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Weak Pigeonhole Principles

We will be interested in the m=n#n case of the following principles:
iPHP™ (f):
VnVzln<m A Ix <mfix,z) >n v Ix, x,<m[x, = x, A fix,, 2) = f(x,,
2) ]
If f is a function from m >n into n, it is not one-to-one (two points map
to the same value).
sPHP™ (f):
VnV zln<m A Iy <m Vx <nfix, 2) #y]
If f1s a function from n into m>n, then it is not onto (some value for y
1s missed).

When m=n?, the above are called weak pigeonhole principles, denoted
1IWPHP(f) and sWPHP(1), respectively.

In S!, (:= BASIC + X°-LIND ) one can iterate f to prove the m= n?
case implies the m=n#n case.

That is, if v=i, s, then vVPHPY (f) trivially implies vVWPHP _(f);
whereas, we also have vVWPHP_(2,(f)) implies vPHP™" (/).



More on Weak Pigeonhole
Principles

e For what fcan S!, (:= BASIC + X -LIND ) prove these
pigeonhole principles?

Krajicek and Pudlak showed that if S!, could prove

IWPHP(PV), that is for p-time functions, then RSA 1is
Insecure.

Today’s talk will be on for what f can we show
sPHP™ (f) is provable in S.,.

The argument probably works with parameters z but have
only worked out the non-parameter case in detail.



Function Algebras

* One way to characterize p-time is to start off with some
initial functions and close under composition and length
bounded primitive recursion. We’ll take our initial
functions to be:

Initial := variables, 0, S, +, —, x|, PAD(x, y) := x-2Y,
MSP(x, y) = |x/ 2], x#y := 21,

— Notice there 1s no multiplication.

— This 1s essentially the initial functions in some of Clote
and Takeuti’s papers for TAC.

— It can define as a term pairing and a limited amount of
sequence coding.



More Functions Algebras

Our recursion scheme:
f1s defined from g, h, t and r by m-length bounded
primitive recursion (m-BPR) 1f

F(O, x) = g(x) - B -

F(n +1, x) = min(h(n, x, F(n, x)), r(n, x))

fin, x) = F(lt(n, x)|_, x)
where Ixly=x, Ix| . ,=llx| | and r and ¢ are terms over Initial.
From this we define our algebras:
A™ := closure of Initial under composition and m-BPR.
— Al is the polynomial time functions.
—  We will argue that sPHP™" _(AJ) is provable in S1,.



Our Approach

e Show in S!, that if x is mapped by an A°
function £:[N] --> [N#N] then its image must
be expressible by a certain kind of series.

e Show that in S!, one can define a number
HARD(N) which 1s hard for this kind of
series for any x < V.

e This number will be our element not in the
range of f.



Binary Prefix Series

Our series are called Binary Prefix Series (BPS’s) and can be defined with a
predicate:

BPS(k, N, x, S, t) :=
1. Eachx_ <N,
2. S codes a sequence for the series

i

Z Siz'?;

where 0 < k’ < k and each s,=+*MSP(x_, y), or s, = 1 for some y
and some variable x

3. Evaluating S yields t.

Given an fin A3 our goal will be to put a bound on the k for which S',
proves the condition

Vx 3S BPS(k(N), N, x, S, f(x))
which we write as Cf(N, k(N)).



BPS’s and our Algebras

S', proves the following bounds on C(N, k'(N)) in terms of the
complexities of the input argument &, , k, :

If fis 0, a variable x,_, or # then k' =1

If fis S then k' =k, + 1.

If fis I'l then k' = O(IINII)

If fis PAD then k' = k,

If fis MSP then k' = 2k,

If fis +, — then can bound k' as k, + k,.

For composition, S', proves if f has complexity k”(N) when all its
arguments have complexity 1, then f{u) will have complexity
k" (M)(2X k(N)) when its arguments have complexity k,(N) and the

max of their outputs has size M.
From this the complexity of any Initial term is [INIIOOD,
Closing under m-BPR will give complexities

{||hr||}':|-'"'rr|?_,!}f_:-“j



Hard Functions for our Algebras

e Consider the > -defined in S!, function

F ) =@V 1)73)

e Given a BPS for some 1-input, A3 function which supposedly maps [N] -->
[N#N], S!, can regroup the series to look like:

MSP(x,0) - (2 factor’s for MSP(x,0))
MSP(x,1) - (2 factor’s for MSP(x,1))

MSP(x, INI) - (2kifactor’s for MSP(x, INI)

-MSP(x,0) - (2ki factor’s for MSP(x,0))
-MSP(x,1) - (2kifactor’s for MSP(x,1))

-MSP(x, INI) - (2% factor’s for MSP(x, INI)
e The MSP(x, i)’s can further be viewed as INl bit numbers.
e S, can sum the jth bit of these numbers for rows which have a given 2* value.

e This yields INF-INIIWIOM = 120N numbers of the form an IV bit
number multiplied with a 2* factor for some &.

e So the BPS can be viewed as INFINI-2(N3)OD = |N1-2(N5)°V gingle bit
summands (swallowing the IINVl in the O(1) in the exponent).

e  Such a number can have at most INI-2(N5)°? alternations between blocks of
0’s and 1’s; whereas, f'has Q(|NJ?) such alternations.



Conclusion

e It would be nice to strengthen Initial.

e Can similar results be obtained for the
injective pigeonhole principle?

e It would be interesting to look at
propositional translations of this result.



