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Abstract—Social media is an important means of modern
communication and information exchange. Ease of access and
global reach are the primary factors contributing to the popularity
of several social media platforms. Apart from human (real)
users, they also have bots, automated programs developed to
facilitate online engagement and interaction. However, these bots
are increasingly being exploited for malicious purposes, such as
disseminating false information and manipulating public opinion.
Detecting and removing bots is essential for maintaining authentic
human interactions and trustworthy public opinions.

This paper proposes the Multirelational Bot Detection Graph
Neural Network method (MultiBotGNNs) to detect bots. It treats
the problem as a node classification problem in a graph that has
two types of nodes (real and bot users) and multiple types of
edges, e.g., the various relations (interactions) between users. To
detect bots, we use their characteristics processed along the social
network of the different user relations, such as follow, follower,
and like. We experimented with the TwiBot22 dataset, which is a
big dataset of bots on X (formerly Twitter). Our hypothesis is that
by considering just the different relations and their characteristics
for the prediction, and by ignoring the tweet contents, we can
get good results without the extra process time for the tweets.
Experimental results confirm our hypothesis.

Index Terms—Bot identification, node classification, embedding
techniques, Twitter (X), graph neural networks, TwiBot22,
misinformation detection, heterogeneous graphs.

I. INTRODUCTION

The rise and evolution of the Internet has changed the way
humans communicate and access information. From the early
days of mailboxes to the growth of social media platforms
like Facebook, X (former Twitter), humans have integrated
the internet as a crucial part of their lives. Social Media has
connected humans across the globe in ways only imagined in
the past. Moreover, it has changed the way humans consume
information and create information, such as through automated
accounts called bots.

A bot is any automated program that is developed to carry out
a fixed functionality. With the increasing use of social media,
bots have gained popularity as organizations seek efficient
ways to engage with users daily on these platforms. Initial
uses of bots included posting relevant pre-determined updates
or posts from the organization’s accounts. With the growth of

available Artificial Intelligence (AI) tools, the usage of bots
became more widespread and complex, beyond automating
routine tasks.

Although a vast amount of bots are used to post useful
content and engage ethically, there are a lot of bots being
deployed with malicious intent. Studies [1] have shown that
bots are used to spread false information, negatively manipulate
users, and cause disruptions to social media. Bots can operate
with AI responses to manipulate and misdirect the user through
social content or chat. Due to the critical implications of bots
and the potential to cause damage, bot detection has become a
crucial challenge for social media operations. In recent times,
with the widespread use of AI, it has become a high priority
to preserve integrity and safety throughout social media.

The exact content generated on Twitter by bots is unclear, but
it is estimated to be a high percentage of all users. Platforms
like Twitter used to employ tools like Botometer [2] (data until
2023) to help monitor user activity and identify bot accounts.
Another example of a tool used in websites to detect bots
from humans is the CAPTCHA (Completely Automated Public
Turing test to tell Computers and Humans Apart). However,
the use of only limited features in these tools may not be able
to detect bots correctly or in all settings, like in social media.
More recent approaches, in addition to the account metadata,
include information like the number of followers/following
and tweets to calculate real-time scores based on the user
ID. Unfortunately, algorithms that can recreate the metadata
of real users have been developed, which can provide bot
accounts’ authenticity to pass through bot detectors. Training
Machine Learning (ML) models on such data can lead to poor
predictions on real accounts as well. Limited features make
this method less accurate, which prompts the use of advanced
graph-based methods to detect bots. In Figure 1, you can see
the bot score from Botometer for a real user; a score of 2.3/5
indicates its lack of reliability to classify.

The rest of the paper is as follows: in Section II we explore
different techniques in Natural Language Processing (NLP)
for embedding text, and the task of node classification in



Fig. 1. Bot Score for a real user

graphs. In Section III, we talk about the various existing
techniques in detecting social media bots. In Section IV, we
discuss more about our dataset. Section V explains the proposed
methodology for bot detection along with the pre-processing
and the algorithms used. Section VI discusses the results of
our method across the determined evaluation metrics. Finally,
Section VII concludes the paper.

II. TECHNIQUES

In this section, we will discuss the necessary background in
detail, along with the various techniques we use.

We will model our problem as a graph 𝐺 = (𝑉,𝐸) that
has a set of users 𝑉 and their connections, i.e., the set 𝐸 is
the different ways that users interact with each other. Graphs
are a powerful and comprehensive model to represent and
store information. This information consists of nodes, i.e., user
accounts, and edges, indicating how they are connected over the
social network. Nodes may contain various useful information
that characterizes the node. In this case, the node may have
information about the users, like bio, follower count, etc. The
edge determines how the nodes are connected and may have
different types of edges, i.e., relations. In our case, the edge
types are follower, following, like, etc. Therefore, our graph
can be a heterogeneous graph with different types of edges.

Bot detection is reduced to the node classification problem. It
is a graph problem where the goal is to classify the nodes into
some given categories by leveraging the structure of the graph
and/or the node information. Many real-world problems can be
solved as node classification on a graph. This information can
be useful for solving problems and are a significant addition
to using numeric data about problem properties to classify the
graphs.

Some well-known word embedding techniques involve
distributed representation methods like Word2Vec [3], GloVe
[4], etc. These methods represent text as large, dense vectors
based on weights or features obtained from a large corpus of
words generated through training the feature extraction methods
on a very large text. Bidirectional Encoder Representations
from Transformers (BERT) [5] is a strong NLP model that is
based on pre-training weights using a transformer architecture.
Lastly, a Robustly Optimized BERT Approach (RoBERTa) [6]
is an extension of BERT used to generate feature embeddings
for NLP, and this is the model we use. RoBERTa builds upon
the pretraining mechanism used by BERT and fine-tunes it to
make it better by introducing a dynamic masking approach.

Graph Neural Networks (GNNs) have gained popularity
because of their capability to analyze graph-structured data and
capture intricate relationships by leveraging both node features
as well as graph structure. GNNs leverage the entire graph

structure as a whole by utilizing information from nodes as
well as the edges connecting the nodes.

As discussed previously, the nodes in a graph have useful
information, and so do the edges. For GNNs to learn the
graph structure and analyze relationships, a message-passing
mechanism is used. In this mechanism, all the information in
a particular node is shared with its neighboring nodes. After
passing the information, all the collective information received
at a node is aggregated with the existing information, and in
this way, neighboring nodes learn about each other and keep
useful information. Through each iteration, more information
is gained over larger distances in a graph, which allows the
GNN to learn about the graph structure, node information, and
understand complex relationships. In this case, user information
is propagated throughout the graph structure along with the
edge type (type of relation). Various methods of GNNs will
be used and described later.

III. RELATED WORK

Several studies have conducted research in the past regarding
bot identification on Twitter (X), either as a node classifica-
tion [7] or a graph classification problem [8]–[11], as well
as on other social media platforms. Researchers were able to
exploit the features obtained from the user’s tweet contents
through the use of several NLP techniques and improve the
detection process.

BotFinder [12] uses the node data from traffic nodes and
applies traditional ML algorithms to classify the graphs. This
study has applications in network flow that can be used in bot
identification as well. MRLBot [13] uses Deep Neural Networks
(DL) for Twitter bot classification on the Twibot-22 [1] dataset.
The study implements a transformer architecture and employs
a CNN encoder-decoder feature to classify embeddings. This
model incorporates not only the structural characteristics of
node neighborhoods but also the internal organization of
communities and community linkages.

Wei et al. [14] focus on proposing a Bi-directional LSTM
architecture to process user tweets to understand and retain
context of the tweets used to classify accounts that require no
prior knowledge or assumption about users’ profiles, networks,
or historical behavior on the target account. Implementing
Recurrent Neural Networks to use word embeddings, this
method is an indication that tweet contents and their context
are important features for classification.

Kudugunta et. al [15] propose a hybrid method including
tweet content and metadata at the tweet level for bot identifica-
tion using a contextual LSTM. This method also proposes and
uses a technique based on synthetic minority oversampling to
improve the dataset. This approach achieves good results on
an oversampled dataset.

Alhosseini et. al. [16] conduct an extensive study on spam
bots on the Twitter platform and employ representation learning
for spam bot detection. The study leverages GCNNs, which
use both the features of a node and aggregate the features of
a node’s neighborhood for classification. Results show that



this approach outperforms the state-of-the-art classification
algorithms.

SATAR [17] in their novel approach for bot detection,
use a self-supervised representational learning framework.
SATAR leverages the semantics, property, and neighborhood
information of specific users for classification and pre-trains on
the massive number of users and later fine-tunes the model on
specific cases. This study uses the tweet semantic subnetwork,
profile property subnetwork, and follower-following subnetwork
to gain information from data and later uses a co-influence
aggregator to combine these features. An older dataset, Twibot-
20 [18], is used.

Cresci et. al. [19] proposed a novel approach that was
inspired by DNA sequencing to identify bot accounts from
Twitter, which extracts online user behavior patterns. Based on
the digital DNA obtained from the user behaviour and activity,
standard DNA analysis techniques help differentiate between
real users and bots. This system has proved to be simple yet
effective for classification purposes, which has a wide range
of applications.

BotRGT is proposed in [20], which uses relational graph
transformers (RGT) for graph classification. The study con-
structs a heterogeneous information network with users as nodes
and diversified relations as edges. RGTs are used to model
heterogeneous influence between users to better learn node
representations. Semantic attention networks are used to assign
relative importance to relations and aggregate messages across
users and relations, similar to GNNs. Again, the Twibot-20
dataset is used.

BotRGCN architecture proposed in [21] uses a relational
graph convolutional network to address the community chal-
lenge by constructing a heterogeneous graph from user re-
lationships. It uses both multimodal semantic and property
information as feature sets for the RGCN architecture. Results
show that it outperforms most approaches on benchmark
datasets. The BotRGCN model uses the following data for
classification: profile data, user tweets, and relation graphs. A
Relational GCN model is used along with several layers of
Sequential Linear layers to process each of the tensors. The
resultant aggregation, along with the user graph, is used as
input to the RGCN model.

IV. DATASET

We have used the Twibot-22 [1] dataset for our experiments.
Twibot-22 is the most comprehensive dataset available on
Twitter bot classification to date. Table I demonstrates the
statistics about the latest Twibot-22 dataset used in our work
and the older Twibot-20 dataset.

Attribute Twibot-20 Twibot-22
Human 5237 860,057

Bot 6589 139,943
Tweet 33,488,192 86,764,167
Edge 33,716,171 170,185,937

TABLE I
COMPARISON OF TWIBOT-20 AND TWIBOT-22 DATASETS

The Twibot-20 has only three relation types: “follower",
“following", and “post". We focus on the Twibot-22 dataset,
which has 14 types of relations (see a few Table II). The
Twibot-22 dataset has multiple files that we can use to extract
features for our model. The “edge.csv” contains all edges and
the relation type identified by “source id” and “target id”. The
“user.json” has all the profile information, which is split into
numerical and categorical data. We also obtain the user bio
and use NLP to extract features. Further, “tweet.json" has the
tweet content, which can be processed, but we will not use
that.

Relation Source Target Description
following user user user A follows user B
follower user user user A is followed by user B

post user tweet user A posts tweet C
pin user tweet user A pins tweet C
like user tweet user A likes tweet C

mention tweet user tweet C mentions user B
retweet tweet tweet tweet C retweets tweet D
quote tweet tweet tweet C quotes tweet D with comments
reply tweet tweet tweet C replies to tweet D
own user list user A is the creator of list L

member user list user A is a member of list L
follow user list user A follows list L
contain list tweet list L contains tweet C
discuss tweet hashtag tweet C discussed hastag H

TABLE II
TWIBOT-22 RELATION TYPES

Table II demonstrates the structuring of user relation types
in the edges. Multiple types of relations exist, including
homogenous edges (user-user, tweet-tweet) and heterogenous
edges (user-tweet, user-list). Some GNNs work only on
homogeneous relationships, while some have the ability to
handle heterogeneous relations. Within homogeneous, some
models can handle multiple types of edges (like “follower",
“following" or “retweet", “quote") and the proposed method
explores this approach. Two or more heterogeneous relations
can be processed together as homogeneous relations, and our
method explores that as well. We are utilizing the “follower",
“following", “post", and “like" relations in our models. While
some relations are used directly, we work on some relations
to process and obtain new relations to be used for our models.

Relation Edges
following 2, 626, 979
follower 1, 116, 655

post 40, 887, 365
like 595, 794

TABLE III
TWIBOT-22 EDGE COUNT

Other than the edges file that contains relations between
users, we have a few more files in the dataset that will be used
for classification and are described in detail next:

∙ “edge.csv" Contains information about the edges in three
columns, “source id” (indicating the source user node id),
relation (type of relation), and “target id"(indicating the
target user node id).



∙ “user.json”: Contains all the information about the user,
like the time of account creation, number of “followers",
“following", “tweet count", whether the account is verified,
the profile picture, etc. This file contains information
for 1, 000, 000 users. It contains the following columns:
created at, description, entities, id, location, name, pinned
tweet id, profile image URL, is protected, URL, username,
is verified, and public metrics.

∙ “labels”: Contains all the users’ (human and bot) ids along
with their labels.

∙ “tweets”: There are 9 tweet files in the dataset, numbered
from tweet0 to tweet8, containing all the information
about the user tweets. The files contain information like
tweet id, attachment, tweet content, hashtag, etc.

The public metrics further contain the following information:
followers count, following count, tweet count, and list count.

V. METHODOLOGY

Identifying social media accounts as bots or humans will be
solved as a node classification problem. Traditional ML meth-
ods involve using only the user profile data. Advanced methods
include the use of various GNN models. In our approach, called
Multirelational Bot Detection Graph Neural Network method
(MultiBotGNNs), we leverage the graph structure formed by
various user relations like “following"/“follower" networks and
GNN models. Figure 2 demonstrates the flowchart for the
process.

MultiBotGNNs combines the additional relations that the
Twibot-22 dataset offers to discover complex relations between
nodes (users) that can help in the prediction of bots. Algorithm 1
describes the three steps of our MultiBotGNNs. The input/out-
put of Input: Feature Sets, Edge Index, Edge Weights/Edge
Types (optional) Output: Node classification (Real/Bot user).

Fig. 2. Process Flow

The dataset contains data about users’ profiles, tweet content,
and user relations (edge.csv). This data will be processed to
obtain the feature sets required for our GNN models.

Algorithm 1 MultiBotGNNs for Bot Detection
1: procedure BOTDETECTION

Step 1: Preprocessing
2: Process large data files using Dataproc and PySpark

on Google Cloud Platform
3: Extract numerical and categorical properties from user

information
4: Extract textual descriptions from user node biographies
5: Process edge data to extract relations and generate edge

indices per relation
6: Generate combined edge indices and edge types for

multi-relational data
7: Create new synthetic relation types from heterogeneous

relations
Step 2: GNN Model Training

8: Train the following GNN models on the processed
data:

9: GCN: using individual relations
10: GraphSAGE: using individual and combined rela-

tions
11: GAT: using individual and weighted relations
12: RGCN: using multiple relation types

Step 3: Testing and Hyperparameter Tuning
13: Test each model on various types of generated datasets
14: Perform hyperparameter tuning
15: Evaluate the performance metrics of all models

The proposed methodology explores three major Graph
Neural Network Models: GraphSAGE [22], Graph Attention
Networks (GAT) [23], and Graph Convolutional Networks
(GCN) [24]. GCNs can further be classified into two ap-
proaches: Single GCNs and Relational GCNs (RGCNs) [25],
which can process multiple edge types. Each of these requires
an input feature vector matrix 𝑋 , and an edge index vector
which contains edges between users marked by indexes.
Additionally, to leverage RGCNs, which can process multiple
types of relations, we have the edge index vector containing
multiple types of edges, and we additionally require an edge
type vector indicating the type of edge. Since GATs work on
an attention mechanism to determine important connections, it
also requires an edge weight parameter indicating the weight
of the edge. Further, GraphSAGE can also process weighted
graphs. The proposed method implements GraphSAGE using
edge weights as well.

The following tensors are used for our GNN models as input
features:

∙ Description Tensor
∙ Numerical Properties Tensor
∙ Categorical Properties Tensor
∙ Edge Index and Edge Type Tensors

A. Preprocessing

The GNN models require the feature vectors as input,
along with the relation graphs in the form of an adjacency
matrix 𝐴. The proposed method generates the input vector by



concatenating (a) numerical properties of the user profile, (b)
categorical properties of the user profile, and (c) description
or bio of the user processed using RoBERTa. The relations
from the edges data are used to create adjacency matrices of
individual relations (“follower", “following"), generate new
relations from combining existing ones, and merge multiple
relations.

The initial Twibot-22 dataset obtained had details of
1, 000, 000 users. However, upon inspection, there was a huge
bias in the data, with around 86% of the dataset being those
of human users. Figure 3 shows the bias in the dataset.

Fig. 3. Distribution of Humans and Bots in the dataset

The first step of the pre-processing is to balance the dataset.
Given that the original dataset was too large to process with
restricted computation resources, balancing reduced the size of
the dataset to 279, 886 nodes, which made it easier to process
and reduced the bias in the data. Sampling the dataset for
balancing also led to sampling of the edges data to include
only those edges that connected the users that we obtained
after initial preprocessing.

For the numerical properties, we build a tensor from the
following data:

∙ followers count
∙ active days (number of days active on Twitter)
∙ length of the user’s screen name
∙ following count
∙ statistics derived from the number of tweets posted by

the user.
For the categorical properties, we use the following data:
∙ is the user account protected
∙ is the user account verified
∙ if the user has a default profile image or a custom one.
For the description property, we generate a tensor by

processing the user bio from their profile using a RoBERTa
model with a max length of 50. Similarly, we concatenate each
tweet posted by the user and apply the same model to generate
a tweet tensor.

We have the “edge.csv" file that contains the source node,
the target node, and the relation type. This data, too, is too
large to process locally. We use GCP services for edge data
extraction by first uploading it to Cloud Storage. Then, we
use the Dataproc service to process the large data. We create
a Dataproc cluster and create several Virtual Machine nodes
to process the data. We then create a Spark Job to use the

Apache Spark big data processing module using PySpark. This
Python-based job extracts the data into individual CSV files for
each relation. These edge CSV files are processed individually
to generate tensors for source and target user ids based on
indexes.

When processing multiple relation types together using the
RGCN model, we need an additional parameter to indicate
the edge type. During the processing for obtaining the edge
index, we also generate the edge type tensor in case of multiple
relations.

Additionally, while applying the GraphSAGE and GAT
models, we provide an optional parameter, edge weight, while
processing some relations. We can generate the weight tensors
while generating edge indexes.

In our MultiBotGNNs we create different graphs based on
the type of edge relations we consider. We can use each relation
by itself or combine two as a new one. First, we use “follower”
and “following” relations, which are available in the dataset.
Along with these two, we create a new relation, which we
name “interaction” by combining the existing relations “post”
and “like” that we have in the dataset.

The “post” relation is an edge between “userid” and “tweetid”
indicating the user that posted the tweet. Similarly, the “like”
relation is an edge between “userid” and “tweetid," indicating
the user that liked the tweet. We join these two relations on the
“inner-join” on “userid” to obtain the “interaction" relation. The
resultant we obtain is a user-user relationship where “source
id" indicates the user that likes the tweets, and the “target id"
indicates the user whose tweets have been liked. We obtain
the relation of which user interacts with which user using this
technique. Additionally, if user A likes some user B’s multiple
tweets, instead of having multiple entries, we have a new
column called ’weight’ in our generated data. This indicates
the strength of the relationship between two users. If a user
likes multiple tweets of some other user, it indicates that the
relationship between those two for interaction is stronger.

B. Model Description

Regularization Regularization is used to prevent overfitting
in deep learning models. Overfitting is when a model learns
the model too rigidly and, in turn, might end up learning not
just the actual underlying patterns, but the noise too. A result
of overfitting is that the model learns the training data too
well but performs poorly on the testing data. Dropout is a
regularization technique commonly used to prevent overfitting
in neural networks. A dropout rate of 0.1 indicates that during
training, 10 percent of the neurons in the network will be
randomly set to zero, forcing the network to learn more robust
features. It prevents specific neurons from being overly reliant
on each other.

The embedding size parameter determines the dimensions of
the embedding space for categorical variables or words. Each
categorical variable or word will be represented as a vector of
length 32.

The learning rate determines the size of the steps taken during
the optimization process. A value of 1e-2 (0.01) is moderate and



is often chosen as a starting point. Higher learning rates may
lead to faster convergence but risk overshooting the optimal
solution, while lower rates may lead to slower convergence
but potentially better fine-tuning.

Weight decay, also known as L2 regularization, is a regu-
larization term added to the loss function to penalize large
weights in the model. A weight decay of 5e-2 (0.05) indicates
a moderate regularization strength. Higher values of weight
decay increase the penalty for large weights, helping to prevent
overfitting, but may also overly constrain the model’s learning
capacity.

The choice of loss function determines the objective that the
model aims to minimize during training. The Cross-Entropy
Loss is used in classification tasks. It measures the dissimilarity
between the predicted probability distribution and the true
distribution of class labels.

The optimizer determines the algorithm used to update the
model parameters during training in order to minimize the loss
function. Adam (Adaptive Moment Estimation) is a popular
optimizer that combines ideas from RMSProp and Momentum.
It adapts the learning rate for each parameter, allowing for
faster convergence and better performance in many cases.

Each tensor is handled first by a linear layer with a ReLU
activation function. The result of all the tensors is then
concatenated. This forms our input feature for the GNN model.

The following hyperparameters are used to train our models:
∙ embedding size = 32
∙ dropout = 0.1
∙ learning rate = 1e-2
∙ weight decay = 5e-2
∙ loss = Cross Entropy Loss
∙ optimizer = Adam
PyTorch Geometric library has the GNN models that will

be used. Each of the models was designed in several layers,
taking in the different input feature vectors and processing
them before merging them to generate the input feature vector
for our Graph Neural Network model.

VI. EXPERIMENTS AND ANALYSIS

A. Loss Function and Evaluation Metrics

Loss quantifies the difference between the predicted values
and the actual values during the training of a machine learning
model to improve the prediction. It serves for the backpropa-
gation and learning a good model of the patterns in the data.
Lower loss values indicate better alignment between predictions
and actual values, reflecting improved model performance.

Loss = − 1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 log(𝑦𝑖) + (1− 𝑦𝑖) log(1− 𝑦𝑖)) (1)

where,
∙ 𝑁 = number of samples in the dataset
∙ 𝑦𝑖 = True label for the 𝑖-th sample
∙ 𝑦𝑖 = Predicted probability for the 𝑖-th sample

Accuracy measures the proportion of correctly classified
instances among all instances in the testing dataset, demon-
strating the overall correctness of the model predictions in
unseen data.

Accuracy =
Number of correctly classified instances

Total number of instances
Precision evaluates the ability of a model to correctly identify

positive cases out of all positive classified instances. It is the
ratio of true positive predictions to the total number of positive
predictions made by the model. Precision is particularly relevant
in scenarios where minimizing false positives is critical.

Precision =
True Positives

True Positives + False Positives
Recall, also known as sensitivity or true positive rate,

measures the ability of a model to identify all relevant instances
in a dataset. It is the ratio of true positive predictions to the
total number of actual positive instances. Recall is crucial in
applications where missing positive instances carries significant
consequences.

Recall =
True Positives

True Positives + False Negatives

The F1 Score is a harmonic mean of precision and recall,
providing a balanced measure of a model’s performance. It
addresses the trade-off between precision and recall, making it
suitable for tasks where both false positives and false negatives
need to be minimized. The F1 Score ranges from 0 to 1, with
higher values indicating better model performance.

F1 Score = 2 x
Precision x Recall
Precision + Recall

B. Results

MultiBotGNNs involves processing the “follower", “follow-
ing", and “interaction" relations individually and training the
data using Single GCN, GraphSAGE, and GAT.

The next step involves combining “follower” and “following”
and then training the data using the RGCN model in these
two relations. Finally, all three relations are combined and
processed using the RGCN model. To train GraphSAGE and
GAT on the interactions data, which have weights as well, we
have used an additional edge weight parameter to train those
models. All the models were trained for 50 epochs with the
parameters discussed earlier.

For the Twibot-22 dataset, both “follower" and “following"
relations, along with the newly constructed “interaction"
relation, were processed individually first, and the models GCN,
GAT, and GraphSAGE were used. Combining both relations,
we then used the RGCN model. The description, categorical
properties, and numerical properties will stay common to all
the types of relations. The edge indexes and edge types vary
depending on the relation.

Evaluation metrics used for analysis are the accuracy with
which the model can identify bot accounts from the data,



relation(s) Accuracy Precision Recall F1 Score

follower (fol) 0.6342 0.6342 0.4567 0.5546
following (foli) 0.6035 0.7017 0.3567 0.4729
interactions (like) 0.7213 0.7289 0.7023 0.7154

TABLE IV
GCN MODEL RESULTS FOR DIFFERENT RELATIONS PROCESSED

INDIVIDUALLY

relation(s) Accuracy Precision Recall F1 Score

fol + foli 0.7293 0.7227 0.7419 0.7322
fol + foli + like 0.7352 0.7308 0.7426 0.7367

TABLE V
RGCN MODEL RESULTS FOR DIFFERENT RELATION COMBINATIONS

the precision with which it can identify bots, the recall for
classification, and the F1 score of the model.

For the GCN model, individual relations were processed,
and their edge index tensors were used to train the model along
with the common features we have. The results of Accuracy,
Precision, Recall, and F1 Score were observed in Table IV.

It can be observed from Table IV that the interactions (like)
relation has a better accuracy, precision, recall, and F1-score
compared to others.

For the RGCN model, we process multiple relation types
together. Experimentation was done on two combinations of
the relations for the RGCN model, keeping the common tensors
the same. The edges were concatenated and processed to obtain
the edge index and edge-type tensors. The results of Accuracy,
Precision, Recall, and F1 Score were observed in Table V.

Table V demonstrates the RGCN model on combinations of
relations. It can be observed that a combination of all relations
used performs better compared to just follower-following in
all aspects.

For the GraphSAGE model, relations were processed indi-
vidually as well, and combinations were experimented with to
evaluate the model. The results of Accuracy, Precision, Recall,
and F1-score were observed in Table VI.

Table VI demonstrates the GraphSAGE model results for all
relations, and it can be observed that this model has varying
results for all parameters. While accuracy is the highest in a
combination of relations, other relations outperform in other
metrics.

relation(s) Accuracy Precision Recall F1 Score

fol (fol) 0.6739 0.6336 0.8206 0.7151
foli (foli) 0.6883 0.6695 0.7405 0.7032
like 0.6877 0.6682 0.7423 0.7033
fol & foli 0.6773 0.6445 0.7874 0.7088
fol & foli & like 0.6884 0.6640 0.7598 0.7087

TABLE VI
GRAPHSAGE MODEL RESULTS FOR DIFFERENT RELATION COMBINATIONS

relation(s) Accuracy Precision Recall F1 Score

follower (fol) 0.6518 0.7059 0.5174 0.5971
following (foli) 0.7060 0.6825 0.7674 0.7225
interactions (like) 0.7383 0.7195 0.7790 0.7481
fol & foli 0.7095 0.6853 0.7720 0.7261
fol & foli & like 0.7121 0.6744 0.8171 0.7390

TABLE VII
GAT MODEL RESULTS FOR DIFFERENT RELATION COMBINATIONS

relation(s) GAT GraphSage RGCN GCN

follower (fol) 0.6632 0.6667 0.6683
following (foli) 0.6289 0.6400 0.6778
interactions (like) 0.5879 0.6264 0.5976
fol & foli 0.6490 0.6227 0.6219
fol & foli & like 0.6468 0.6391 0.6184

TABLE VIII
LOSS OF VARIOUS MODELS FOR DIFFERENT RELATION COMBINATIONS

Similar to the GraphSAGE model, the GAT model also had
relations processed individually, along with combinations as
observed in Table VII.

The GAT model processed all relations and combinations
and it can be observed that interactions relation processed in-
dividually performs the best, even outperforming combinations
of relations which might indicate that the GAT is better at
handling individual relations.

Another parameter we identified to judge our model training
is the loss metric, see Table VIII. We observed the loss of
each of our models across the 50 epochs and plotted graphs
for all models for the Twibot-22 dataset for the final combined
relation.

VII. CONCLUSION

The growth of social media has gotten people across the
globe connected to each other and also has become the source of
reliable information for many. With the growth of computational
resources and algorithms to leverage them, a lot of focus
has been made on automating various tasks, leading to the
generation of bots. Bots often exist as automation products and
to share information. However, in recent times, the purpose of
bot use has been questionable. A lot of bots these days have
been used with malicious intent, which has made regulating bots
very important. Bot detection techniques have been developed
to identify these bot accounts on social media platforms.
Powerful algorithms have been able to mimic human traits and
have made the bots harder to detect in recent times.

In the past, information such as user account information
has been used to identify bots. With the increase in NLP
usage, the textual information on or posted by the account
has also been used to help identify bots. In recent times, with
the advent of technologies like Graph Neural Networks, we
have been able to leverage account relationships with others
to potentially identify bots. This project focuses on using user
account information, NLP techniques, as well as leveraging
several Graph Neural Network algorithms to identify bots on
the Twitter (X) social media platform.



We have used the Twibot-22 dataset, which contains account
information, tweets posted by accounts, and the relationships
that exist between accounts together to design Neural Network
architectures for classification. Experimental analysis was
conducted on four GNN algorithms. The experiments helped
us understand in-depth the advantages of each algorithm
and it works to identify bots. Several user relationships,
like “follower”, “following”, “post", and “like" were used
individually as well as in combinations to construct graphs for
classification, which was the focus of the paper.

A comparative analysis of several evaluation metrics leads
to the conclusion that Graph Attention Networks, with their
powerful attention mechanism, and Relational GCNs, which
are adept at processing multiple kinds of relationships, are
performing better compared to the rest. A comparison was also
made on the baseline models using just account data or just
textual data, and it was found that the combination performed
better. Further analysis showed that processing combinations
of relations and constructing new relations using two relations
gave our model better learning and produced better results.
GAT model with interaction relation constructed by combining
the post and like relation gave the highest accuracy of 73.83%.

We can conclude by affirming that graphs are a strong
way to store information and with the abilities of GNNs to
process graph based data, we can leverage relations existing
across social media between users and entities to gain valuable
information about users and their behaviors.

Future work in this domain can include leveraging Het-
erogeneous GCNs to leverage complex relationships between
different entities. These can allow us to learn relations between
users and tweets, reposts and help the model potentially perform
better at identifying bots. With greater computation power, we
can attempt to process multiple relationships as well as multiple
types of relationships.
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