it can’t prove NP  ⊄ P/poly;
therefore, P=NP is consistent with the system.

• Understanding why such a consistency might be
possible might shed light on how to prove P  ≠ NP.



Weak Arithmetics
• Have BASIC axioms like:

y <= x  ⊃ y <= S(x)
x+Sy = S(x+y)
for the symbols 0, S, +, *,2|x||y|, |x|, -, [x/2^i], <=

• Have INDm induction axioms of the form:
A(0) Λ ∀ x<|t|m[A(x) ⊃ A(S(x))] ⊃ A(|t|m)
Here t is a term made of compositions of variables and our function

symbols and |x|0=x, |x|m=| |x|m-1|.
• For example, S1

2  has BASIC axioms together with induction IND1
axioms for formulas of the form:

 ∃y<=s∀z<=|u|A(x,y,z) where s,u terms and A is a quantifier free
formula. These kind of predicates are exactly the NP ones.

• R2
2 has BASIC axioms together with induction IND2 for formulas of

the form ∃y<=s∀z<=u ∃w <=|v| A(x,y,z,w)



Equivalences

• Let HARDk be the formalization of the statement: “There is a string S
of size 2nk which is not computed correctly on all values  <2nk by a
circuit of size nk.”

• Let FP be the class of p-time functions. It is open whether  S1
2 can

prove sWPHP(FP).
• Jerabek [J04] shows over  S1

2  the statements HARDk for k>0 are
equivalent to sWPHP(FP).

• We’ve essentially seen one direction of this. The idea of the other
direction is that given a p-time function for which the sWPHP fails we
can find a nk' size circuit computing this function. For any k>k’, by
iterating this function O(|n|) times, we can get a circuit C' of size nk’+1

whose domain is n-bit numbers but whose range is all strings of size
2nk. Let C be the circuit which on input i <2nk and s and an n bit
number computes the ith bit of C'. For any fixed S of length <2nk we
can now hard code the s that maps to it in C to get a circuit showing S
does not satisfy HARDk.



Towards our results

• As mentioned before the relationship between sWPHP and
iWPHP is not known for weak theories like S1

2.
• The witnessing theorem for S1

2 says if S1
2 proves a formula

like ∃y<=s∀z<=|u|A(x,y,z) then there is a p-time  function
f(x) such that ∀z<=|u|A(x,f(x),z). For R2

2 the analogous
result gives an f contained in quasi-polynomial time.

• Using this Krajicek and Pudlak showed if S1
2 proves

iWPHP(FP) then RSA is insecure against p-time attacks.
• We asked two questions: (1) Can  similar results be

obtained for sWPHP variants. (2) What happens when take
relations in the pigeonhole principles rather than functions.



Our Results I

• Let HardBlks(k) be the formula which says there is a string
S of length 2nk such that there is no circuit C(i,s) of size nk

which outputs true iff s is the ith block of n bits from S.
• We show for each k>0, S1

2 + sWPHP(PNP(log)) proves
HardBlks(k).

• On the other hand, S1
2 + Uk HardBlks(k) proves

sWPHP(NP).
• This does not yet give a connection with RSA. For that we

needed to look at mWPHP since it implies both iWPHP
and sWPHP.



Our Results II
• Given a relation R suppose we know there is a value for y of length <

p(x) for some polynomial p such that R(x, y). Could then imagine the
relation which computes R(B(z),y1) Λ R(y1, y2) Λ… ΛR(ym,E(z)).

• The class Iter(PV,polylog) consists of such relations where R is p-time
and iterate at most polylog times.

• Similarly, we define an IterHardBlks(k) which says an iterated circuit
of size nk cannot block recognize some string of size 2nk.

• We show R2
2  proves IterHardBlks(k) is equivalent to

mWPHP(Iter(PV,polylog)) and implies iWPHP(FP).
• Therefore, if R2

2 prove lower bounds for iterated circuits, then RSA is
vulnerable to quasi-polynomial time attacks.


