\( \def\lefteqn#1{\rlap{\displaystyle{#1}}} \newcommand{\Hajek}{H\'{a}jek} \newcommand{\Hastad}{H{\aa}stad} \newcommand{\Pudlak}{Pudl\'{a}k} \newcommand{\Krajicek}{Kraj\'\i\v{c}ek} \newcommand{\Jerabek}{Je\v{r}\'{a}bek} \newcommand{\Kolodziejczyk}{Ko{\l}odziejczyk} \newcommand{\compfont}{\mathsf} \newcommand{\SIG}[1]{\hat\Sigma^{\compfont b}_{#1}} \newcommand{\SIB}[1]{\Sigma^{\compfont b}_{#1}} \newcommand{\SIGINFTY}[1]{\Sigma^{\compfont #1}_{\infty}} \newcommand{\ASIGINFTY}[1]{\mathcal{A}\Sigma^{\compfont #1}_{\infty}} \newcommand{\pSIB}[1]{p\Sigma^{\compfont b}_{#1}} \newcommand{\PI}[1]{\hat\Pi^{\compfont b}_{#1}} \newcommand{\PIB}[1]{\Pi^{\compfont b}_{#1}} \newcommand{\DELT}[1]{\hat\Delta^b_{#1}} \newcommand{\DELTB}[1]{\bigtriangledown_{#1}} \newcommand{\BOOL}{\compfont B} \newcommand{\UNIV}{\compfont U} \newcommand{\EXIST}{\compfont E} \newcommand{\LEX}{\compfont L} \newcommand{\PLS}{\compfont{PLS}} \newcommand{\FP}{\compfont{FP}} \newcommand{\PTIME}{\compfont{P}} \newcommand{\NP}{\compfont{NP}} \newcommand{\NC}{\compfont {NC}} \newcommand{\coNP}{\compfont{co}-\compfont{NP}} \newcommand{\PH}{\compfont{PH}} \newcommand{\polylog}{\compfont{polylog}} \newcommand{\SigmaP}[1]{\Sigma^{\compfont p}_{#1}} \newcommand{\SiP}[1]{\Sigma^{\compfont p}_{#1}} \newcommand{\PiP}[1]{\Pi^{\compfont p}_{#1}} \newcommand{\theoryfont}{\mathit} \newcommand{\BASIC}{\theoryfont{BASIC}} \newcommand{\LKB}{\theoryfont{LKB}} \newcommand{\LK}{\theoryfont{LK}} \newcommand{\EBASIC}{\theoryfont{EBASIC}} \newcommand{\IOpen}{\theoryfont{IOpen}} \newcommand{\LIOpen}{\theoryfont{LIOpen}} \newcommand{\TOCOMP}{\theoryfont{TOComp}} \newcommand{\TCOMP}[1]{\theoryfont{TComp}^{#1}} \newcommand{\IDelta}{\mbox{$\theoryfont{I}\Delta_0$}} \newcommand{\TT}[1]{\theoryfont{T}^{#1}_2} \newcommand{\TR}[1]{\theoryfont{\hat{T}}^{#1}_2} \newcommand{\ST}[1]{\theoryfont{S}^{#1}_2} \newcommand{\RT}[1]{\theoryfont{R}^{#1}_2} \newcommand{\RR}[1]{\theoryfont{\hat R}^{#1}_2} \newcommand{\CT}[1]{\theoryfont{\hat{C}}^{#1}_2} \newcommand{\quasip}{\theoryfont{\{2^{ \mathbf{ \dot{(||\id||)} } } \} }} \newcommand{\RFN}{\theoryfont{RFN}} \newcommand{\BPR}{\theoryfont{BPR}} \newcommand{\BDC}{\theoryfont{BDC}} \newcommand{\LLIND}{\theoryfont{LLIND}} \newcommand{\LIND}{\theoryfont{LIND}} \newcommand{\IND}{\theoryfont{IND}} \newcommand{\COMP}{\theoryfont{COMP}} \newcommand{\REPL}{\theoryfont{REPL}} \newcommand{\BB}{\theoryfont{BB}} \newcommand{\open}{\theoryfont{open}} \newcommand{\WIT}{\theoryfont{WIT}} \newcommand{\mathfnfont}{\mathrm} \newcommand{\K}{\mathfnfont{K}} \newcommand{\cons}[1]{\mathfnfont{cons}(#1)} \newcommand{\car}[1]{\mathfnfont{car}(#1)} \newcommand{\cdr}{\mathfnfont{cdr}} \newcommand{\cond}{\mathfnfont{cond}} \newcommand{\PAD}{\mathfnfont{PAD}} \newcommand{\CAT}{\mathfnfont{CAT}} \newcommand{\LSP}{\mathfnfont{LSP}} \newcommand{\MSP}[2]{\mathfnfont{\lfloor\frac{#1}{2^{#2}}\rfloor}} \newcommand{\MULT}{\mathfnfont{MULT}} \newcommand{\Interval}[3]{\mathfnfont{#1 \in [#2, #3)}} \newcommand{\BLK}{\mathfnfont{BLK}} \newcommand{\BIT}{\mathfnfont{BIT}} \newcommand{\OUT}{\mathfnfont{OUT}} \newcommand{\DMSB}{\mathfnfont{DMSB}} \newcommand{\PREV}{\mathfnfont{PREV}} \newcommand{\bit}[1]{\mathfnfont{BIT}(#1)} \newcommand{\bool}[1]{\mathfnfont{bool}(#1)} \newcommand{\longBool}[1]{\mathfnfont{lbool}(#1)} \newcommand{\Pair}[1]{\mathfnfont{pair}(#1)} \newcommand{\NOP}{\mathfnfont{NOP}} \newcommand{\Seq}{\mathfnfont{Seq}} \newcommand{\RIGHT}{\mathfnfont{right}} \newcommand{\ispair}{\mathfnfont{ispair}} \newcommand{\Len}{\mathfnfont{Len}} \newcommand{\modtwo}{\mathfnfont{mod2}} \newcommand{\id}{\mathfnfont{id}} \newcommand{\cl}{\mathfnfont{cl}} \newcommand{\proj}[2]{(#1)_{#2}} \newcommand{\vec}[1]{\mathbf{#1}} \newcommand{\bd}{\mathfnfont{bd}} \newcommand{\LAST}{\mathfnfont{LAST}} \newcommand{\SUB}{\mathfnfont{SUB}} \newcommand{\ov}{\overline} \newcommand{\proves}{\vdash} \newcommand{\sequent}{\rightarrow} \newcommand{\monus}{\frac{\cdot}{ }} \newcommand{\bigvw}{\mathop{\mathchoice% {\makebox[0pt][l]{$\displaystyle\bigvee$}\mbox{$\displaystyle\bigwedge$}}% {\makebox[0pt][l]{$\textstyle\bigvee$}\mbox{$\textstyle\bigwedge$}}% {\makebox[0pt][l]{$\scriptstyle\bigvee$}\mbox{$\scriptstyle\bigwedge$}}% {\makebox[0pt][l]{$\scriptscriptstyle\bigvee$} \mbox{$\scriptscriptstyle\bigwedge$}}}\limits} \newcommand{\IFF}{\Leftrightarrow} \newcommand{\AND}{\mathrel{\land}} \newcommand{\OR}{\mathrel{\lor}} \newcommand{\NOT}{\neg} \newcommand{\IMP}{\supset} \newcommand{\DAND}{\wedge\!\!\!\!\wedge} \newcommand{\DOR}{\vee\!\!\!\!\vee} \newcommand{\GN}[1]{\,\!^{\lceil}\!#1\,\!^{\rceil}} \newcommand{\HALF}[1]{\lfloor\frac{1}{2}#1\rfloor} \newcommand{\DIV}[2]{\lfloor\frac{#1}{#2}\rfloor} \newcommand{\LEQ}{\leq_l} \newcommand{\nat}{\mathbb{N}} \newcommand{\EQN}[1]{\begin{eqnarray*}#1\end{eqnarray*}} \newcommand{\EQ}[1]{\begin{eqnarray}#1\end{eqnarray}} \newcommand{\TQ}[1]{\hbox{$#1$}} \newenvironment{proof}% {\medskip \noindent {\it Proof.} }{$\Box$} \newcommand{\ignore}[1]{} \)

Arithmetics within the Linear Time Hierarchy




Chris Pollett

CMAF Talk

Feb. 9, 2024

Introduction

Hierarchies of Bounded Formulas

Bounded Arithmetic Theories

Bounded Arithmetic Definability

Closure Properties

What complexity classes live in $\Delta_0$?

Classes within LINH

Nepomnjascij's Theorem (1970)

Theorem For fixed $k, \epsilon > 0$, $\mbox{LinH}$ contains $\mbox{TISP}(n^k, n^{1-\epsilon})$. So $\mbox{LinH}$ contains $\mbox{SC}$.

Proof. By induction on $k$, show that we can simulate in $\mbox{LinH}$ a TM that operates from some initial configuration for $n^{k(1-\epsilon)}$ steps provided it uses only uses only $n^{1-\epsilon}$ space. The $k=1$ case is true as DLINTIME is in LINH. Assume true for $k$, suppose one has a computation of $n^{(k+1)(1-\epsilon)}$ steps, we could existentially guess a string of length $O(n^{1-\epsilon}\cdot n^{\epsilon})$ that represents the configurations of this computation after steps $0\cdot n^{k\epsilon}, 1\cdot n^{k\epsilon}, 2\cdot n^{k\epsilon}, ..., n^{1-\epsilon}\cdot n^{k\epsilon}$, then verify for each $m$ using the induction hypothesis that the configuration at time $(m+1)\cdot n^{k\epsilon}$ follows from the one at time $m\cdot n^{k\epsilon}$.

Remark. Notice the quantifier shape of the $LINH$ predicate representing a computation in $\mbox{TISP}(|x|^{k(1-\epsilon)}, |x|^{\epsilon})$ would look like:
$$(\exists w_k \leq 2^{c\cdot|x|})(\forall i_k \leq |x|^{1-\epsilon}) \cdots (\exists w_1 \leq 2^{c\cdot|x|})(\forall i_1 \leq |x|^{1-\epsilon}) [(x,\vec{i}, \vec{w}) \in L]$$ where $L$ is a DLINTIME language. So the universal quantifiers are all sharply bounded. In general, if $f(x) \in o(|x|)$, then an $(\exists w_k \leq 2^{c\cdot|x|})$ can guess a computation for a $|x|/f(x)$ steps of a space $f(x)$ computation, and the correctness of these steps could be verified by a sharply bounded quantifier.

Arithmetics for LINH subclasses

The Theories TLS and TLS'

Observations

Modifying $WSN$ to work without $\#$

EuH

Fragments of $I\Delta_0$

Conclusion