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Classical Branching Programs

• Directed acyclic graphs
• Nodes labeled with variables, have two outgoing

edges 0, 1.
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•   Have a single source node

•   Have distinguished  sink
nodes labeled accept.

•   Given a setting to the
variables follow path  of 0’s
and 1’s according to the
variable values to see if
accept.



More on Branching Programs

• Restricted versions of branching programs have been used
for hardware verification, and other CAD applications.

• We will be interested in programs where the number of
nodes at each level is the same and the variable queried at
each node at a level is the same.

• Recall a monoid is a set M with an associative operation *
on it as well as some identity element: 1*a =a*1 = a.

• We can view the operation that maps us from one level of
the program to the next as coming from a monoid.



Barrington’s Result

• The size of a program is the number of nodes in it.
• The width is the maximum number of nodes at a level.
• A family of branching programs {Bn} can be viewed as

computing a function, if the n-th member of the family can
computes the values of the function for n-bit inputs.

• Barrington showed that the languages recognized by
constant-width, polynomial-sized families of permutation
branching programs are precisely the languages in NC1,
those computed by polynomial size, log depth circuit.

• He showed only need width 5 programs to get this class.



Quantum and Stochastic
Programs

• As mentioned above, Barrington considered
programs where the level to level transition
is given by a permutation.

• It is natural to ask what happens when one
uses a unitary operator or a stochastic
operator to do the level to level transition.

• The answer is one gets Quantum and
Stochastic Branching Programs!



More on Quantum and Stochastic
Branching Programs

• A branching program of width k is a triple P=(T, |s>, Accept).
• T is a sequence of instructions (ij, Ai(0), Ai(1))
• |s> is the start state (assume have a k-state system)
• Accept is a subset of values in {0, …, k-1} which are accepting.
• The program computes on input x1,..,xn the vector

• For stochastic programs the Ai are dim k matrices with column
summing to 1.

• For quantum programs  the Ai are dim k unitary matrices.
• The acceptance probabilities for the deterministic, stochastic and

quantum case are defined as respectively



Yet More on Branching Programs

• So we assume we only measure once.
• We will consider the usual possible acceptance criteria: bounded-

error (accept if probability is >= 1/2 +e), unbounded-error (accept if
probability is >=1/2), and exact acceptance (accept if probability is 1).

• A computation path in a program is inconsistent if on an input when a
variable is queried more than once we use a different answer than the
original one at some point.; otherwise it is consistent.

• Let A = {|m> : |m> is the result of a path Pr(|m>) >1/2+e} and R =
{|m> : |m> is the result of a path Pr(|m>) < 1/2 -e}

• A branching program is called syntactic if the the A and rejecting R of
the program form a partition of all the final possible states reachable
on any path through the program (consistent or inconsistent).



The Power of Width 2 Programs
Theorem NC1 is precisely the class of languages recognized

by polynomial size, width 2 syntactic, quantum branching
programs with exact acceptance criteria.

Proof Idea. Barrington’s proof needed the levels of programs
to come from a nonsolvable group. In his case, A5. Notice
U(2) is a double cover of SO(3) (ask any computer
graphics person). SO(3) contains the group of three-
dimensional rotations of the icosahedron which is A5. So
NC1 is contained in the above quantum programs. For the
other direction we need results about simulating quantum
programs.



Classical Simulations

Theorem Let P be a width k, syntactic
stochastic or quantum program of length l
that recognizes a language L with
probability 1/2 + e. Then there exists a
determinstic program P’of width k’ and
length l that recognizes L where k’ in the
stochastic and quantum case are
respectively: k’ <= (1/e)k-1 and k’ <= (2/e)2k.



Idea of the simulation
• We define an equivalence relations on the states Vt

of level t of the program.
• Two states are called equivalent if they lead to the

same outcome.
• We then use the fact that stochastic and unitary

matrices do not increase distances.
• We prove that two states at level j in different

equivalence classes must be at least 4e apart in the
stochastic case and 2e apart in the quantum case.

• We then count the number of disjoint balls of
these size that can fit in the sphere of size 1
according to the appropriate metric to get the
bound.



Example

• The NC1 result means there are syntactic, width-2,
polynomial size quantum branching programs for
multiplication.

• On the other hand, Ablayev and Karpinski have
shown an exponential lower bound on read-once,
randomized OBDDs.

• This can be used to show that width-2 doubly
stochastic programs need exponential size for
multiplication.



Conclusion

• It would be interesting to remove the syntactic
condition from our upper bound results.

• Branching programs are also connected to
resolution refutation systems. It would be
interesting to use this to come up with “quantum
proof systems” (different from Arthur Merlin
setting).

• Upper bound results might be useful in analysing
consistent histories?


