
Equivalents of the weak
multifunction pigeonhole

Chris Pollett
San Jose State University

Mar 22, 2005.

(Joint work with Norman
Danner, Wesleyan)

Outline

• Motivation
• Weak Pigeonhole Principles
• Connections to Circuit Lower Bounds
• Some new results

Motivations for our Paper

• We wanted to understand how much
mathematics is needed to show that there
exists a set which requires a large circuit.

• Recently, Jerabek [J04] has shown this
problem to be connected to the weak
pigeonhole principle.

• So we wanted to explore this connection
further…

Weak Pigeonhole Principles
Given a relation R(x,y,z) (sometimes R := f(x,z) = y for some f.)
• iWPHP(R):

∀ x < n2 ∃! y < n R(x,y,z) ⊃
 ∃ x1,x2 < n2 ∃ y < n [x1 ≠ x2 Λ R(x1,y, z) Λ R(x2,y, z)]

If R is a function from n2 into n, it is not one-to-one (two points map
to the same value).

• sWPHP(R):
∀ x < n ∃! y < n2 R(x,y,z) ⊃ ∃ y < n2 ∀ x < n¬R(x,y,z)
If R is a function from n into n2, then it is not onto (some value for y

is missed).
• mWPHP(R):

∀ x < n2 ∃ y < n R(x,y,z) ⊃
 ∃ x1,x2 < n2 ∃ y < n [x1 ≠ x2 Λ R(x1,y, z) Λ R(x2,y, z)]

If R is a multifunction from n2 into n it is not one-to-one (two points
map to the same value).

Relationships between Principles

• Using essentially just logic can show:

mWPHP(R) ⊃ iWPHP(R)

and

mWPHP(R) ⊃ sWPHP(R)

• Depending on what formal system you are using it
is not known the exact relationship between
iWPHP(R) and sWPHP(R). (More on this later)

Circuits
We say a predicate Y (or function f) is computed by a family

of AND, OR, NOT circuits {Fn}, if Fn correctly computes
Y(x) (resp. f(x)) for n bit numbers. If each Fn can be coded
as a string of size less than g(n), then we say the circuit
family has size g(n).

How hard is it to show there is a predicate that
requires n2-size circuits?

• Not known if any sets in NP requires n2 size
circuit families.

• If we allow sets in harder complexity classes can
use Kannan style or fancier arguments.

What is a hard relation for
circuits of size nk?

Consider the p-time function f whose input is an encoding of
a 0-1 valued circuit C(x1…xn) of size < nk and whose output
is a string S=s0…sm-1 where si is the output of C on input i
(where i is suitably padded with 0’s).

By our definition of size C can be written as a binary string of
length <nk. This in turn is a number less than <2n^k. If m=2nk,
then S is a number < 22n^k, and we can apply sWPHP(f), to get
a string which disagrees on some input i<m with any circuit of
size nk.

f: C s0 s1…sm-1

C(00…0) C(00…1)…C(00…(m-1)2)

Hard relation cont’d…

• Once we know such an S exists we can search for
the least such S and use it to get a hard relation.

• Can use this idea to show there are hard relations
for nk sized circuits in NPNP. (There is a slightly
stronger result original noticed by Kannan.)

• Well studied theories such as S3
2 or T2

2 can carry
out this argument.

Remembering what we are doing

• We are interested in how strong a formal system is
needed to prove the previous result. (Lower
bound).

• NP ⊄ P/poly => P ≠ NP. If a formal system can’t
prove lower bounds, it can’t prove NP ⊄ P/poly;
therefore, P=NP is consistent with the system.

• Understanding why such a consistency might be
possible might shed light on how to prove P ≠ NP.

Formal Systems
• Have BASIC axioms like:

y ≤ x ⊃ y ≤ S(x)
x+Sy = S(x+y)
for the symbols 0, S, +, ·, x#y := 2|x||y|, |x| := length of x, ·,
x/2i, ≤

• Have INDm induction axioms of the form:
A(0) Λ ∀ x<|t|m[A(x) ⊃ A(S(x))] ⊃ A(|t|m)
Here t is a term made of compositions of variables and

our function symbols and |x|0=x, |x|m=| |x|m-1|.

Formal Systems cont’d

• A ∑b
i-formula is a formula of the form:
∃x1≤ t1∀x2 ≤ t2 · · · Qxi ≤ ti Qxi+1 ≤ |ti+1|A

where A is an open formula. A ∏b
i-formula is defined

similarly but with the outer quantifier being universal.
Ti

2 is the theory BASIC + ∑b
i-IND0

Si
2 is the theory BASIC + ∑b

i-IND1
Ri

2 is the theory BASIC + ∑b
i-IND2

• These theories are well-studied and are known to be clsely
connected with computational complexity.

• If we add to the language a function symbol x#3y with
|x#3y|=|x|#|y|, then get theories Ti

3, Si
3, Ri

3.

i+1 alternations, innermost begin length bounded

Formalizing Hard Sets

• Let HARDk be the formalization of the statement: “There
is a string S of size 2nk which is not computed correctly on
all values <2nk by a circuit of size nk.”

• Let PV be the class of p-time functions (actually PV is
really the function symbols plus defining axioms for these
functions). It is open whether S1

2 can prove sWPHP(PV).
• Jerabek [J04] shows over S1

2 the statements HARDk for
k>0 are equivalent to sWPHP(PV).

Intuition behind Jerabek

• We’ve already seen sWPHP(FP) ⊃ HARDk.
• For HARDk ⊃ sWPHP(FP), suppose there is a p-time function f for

which the sWPHP fails.
• Then there is a nk' size circuit family {Cf

n} computing this function for
some k'. Can iterate f according to a string i0i1··

Let C be the circuit which on input i <2nk and s and an 2n bit number
computes the ith bit of C'. For any fixed S of length <2nk we can now hard
code the s that maps to it in C to get a circuit showing S is not the hard string
of HARDk.

i0=0
f

i1=0
f

f
i1=0

i1=1
fi0=1

f

For any k>k' , iterating Cf
n

O(|n|) times, we can get a
circuit C' of size nk'+1 whose
domain is |2nk-1| x 2n-bit
numbers but whose range is
all strings of size 2nk.

Input: 2n bit
string. (2|x|)2

= 22|x|, n=|x|

Towards our results

• As mentioned before the relationship between sWPHP
and iWPHP is not known for weak theories like S1

2.
• The witnessing theorem for S1

2 says if S1
2 proves a

formula like ∃y ≤ s∀z ≤ |u|A(x,y,z) then there is a p-time
function f(x) such that ∀z ≤ |u|A(x,f(x),z). For R2

3 the
analogous result gives an f contained in quasi-polynomial
time.

• Using this Krajicek and Pudlak showed if S1
2 proves

iWPHP(FP) then RSA is insecure against p-time attacks.
• We asked two questions:

1. Can one get a connection between circuit lower bound
provability and RSA? Idea: Try mWPHP use pre-images.

2. What happens when one takes relations in the pigeonhole
principles rather than functions?

Our Results I

• Let HardBlks(k) be the formula which says there is a string
S of length 2nk such that there is no circuit C(i,s) of size
less than nk which outputs true iff s is the ith block of n
bits from S.

• We show for each k>0, S1
2 + sWPHP(PNP(log)) proves

HardBlks(k).
• On the other hand, S1

2 + Uk HardBlks(k) proves
sWPHP(NP).

• This does not yet give a connection with RSA. For that we
needed to look at mWPHP since it implies both iWPHP
and sWPHP.

Our Results II
• Given a relation R suppose we know there is a value for y of length <

p(x) for some polynomial p such that R(x, y). Could then imagine the
relation which computes R(B(z), y1) Λ R(y1, y2) Λ… ΛR(ym, E(z)).

• The class Iter(PV,polylog) consists of such relations where R is p-time
and iterate at most polylog times.

• Similarly, we define an IterHardBlks(k) which says an iterated circuit
of size nk cannot block recognize some string of size 2nk.

• We show R2
2 proves IterHardBlks(k) is equivalent to

mWPHP(Iter(PV,polylog)) and implies iWPHP(PV).
• Therefore, if R2

3 proves lower bounds for iterated circuits, then RSA is
vulnerable to quasi-polynomial time attacks.

Conclusion

• Since RSA is considered hard above seems to
suggest R2

3 cannot prove qNP ⊄ qP/poly or least
this harder circuit principle.

• On the other hand, it is known by Paris, Wilkie,
and Woods that T2

2 can prove mWPHP(∑b
1). So

RSA is insecure against the NP-definable
multifunctions of this theory (a class called
GLS†).

• It would be cool to understand what happens for
S2

2. Its NP-definable multifunctions are
projections of PLS (polynomial local search)
problems.

Appendix RSA
• Public key crypto scheme proposed by Rivest, Shamir,

Adleman 1977.
• For this talk, an RSA instance consists of (1) n=pq (where

p and q are primes), (2) d and e which are inverses modulo
(p-1)(q-1), (3) a message m < n and a ciphertext c < n such
that c≡ me mod n and m ≡ cd mod n.

• Can solve this instance if given n, e, and c one can
compute m.

RSA and the iWPHP(f) (Krajicek
and Pudlak)

• Assume gcd(c,n) = 1; otherwise, trivial.
• Suppose had a black box that given the function f(x) = cx

mod n computes x1<x2< n2 such that cx1 ≡ cx2 mod n. Let
r0= x1-x2.

• Now calculate r1= r0/gcd(e, r0) … rv= rv-1/gcd(e, rv-1) until
rv= rv-1 (at most log r0 steps). Call this last value r. (gcd is
p-time using Euclid’s Algorithm.)

• If s is order of c mod n, then can show gcd(e,s) = 1. So
also have that s divides ri for each i. Hence s divides r.

More RSA and iWPHP

• Since by construction gcd(e, r) = 1 can
using Euclid to get a d' such that d'e = 1 +
tr.

• Now calculate cd' mod n.
• Done.
• This works since s divides r and cd' ≡ med' ≡

m1+tr ≡ m mod n

