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Weak Pigeonhole Principles
• We will be interested in the m=n#n case of the following principles:
• iPHPm

n(f):
∀n∀z[n<m ∧ ∃x < m f(x, z) > n ∨ ∃x1, x2 < m [x1 ≠ x2 ∧ f(x1, z ) = f(x2,
z) ]

If f is a function from m >n into n, it is not one-to-one (two points map
to the same value).

• sPHPm
n (f):

∀n∀ z[n<m ∧ ∃y < m ∀x < n f(x, z) ≠ y]
If f is a function from n into m>n, then it is not onto (some value for y

is missed).
• When m=n2, the above are called weak pigeonhole principles, denoted

iWPHP(f) and sWPHP(f), respectively.
• In S1

2 (:= BASIC + ∑b
1-LIND ) one can iterate f to prove the m= n2

case implies the m=n#n case.
• That is, if v=i, s, then vPHPn#n

n(f) trivially implies vWPHPn(f);
whereas, we also have vWPHPn(∑b

1(f)) implies vPHPn#n
n(f).



More on Weak Pigeonhole
Principles

• For what f can S1
2 (:= BASIC + ∑b

1-LIND ) prove these
pigeonhole principles?
Krajíček and Pudlák showed that if S1

2 could prove
iWPHP(PV), that is for p-time functions, then RSA is
insecure.

Today’s talk will be on for what f can we show
sPHPn#n

n(f) is provable in S1
2.

The argument probably works with parameters z  but have
only worked out the non-parameter case in detail.



Function Algebras
• One way to characterize p-time is to start off with some

initial functions and close under composition and length
bounded primitive recursion. We’ll take our initial
functions to be:
Initial := variables, 0, S, +, –, |x|, PAD(x, y) := x·2|y|,

MSP(x, y) = x/ 2y, x#y := 2|x||y|.
– Notice there is no multiplication.
– This is essentially the initial functions in some of Clote

and Takeuti’s papers for TAC0.
– It can define as a term pairing and a limited amount of

sequence coding.



More Functions Algebras

• Our recursion scheme:
f is defined from g, h, t and r by m-length bounded
primitive recursion (m-BPR) if

F(0, x) = g(x)
F(n +1, x) = min(h(n, x, F(n, x)), r(n, x))
f(n, x) = F(|t(n, x)|m, x)

where |x|0=x, |x|m+1=||x|m| and r and t are terms over Initial.
• From this we define our algebras:

Am := closure of Initial under composition and m-BPR.
– A1 is the polynomial time functions.
– We will argue that sPHPn#n

n(A3) is provable in S1
2.



Our Approach

• Show in S1
2 that if x is mapped by an A3

function f:[N] --> [N#N] then its image must
be expressible by a certain kind of series.

• Show that in S1
2 one can define a number

HARD(N) which is hard for this kind of
series for any x < N.

• This number will be our element not in the
range of f.



Binary Prefix Series
• Our series are called Binary Prefix Series (BPS’s) and can be defined with a

predicate:
BPS(k, N, x, S, t) :=

1. Each xm < N,
2.  S codes a sequence for the series

where 0 ≤ k′ ≤ k and each si = ±MSP(xm, y), or si = ±1 for some y
and some variable xm

3. Evaluating S yields t.
• Given an f in A3 our goal will be to put a bound on the k for which S1

2
proves the condition

∀x ∃S BPS(k(N), N, x, S, f(x))
  which we write as Cf (N, k(N)).



BPS’s and our Algebras
• S1

2 proves the following bounds on Cf(N, k′(Ν)) in terms of the
complexities of the input argument k1 , k2 :

If f is 0, a variable xm, or # then k′ =1
If f is S then k′ = k1 + 1.
If f is |·| then  k′ = O(||N||)
If f is PAD then k′ = k1

If f is MSP then k′ = 2k1
If f is +, – then can bound k′ as k1 + k2.

• For composition, S1
2 proves if f has complexity k′′(Ν) when all its

arguments have complexity 1, then f(u) will have complexity
k′′(Μ)(2∑ ki(N)) when its arguments have complexity ki(N) and the
max of their outputs has size M.

• From this the complexity of any Initial term is ||N||O(1).
• Closing under m-BPR will give complexities



Hard Functions for our Algebras
• Consider the ∑b

1-defined in S1
2 function

f (N) = (2|N||N| - 1)/3
• Given a BPS for some 1-input, A3 function which supposedly maps [N] -->

[N#N], S1
2 can regroup the series to look like:

      MSP(x,0) · (2k_i factor’s for MSP(x,0))
      MSP(x,1) · (2k_i factor’s for MSP(x,1))
                  …
   MSP(x, |N|) · (2k_i factor’s for MSP(x, |N|)

     -MSP(x,0) · (2k_i factor’s for MSP(x,0))
     -MSP(x,1) · (2k_i factor’s for MSP(x,1))
                   ...
  -MSP(x, |N|) · (2k_i factor’s for MSP(x, |N|)

• The MSP(x, i)’s can further be viewed as |N| bit numbers.
• S1

2  can sum the jth bit of these numbers for rows which have a given 2k value.
• This yields |N|·||N||(|||N|||)      = |N|·2               numbers of the form an ||N|| bit

number multiplied with a 2k factor for some k.
• So the BPS can be viewed as |N|·||N||·2              = |N|·2              single bit

summands (swallowing the ||N|| in the O(1) in the exponent).
• Such a number can have at most |N|·2               alternations between blocks of

0’s and 1’s; whereas, f has Ω(|Ν|2) such alternations.

O(1) (|N|3 )O(1)

(|N|3 )O(1) (|N|3 )O(1)

(|N|3 )O(1)



Conclusion

• It would be nice to strengthen Initial.
• Can similar results be obtained for the

injective pigeonhole principle?
• It would be interesting to look at

propositional translations of this result.


