
Circuit principles and weak
pigeonhole variants

Chris Pollett
San Jose State University

Feb. 1, 2005.

(Joint work with Norman
Danner, Wesleyan)

Outline

• Motivation
• Weak Pigeonhole Principles
• Connections to Circuit Lower Bounds
• Some new results

Motivations for our Paper

• We wanted to understand how much mathematics
is needed to show that there exists a set which
requires a large circuit.

• Recently, Krajicek and Pudlak [KP98] and
Jerabek [J04] have shown this problem to be
connected to the weak pigeonhole principle.

• So we wanted to explore this connection further.

Weak Pigeonhole Principles
Given a relation R(x,y,z) (sometimes R := f(x,z) = y for some f.)
• iWPHP(R):

∀ x < n2 ∃! y < n R(x,y,z) ⊃
 ∃ x1,x2 < n2 ∃ y < n [x1 ≠ x2 Λ R(x1,y, z) Λ R(x2,y, z)]

If R is a function from n2 into n, it is not one-to-one (two points map
to the same value).

• sWPHP(R):
∀ x < n ∃! y < n2 R(x,y,z) ⊃ ∃ y < n2 ∀ x < n¬R(x,y,z)
If R is a function from n into n2, then it is not onto (some value for y

is missed).
• mWPHP(R):

∀ x < n2 ∃ y < n R(x,y,z) ⊃
 ∃ x1,x2 < n2 ∃ y < n [x1 ≠ x2 Λ R(x1,y, z) Λ R(x2,y, z)]

If R is a multifunction from n2 into n it is not one-to-one (two points
map to the same value).

Relationships between Principles

• Using essentially just logic can show:

mWPHP(R) ⊃ iWPHP(R)

and

mWPHP(R) ⊃ sWPHP(R)

• Depending on what formal system you are using it
is not known the exact relationship between
iWPHP(R) and sWPHP(R). (More on this later)

Circuit Philosophy

How hard is it to show there is a set that requires size
n2 circuits?

• Not known if any sets in NP requires n2 size
circuit families.

• If we allow sets in harder complexity classes can
use Kannan style or fancier arguments.

What is a hard relation for
circuits of size nk?

• Consider the p-time function f whose input is a 0-1 valued
circuit C(x1…xn) of size < nk and whose output is a string
S=s1…sm where si is the output of C on input i (where i is
suitably padded with 0’s).

• By our definition of size C can be written as a binary string
of length <nk. This in turn is a number less than <2n^k. If
m=2nk, then S is a number < 22n^k, and we can apply
sWPHP(f), to get a string which disagrees on some input
i<m with any circuit of size nk.

• Once we know such an S exists we can search for the least
such S and use it to get a hard relation.

• Can use this idea to show there are hard relations for nk

sized circuits in NPNP. (There is a slightly stronger result
original noticed by Kannan.)

Remembering what we are doing

• We are interested in how strong a formal system is
needed to prove the previous result.

• NP ⊄ P/poly => P ≠ NP. If a formal system can’t
prove lower bounds, it can’t prove NP ⊄ P/poly;
therefore, P=NP is consistent with the system.

• Understanding why such a consistency might be
possible might shed light on how to prove P ≠ NP.

Our Formal Systems
• Have BASIC axioms like:

y <= x ⊃ y <= S(x)
x+Sy = S(x+y)
for the symbols 0, S, +, *,2|x||y|, |x|, -, [x/2^i], <=

• Have INDm induction axioms of the form:
A(0) Λ ∀ x<|t|m[A(x) ⊃ A(S(x))] ⊃ A(|t|m)
Here t is a term made of compositions of variables and

our function symbols and |x|0=x, |x|m=| |x|m-1|.

Example Systems

• For example, S1
2 has BASIC axioms together with

induction IND1 axioms for formulas of the form:
 ∃y<=s∀z<=|u|A(x,y,z) where s,u terms and A is a

quantifier free formula. These kind of predicates are
exactly the NP ones.

• R2
2 has BASIC axioms together with induction IND2 for

formulas of the form ∃y<=s∀z<=u ∃w <=|v| A(x,y,z,w).

Formalizing Hard Sets

• Let HARDk be the formalization of the statement: “There
is a string S of size 2nk which is not computed correctly on
all values <2nk by a circuit of size nk.”

• Let FP be the class of p-time functions. It is open whether
S1

2 can prove sWPHP(FP).
• Jerabek [J04] shows over S1

2 the statements HARDk for
k>0 are equivalent to sWPHP(FP).

Intuition behind Jerabek

• We’ve already seen sWPHP(FP) ⊃ HARDk.
• The idea of the other direction is that given a p-time

function for which the sWPHP fails we can find a nk' size
circuit computing this function. For any k>k’, by iterating
this function O(|n|) times, we can get a circuit C' of size
nk’+1 whose domain is n-bit numbers but whose range is all
strings of size 2nk. Let C be the circuit which on input i
<2nk and s and an n bit number computes the ith bit of C'.
For any fixed S of length <2nk we can now hard code the s
that maps to it in C to get a circuit showing S does not
satisfy HARDk.

Towards our results

• As mentioned before the relationship between sWPHP and
iWPHP is not known for weak theories like S1

2.
• The witnessing theorem for S1

2 says if S1
2 proves a formula

like ∃y<=s∀z<=|u|A(x,y,z) then there is a p-time function
f(x) such that ∀z<=|u|A(x,f(x),z). For R2

2 the analogous
result gives an f contained in quasi-polynomial time.

• Using this Krajicek and Pudlak showed if S1
2 proves

iWPHP(FP) then RSA is insecure against p-time attacks.
• We asked two questions: (1) Can similar results be

obtained for sWPHP or mWPHP variants? (2) What
happens when take one relations in the pigeonhole
principles rather than functions?

Our Results I

• Let HardBlks(k) be the formula which says there is a string
S of length 2nk such that there is no circuit C(i,s) of size nk

which outputs true iff s is the ith block of n bits from S.
• We show for each k>0, S1

2 + sWPHP(PNP(log)) proves
HardBlks(k).

• On the other hand, S1
2 + Uk HardBlks(k) proves

sWPHP(NP).
• This does not yet give a connection with RSA. For that we

needed to look at mWPHP since it implies both iWPHP
and sWPHP.

Our Results II
• Given a relation R suppose we know there is a value for y of length <

p(x) for some polynomial p such that R(x, y). Could then imagine the
relation which computes R(B(z), y1) Λ R(y1, y2) Λ… ΛR(ym, E(z)).

• The class Iter(PV,polylog) consists of such relations where R is p-time
and iterate at most polylog times.

• Similarly, we define an IterHardBlks(k) which says an iterated circuit
of size nk cannot block recognize some string of size 2nk.

• We show R2
2 proves IterHardBlks(k) is equivalent to

mWPHP(Iter(PV,polylog)) and implies iWPHP(FP).
• Therefore, if R2

2 prove lower bounds for iterated circuits, then RSA is
vulnerable to quasi-polynomial time attacks.

Conclusion

• Since RSA is considered hard above seems to
suggest R2

2 cannot prove NP ⊄ P/poly or least
this harder circuit principle.

• On the other hand, it is known by Paris, Wilkie,
and Woods that T2

2 can prove mWPHP(NP). So
RSA is insecure against the NP-definable
predicates of this theory (a class called GLS†).

• It would be cool to understand what happens for
S2

2. Its NP-definable multifunctions are
projections of PLS (polynomial local search)
problems.

Appendix RSA
• Public key crypto scheme proposed by Rivest, Shamir,

Adleman 1977.
• For this talk, an RSA instance consists of (1) n=pq (where

p and q are primes), (2) d and e which are inverses modulo
(p-1)(q-1), (3) a message m < n and a ciphertext c < n such
that c≡ me mod n and m ≡ cd mod n.

• Can solve this instance if given n, e, and c one can
compute m.

RSA and the iWPHP(f) (Krajicek
and Pudlak)

• Assume gcd(c,n) = 1; otherwise, trivial.
• Suppose had a black box that given the function f(x) = cx

mod n computes x1<x2< n2 such that cx1 ≡ cx2 mod n. Let
r0= x1-x2.

• Now calculate r1= r0/gcd(e, r0) … rv= rv-1/gcd(e, rv-1) until
rv= rv-1 (at most log r0 steps). Call this last value r. (gcd is
p-time using Euclid’s Algorithm.)

• If s is order of c mod n, then can show gcd(e,s) = 1. So
also have that s divides ri for each i. Hence s divides r.

More RSA and iWPHP

• Since by construction gcd(e, r) = 1 can
using Euclid to get a d' such that d'e = 1 +
tr.

• Now calculate cd' mod n.
• Done.
• This works since s divides r and cd' ≡ med' ≡

m1+tr ≡ m mod n

