\( \def\lefteqn#1{\rlap{\displaystyle{#1}}} \newcommand{\Hajek}{H\'{a}jek} \newcommand{\Hastad}{H{\aa}stad} \newcommand{\Pudlak}{Pudl\'{a}k} \newcommand{\Krajicek}{Kraj\'\i\v{c}ek} \newcommand{\Jerabek}{Je\v{r}\'{a}bek} \newcommand{\Kolodziejczyk}{Ko{\l}odziejczyk} \newcommand{\compfont}{\mathsf} \newcommand{\SIG}[1]{\hat\Sigma^{\compfont b}_{#1}} \newcommand{\SIB}[1]{\Sigma^{\compfont b}_{#1}} \newcommand{\SIGINFTY}[1]{\Sigma^{\compfont #1}_{\infty}} \newcommand{\ASIGINFTY}[1]{\mathcal{A}\Sigma^{\compfont #1}_{\infty}} \newcommand{\pSIB}[1]{p\Sigma^{\compfont b}_{#1}} \newcommand{\PI}[1]{\hat\Pi^{\compfont b}_{#1}} \newcommand{\PIB}[1]{\Pi^{\compfont b}_{#1}} \newcommand{\DELT}[1]{\hat\Delta^b_{#1}} \newcommand{\DELTB}[1]{\bigtriangledown_{#1}} \newcommand{\BOOL}{\compfont B} \newcommand{\UNIV}{\compfont U} \newcommand{\EXIST}{\compfont E} \newcommand{\LEX}{\compfont L} \newcommand{\PLS}{\compfont{PLS}} \newcommand{\FP}{\compfont{FP}} \newcommand{\PTIME}{\compfont{P}} \newcommand{\NP}{\compfont{NP}} \newcommand{\NC}{\compfont {NC}} \newcommand{\coNP}{\compfont{co}-\compfont{NP}} \newcommand{\PH}{\compfont{PH}} \newcommand{\polylog}{\compfont{polylog}} \newcommand{\SigmaP}[1]{\Sigma^{\compfont p}_{#1}} \newcommand{\SiP}[1]{\Sigma^{\compfont p}_{#1}} \newcommand{\PiP}[1]{\Pi^{\compfont p}_{#1}} \newcommand{\theoryfont}{\mathit} \newcommand{\BASIC}{\theoryfont{BASIC}} \newcommand{\LKB}{\theoryfont{LKB}} \newcommand{\LK}{\theoryfont{LK}} \newcommand{\EBASIC}{\theoryfont{EBASIC}} \newcommand{\IOpen}{\theoryfont{IOpen}} \newcommand{\LIOpen}{\theoryfont{LIOpen}} \newcommand{\TOCOMP}{\theoryfont{TOComp}} \newcommand{\TCOMP}[1]{\theoryfont{TComp}^{#1}} \newcommand{\IDelta}{\mbox{$\theoryfont{I}\Delta_0$}} \newcommand{\TT}[1]{\theoryfont{T}^{#1}_2} \newcommand{\TR}[1]{\theoryfont{\hat{T}}^{#1}_2} \newcommand{\ST}[1]{\theoryfont{S}^{#1}_2} \newcommand{\RT}[1]{\theoryfont{R}^{#1}_2} \newcommand{\RR}[1]{\theoryfont{\hat R}^{#1}_2} \newcommand{\CT}[1]{\theoryfont{\hat{C}}^{#1}_2} \newcommand{\quasip}{\theoryfont{\{2^{ \mathbf{ \dot{(||\id||)} } } \} }} \newcommand{\RFN}{\theoryfont{RFN}} \newcommand{\BPR}{\theoryfont{BPR}} \newcommand{\BDC}{\theoryfont{BDC}} \newcommand{\LLIND}{\theoryfont{LLIND}} \newcommand{\LIND}{\theoryfont{LIND}} \newcommand{\IND}{\theoryfont{IND}} \newcommand{\COMP}{\theoryfont{COMP}} \newcommand{\REPL}{\theoryfont{REPL}} \newcommand{\BB}{\theoryfont{BB}} \newcommand{\open}{\theoryfont{open}} \newcommand{\WIT}{\theoryfont{WIT}} \newcommand{\mathfnfont}{\mathrm} \newcommand{\K}{\mathfnfont{K}} \newcommand{\cons}[1]{\mathfnfont{cons}(#1)} \newcommand{\car}[1]{\mathfnfont{car}(#1)} \newcommand{\cdr}{\mathfnfont{cdr}} \newcommand{\cond}{\mathfnfont{cond}} \newcommand{\PAD}{\mathfnfont{PAD}} \newcommand{\CAT}{\mathfnfont{CAT}} \newcommand{\LSP}{\mathfnfont{LSP}} \newcommand{\MSP}[2]{\mathfnfont{\lfloor\frac{#1}{2^{#2}}\rfloor}} \newcommand{\MULT}{\mathfnfont{MULT}} \newcommand{\Interval}[3]{\mathfnfont{#1 \in [#2, #3)}} \newcommand{\BLK}{\mathfnfont{BLK}} \newcommand{\BIT}{\mathfnfont{BIT}} \newcommand{\OUT}{\mathfnfont{OUT}} \newcommand{\DMSB}{\mathfnfont{DMSB}} \newcommand{\PREV}{\mathfnfont{PREV}} \newcommand{\bit}[1]{\mathfnfont{BIT}(#1)} \newcommand{\bool}[1]{\mathfnfont{bool}(#1)} \newcommand{\longBool}[1]{\mathfnfont{lbool}(#1)} \newcommand{\Pair}[1]{\mathfnfont{pair}(#1)} \newcommand{\NOP}{\mathfnfont{NOP}} \newcommand{\Seq}{\mathfnfont{Seq}} \newcommand{\RIGHT}{\mathfnfont{right}} \newcommand{\ispair}{\mathfnfont{ispair}} \newcommand{\Len}{\mathfnfont{Len}} \newcommand{\modtwo}{\mathfnfont{mod2}} \newcommand{\id}{\mathfnfont{id}} \newcommand{\cl}{\mathfnfont{cl}} \newcommand{\proj}[2]{(#1)_{#2}} \newcommand{\vec}[1]{\mathbf{#1}} \newcommand{\bd}{\mathfnfont{bd}} \newcommand{\LAST}{\mathfnfont{LAST}} \newcommand{\SUB}{\mathfnfont{SUB}} \newcommand{\ov}{\overline} \newcommand{\proves}{\vdash} \newcommand{\sequent}{\rightarrow} \newcommand{\monus}{\frac{\cdot}{ }} \newcommand{\bigvw}{\mathop{\mathchoice% {\makebox[0pt][l]{$\displaystyle\bigvee$}\mbox{$\displaystyle\bigwedge$}}% {\makebox[0pt][l]{$\textstyle\bigvee$}\mbox{$\textstyle\bigwedge$}}% {\makebox[0pt][l]{$\scriptstyle\bigvee$}\mbox{$\scriptstyle\bigwedge$}}% {\makebox[0pt][l]{$\scriptscriptstyle\bigvee$} \mbox{$\scriptscriptstyle\bigwedge$}}}\limits} \newcommand{\IFF}{\Leftrightarrow} \newcommand{\AND}{\mathrel{\land}} \newcommand{\OR}{\mathrel{\lor}} \newcommand{\NOT}{\neg} \newcommand{\IMP}{\supset} \newcommand{\DAND}{\wedge\!\!\!\!\wedge} \newcommand{\DOR}{\vee\!\!\!\!\vee} \newcommand{\GN}[1]{\,\!^{\lceil}\!#1\,\!^{\rceil}} \newcommand{\HALF}[1]{\lfloor\frac{1}{2}#1\rfloor} \newcommand{\DIV}[2]{\lfloor\frac{#1}{#2}\rfloor} \newcommand{\LEQ}{\leq_l} \newcommand{\nat}{\mathbb{N}} \newcommand{\EQN}[1]{\begin{eqnarray*}#1\end{eqnarray*}} \newcommand{\EQ}[1]{\begin{eqnarray}#1\end{eqnarray}} \newcommand{\TQ}[1]{\hbox{$#1$}} \newenvironment{proof}% {\medskip \noindent {\it Proof.} }{$\Box$} \newcommand{\ignore}[1]{} \)

Arithmetics within the Linear Time Hierarchy




Chris Pollett

CMAF Talk

Feb. 9, 2024

Introduction

Hierarchies of Bounded Formulas

Bounded Arithmetic Theories

Bounded Arithmetic Definability

Closure Properties

What complexity classes live in $\Delta_0$?

Classes within LINH

Nepomnjascij's Theorem (1970)

Theorem For fixed $k, \epsilon > 0$, $\mbox{LinH}$ contains $\mbox{TISP}(n^k, n^{1-\epsilon})$. So $\mbox{LinH}$ contains $\mbox{SC}$.

Proof. By induction on $k$, show that we can simulate in $\mbox{LinH}$ a TM that operates from some initial configuration for $n^{k(1-\epsilon)}$ steps provided it uses only uses only $n^{1-\epsilon}$ space. The $k=1$ case is true as DLINTIME is in LINH. Assume true for $k$, suppose one has a computation of $n^{(k+1)(1-\epsilon)}$ steps, we could existentially guess a string of length $O(n^{1-\epsilon}\cdot n^{\epsilon})$ that represents the configurations of this computation after steps $0\cdot n^{k\epsilon}, 1\cdot n^{k\epsilon}, 2\cdot n^{k\epsilon}, ..., n^{1-\epsilon}\cdot n^{k\epsilon}$, then verify for each $m$ using the induction hypothesis that the configuration at time $(m+1)\cdot n^{k\epsilon}$ follows from the one at time $m\cdot n^{k\epsilon}$.

Remark. Let $\ell(x) \leq |x|^{\epsilon}$, let $c\cdot|x|/\ell(x)$ for some $c$ bound the length of a string coding a configuration of a machine using $|x|/\ell(x)$ space. Notice the quantifier shape of the $LINH$ predicate representing a computation in $\mbox{TISP}(|x|^{k(1-\epsilon)}, \ell(x))$ would look like:
$$(\exists w_k \leq 2^{c\cdot|x|})(\forall i_k \leq \ell(x)) \cdots (\exists w_1 \leq 2^{c\cdot|x|})(\forall i_1 \leq \ell(x)) [(x,\vec{i}, \vec{w}) \in L]$$ where $L$ is a DLINTIME language. So to show logspace was in $LINH$, $\ell(x)$ would be $|x|$ and the universal quantifiers would all be sharply bounded, bounded by terms of the form $|t(x)|$. To show $\mbox{SC} \subseteq LINH$, the universal quantifiers would all be bounded terms of the form $2^{p(||x||)}$ for some polynomial $p$.

Arithmetics for LINH subclasses

The Theories TLS and TLS'

Observations

Modifying $WSN$ to work without $\#$

EuH and EquH

Fragments of $I\Delta_0$

Conclusion