When can S_2^1 prove the weak pigeonhole principle?

Chris Pollett Apr. 10, 2006.

Outline

- Weak Pigeonhole Principles
- Function Algebras
- Binary Prefix Series (BPSs)
- BPS and our Algebras
- Hard Functions for our Algebras

Weak Pigeonhole Principles

- We will be interested in the m=n#n case of the following principles:
- $iPHP_{\underline{n}}^{m}(f)$: $\forall n \forall \overline{z}[n < m \land \exists x < m f(x, \overline{z}) > n \lor \exists x_{1}, x_{2} < m [x_{1} \neq x_{2} \land f(x_{1}, \overline{z}) = f(x_{2}, \overline{z})]$

If f is a function from m >n into n, it is not one-to-one (two points map to the same value).

• $sPHP_{n}^{m}(f):$ $\forall n \forall \overline{z}[n < m \land \exists y < m \forall x < n f(x, \overline{z}) \neq y]$

If f is a function from n into m > n, then it is not onto (some value for y is missed).

- When m=n², the above are called weak pigeonhole principles, denoted iWPHP(f) and sWPHP(f), respectively.
- In S¹₂ (:= BASIC + Σ^{b}_{1} -LIND) one can iterate f to prove the m= n² case implies the m=n#n case.
- That is, if v=i, s, then vPHP^{n#n}_n(f) trivially implies vWPHP_n(f); whereas, we also have vWPHP_n($\Sigma^{b}_{1}(f)$) implies vPHP^{n#n}_n(f).

More on Weak Pigeonhole Principles

- For what $f \operatorname{can} S_{2}^{1}$ (:= BASIC + Σ_{1}^{b} -LIND) prove these pigeonhole principles?
 - Krajíček and Pudlák showed that if S_2^1 could prove iWPHP(PV), that is for p-time functions, then RSA is insecure.
 - Today's talk will be on for what f can we show $sPHP^{n\#n}{}_{n}(f)$ is provable in S^{1}_{2} .
 - The argument probably works with parameters \overline{z} but have only worked out the non-parameter case in detail.

Function Algebras

- One way to characterize *p*-time is to start off with some initial functions and close under composition and length bounded primitive recursion. We'll take our initial functions to be:
 - Initial := variables, 0, S, +, -, |x|, $PAD(x, y) := x \cdot 2^{|y|}$, MSP $(x, y) = \lfloor x/2^y \rfloor$, $x \# y := 2^{|x||y|}$.
 - Notice there is no multiplication.
 - This is essentially the initial functions in some of Clote and Takeuti's papers for TAC⁰.
 - It can define as a term pairing and a limited amount of sequence coding.

More Functions Algebras

• Our recursion scheme:

f is defined from *g*, *h*, *t* and *r* by *m*-length bounded primitive recursion (*m*-BPR) if

 $F(0, \overline{x}) = g(\overline{x})$ $F(n+1, \overline{x}) = \min(h(n, \overline{x}, F(n, \overline{x})), r(n, \overline{x}))$

 $f(n, \overline{x}) = F(|t(n, \overline{x})|_m, \overline{x})$

where $|x|_0 = x$, $|x|_{m+1} = ||x|_m|$ and *r* and *t* are terms over Initial.

- From this we define our algebras:
 - $A^m :=$ closure of Initial under composition and m-BPR.
 - A¹ is the polynomial time functions.
 - We will argue that $sPHP_{n}^{m}(A^{3})$ is provable in S_{2}^{1} .

Our Approach

- Show in S¹₂ that if x is mapped by an A³ function *f*:[*N*] --> [*N*#*N*] then its image must be expressible by a certain kind of series.
- Show that in S_2^1 one can define a number HARD(N) which is hard for this kind of series for any x < N.
- This number will be our element not in the range of *f*.

Binary Prefix Series

• Our series are called Binary Prefix Series (BPS's) and can be defined with a predicate:

 $BPS(k, N, \overline{x}, S, t) :=$

- 1. Each $x_m < N$,
- 2. *S* codes a sequence for the series

$$\sum_{i=1}^{n} s_i 2^{j_i}$$

where $0 \le k' \le k$ and each $s_i = \pm MSP(x_m, y)$, or $s_i = \pm 1$ for some y and some variable x_m

- 3. Evaluating *S* yields *t*.
- Given an f in A³ our goal will be to put a bound on the k for which S¹₂ proves the condition

 $\forall \overline{x} \exists S BPS(k(N), N, \overline{x}, S, f(x))$

which we write as $C_f(N, k(N))$.

BPS's and our Algebras

- S_2^1 proves the following bounds on $C_f(N, k'(N))$ in terms of the complexities of the input argument k_1, k_2 :
 - If f is 0, a variable x_m , or # then k' = 1
 - If f is S then $k' = k_1 + 1$.
 - If f is $|\cdot|$ then k' = O(||N||)
 - If *f* is PAD then $k' = k_1$
 - If f is MSP then $k' = 2k_1$
 - If f is +, then can bound k' as $k_1 + k_2$.
- For composition, S_2^1 proves if *f* has complexity k''(N) when all its arguments have complexity 1, then $f(\overline{u})$ will have complexity $k''(M)(2\sum k_i(N))$ when its arguments have complexity $k_i(N)$ and the max of their outputs has size *M*.
- From this the complexity of any Initial term is $||N||^{O(1)}$.
- Closing under *m*-BPR will give complexities

 $(||N||)^{(|N|_m)^{O(1)}}$

Hard Functions for our Algebras

• Consider the \sum_{1}^{b} -defined in S¹₂ function

 $f(N) = \lfloor (2^{|N||N|} - 1)/3 \rfloor$

• Given a BPS for some 1-input, A³ function which supposedly maps [N] --> [N#N], S¹₂ can regroup the series to look like:

 $\begin{aligned} & \text{MSP}(x,0) \cdot (2^{k_i} \text{ factor's for MSP}(x,0)) \\ & \text{MSP}(x,1) \cdot (2^{k_i} \text{ factor's for MSP}(x,1)) \end{aligned}$

 $MSP(x, |N|) \cdot (2^{k_i} factor's for MSP(x, |N|)$

-MSP(x,0) · (2^{k_i} factor's for MSP(x,0)) -MSP(x,1) · (2^{k_i} factor's for MSP(x,1))

-MSP(x, |N|) · (2^{k_i} factor's for MSP(x, |N|)

- The MSP(x, i)'s can further be viewed as |N| bit numbers.
- S_2^1 can sum the *j*th bit of these numbers for rows which have a given 2^k value.
- This yields $|N| \cdot ||N||^{(||N||)O(1)} = |N| \cdot 2^{(|N|_3)O(1)}$ numbers of the form an ||N|| bit number multiplied with a 2^k factor for some k.
- So the BPS can be viewed as $|N| \cdot ||N|| \cdot 2^{(|N|_3)^{O(1)}} = |N| \cdot 2^{(|N|_3)^{O(1)}}$ single bit summands (swallowing the ||N|| in the O(1) in the exponent).
- Such a number can have at most $|N| \cdot 2^{(|N|_3)^{O(1)}}$ alternations between blocks of 0's and 1's; whereas, *f* has $\Omega(|N|^2)$ such alternations.

Conclusion

- It would be nice to strengthen Initial.
- Can similar results be obtained for the injective pigeonhole principle?
- It would be interesting to look at propositional translations of this result.