
On the Finite Axiomatizability of ∀Σ̂b
1(R̂1

2)

Chris Pollett
214 MacQuarrie Hall

Department of Computer Science
San Jose State University

1 Washington Square, San Jose CA 95192
chris@pollett.org

September 3, 2016– Draft

Abstract

The question of whether the bounded arithmetic theories S 1
2 and

R1
2 are equal is closely connected to the complexity question of whether

P is equal to NC. In this paper, we examine the still open question
of whether the prenex version of R1

2 , R̂1
2 , is equal to S 1

2 . We give new
dependent choice-based axiomatizations of the ∀Σ̂b

1-consequences of S 1
2

and R̂1
2 . Our dependent choice axiomatizations give new normal forms

for the ∆̂b
1-consequences of S 1

2 and R̂1
2 . We use these axiomatizations

to give an alternative proof of the finite axiomatizability of ∀Σ̂b
1(S 1

2)

and to show new results such as ∀Σ̂b
1(R′1

3) is finitely axiomatized and
that there is a finitely axiomatized theory, TUC , containing Ŝ 0

2 and
contained in R̂1

2 . On the other hand, we show that our theory for
∀Σ̂b

1(R̂1
2) splits into a natural infinite hierarchy of theories. We give

a diagonalization result that stems from our attempts to separate the
hierarchy for ∀Σ̂b

1(R̂1
2).

Mathematics Subject Classification: 03F30, 68Q15
Keywords: bounded arithmetic, finite axiomatizations

1 Introduction

The theories S 1
2 and R1

2 are two of the more well-studied bounded arithmetic
theories. The Σ̂b

1-definable functions of S 1
2 are known to be P, the polynomial

time computable functions, and those of R1
2 to be the functions in NC,

functions corresponding to uniform poly-size, poly-log depth circuit families.
The question of whether or not these two theories are equal seems to be hard

and connected to the important question of whether the feasibly computable
functions as captured by P correspond to the feasibly parallelizable functions
as captured by NC. Some success has been had in separating weaker bounded
arithmetic theories from S 1

2 . The present paper follows in this tradition and
attempts to characterize the ∀Σ̂b

1-consequences of the prenex version of R1
2 ,

R̂1
2 , in a way that would be useful in separating it from S 1

2 .
The theories S i2 and Ri

2 are formulated over a base theory BASIC , con-
sisting of a finite set of open axioms for the symbols of arithmetic, and add
to this theory either length or length-length induction for Σb

i -formulas, those

formulas which correspond to the class NP for i = 1 or NPΣp
i−1 for i > 1.

Pollett [24] shows that the theory with four lengths induction for prenex Σb
1

formulas (Σ̂b
1 formulas) is strictly weaker than S 1

2 . This was later improved
by Boughattas and Ressayre [3] via a model theoretical approach to three
lengths induction; however, the language of their result no longer has MSP.
For this paper, we will consider the finite axiomatizability of the ∀Σ̂b

1 conse-
quences of the prenex version of R1

2 , R̂1
2 , versus that of S 1

2 . Garĺık [11] has
shown via an ultraproduct construction that R̂1

2 is weaker than R1
2 under

the assumption that one-way permutations exist and are computable in R1
2 ,

but no unconditional separation of these theories is known.
One common approach to separating complexity classes and logical the-

ories is via some kind of diagonalization argument. Even if diagonalization
by itself does not directly succeed, it can sometimes be combined with a
strong “if-pigs-could-fly” hypothesis to provide a separation or lower bound.
An example of this is the research on lower bounds for satisfiability started
by Fortnow [10]. A first step in being able to perform a diagonalization
argument is often to come up with a universal predicate for the functions,
theorems, etc. of the class one is trying to separate from. This is also often
needed when one is trying to show a logical theory is finitely axiomatized.

Finitely axiomatizability results for theories S i2 and Ri
2 for i ≥ 2 were

shown in Kraj́ıček and Pudlák [14] and Pollett [22]. Cook and Kolokolova [9]
show that the ∀Σ̂b

1 consequences of S 1
2 are finitely axiomatized. Their result

was shown via a second-order theory V1-Horn whose theorems are isomor-
phic to these consequences. That paper was part of a larger program begun
by Zambella, Cook, Nguyen, and others to give nice second-order bounded
arithmetic theories for computational complexity classes. We give here a
new proof of this result directly in S 1

2 . It is unknown if the ∀Σ̂b
1 conse-

quences of R1
2 or R̂1

2 are finitely axiomatized, and showing that they are not
could be an approach to separating these theories from S 1

2 .
This paper presents finite axiomatizations of S 1

2 and R′13 that start with

2

the base theory EBASIC , a variant of Buss’ base theory BASIC , (in the
R′13 case, with the extra growth function #3 defined later) and an axiom we
call BITMIN for bit minimization. We show that EBASIC together with
BITMIN is close to capturing all of Ŝ 0

2 in the sense that Ŝ 0
2 can prove this the-

ory, and if we allow a certain kind of unsafe term substitution into a BITMIN
axiom, one can prove any Π̂b

0-LIND axiom. To B := EBASIC +BITMIN
we add a single axiom, UC , a universal term bit comprehension axiom. We
show TUC := B+UC contains Ŝ 0

2 and is contained in S 1
2 and R1

2 . We show
TUC together with a length bounded dependent choice principle exactly
captures ∀Σ̂b

1(S 1
2). The main work in this result is showing that this the-

ory can intentionally reason about the usual functional closure properties
needed to carry out a Buss witnessing argument for conservativity. If rather
than consider our length-bounded dependent choice principle, we work in a
language with the growth function #3 and add a (length length) bounded
dependent choice principle, then we get a theory for the ∀Σ̂b

1 consequences
of R′13 := R̂1

3+UC . Given our definitions R̂1
3 ⊆ R′13 ⊆ R1

3. To get the R′13
result mentioned above, we have to be a little more careful in our handling of
the universal predicates that we consider. This is because with just length-
length-bounded Σ̂b

1 induction and not Σ̂b
1 bounded collection, it is hard to

express the sharply bounded µ-operator in a way that will both work in our
witnessing arguments and in our universal predicates.

When we remove #3 from the language, ∀Σ̂b
1(S 1

2) is finitely axiomatiz-
able, but ∀Σ̂b

1(R̂1
2) is axiomatizable as Ŝ 0

2 together with a union over k of in-
stances of (length-length)k bounded dependent choice principles. Although
at this point we cannot show this hierarchy over k is infinite, we are able
to get a normal form for the ∆̂b

1 consequences of S 1
2 and R̂1

2 based on these
principles. We argue these normal forms lend themselves to diagonalization
arguments which we feel might be a component to an argument which does
separate these theories. We prove a very weak diagonalization result which
can be viewed as an analog of a combination time-space hierarchy based
on the number of # symbols appearing in terms in our normal forms. Un-
like usual hierarchy results of languages which are framed in terms Turing
machines, our hierarchy is somewhat interesting as it has a more algebraic
flavor.

This paper is organized as follows: In the next section we present the
bounded arithmetic theories S i2, Ri

2 and their prenex variants. We then
present the BITMIN axiom, our bounded dependent choice principles, and
our Ŝ 0

2 result. We next do a witnessing argument to show ∀Σ̂b
1 conservativity

results between our bounded dependent choice theories and S 1
2 and R̂1

2 .
This argument also implies our ∆̂b

1 normal form results. We then prove

3

our finite axiomatization results. Finally, we conclude the paper with our
diagonalization result.

2 Preliminaries

The reader interested in an introductory treatment of bounded arithmetic
can consult any of the books: Buss [4], Hájek and Pudlák [12], Kraj́ıček [13],
or Cook and Nguyen [6]. In this section, we fix the notations and definitions
needed for this paper. To start the language L2 consists of 0, S, +, x .− y :=
max(0, x − y), ‘·’, MSP(x, y) := b x2y c, |x|, x#y := 2|x||y| and ≤. MSP is
perhaps the least familiar of these functions, it roughly shifts and removes
the y least significant bits from x. The base theory, EBASIC , is as defined
in Pollett [23] and consists of the axioms for BASIC from Buss [4], together
with a total of seven additional axioms regarding .− (the axioms for these
as in Allen [1]), MSP, and block of bits projections. These seven additional
axioms are used to show finite pairings and block of bits projections work
as expected in this base theory. Let L3 be L2 expanded with an additional
function symbol #3 intended to mean x#3y := 2|x|#|y|. We define EBASIC 3

to be EBASIC together with additional axioms |x#3y| = S(|x|#|y|) and
z < x#3y ⇔ |z| < |x#3y|. It should be pointed out that the theories S i2 and
Ri

2 as defined in the papers where they were originally introduced can prove
the EBASIC axioms that were not in these original definitions [23], the
added EBASIC axioms are only important for some of the weaker theories
we consider.

For an L2-formula, a quantifier of the form (∀x ≤ t) or (∃x ≤ t) where
t is a term not containing x is called a bounded quantifier. A quantifier of
the form (∀x ≤ |t|) or of the form (∃x ≤ |t|) is called sharply bounded and a
formula is sharply bounded if all its quantifiers are. The bounded formulas
of L2 are classified into hierarchies Σb

i and Πb
i by counting alternations

of quantifiers, ignoring sharply-bounded quantifiers. Formally, a SIB0
(Πb

0) formula is one in which all quantifiers are sharply-bounded. The Σb
i+1

(Πb
i+1) formulas contain the Σb

i ∪ Πb
i formulas and are closed under ¬A,

A ⊃ B, B ∧ C, B ∨ C, sharply-bounded quantification, and bounded
existential (universal) quantification, where A is Πb

i+1 (Σb
i+1) and B and C

are Σb
i+1 (Πb

i+1). In Pollett [23] prenex hierarchies of formulas Σ̂b
i and Π̂b

i

were developed. Let Σ̂b
−1 = Π̂b

−1 be the open-formulas. A formula is Σ̂b
i

(resp. Π̂b
i) if it is in Σ̂b

i \ Π̂b
i−1 (resp. Π̂b

i \ Σ̂b
i−1) and consists of exactly

i + 1 bounded quantifiers, the innermost being sharply bounded, followed
by an open matrix. If a theory is strong enough to prove the BBΣ̂b

i axioms

4

(defined below), then it can be proven in this theory [23] that any Σb
i -

formula is equivalent to a Σ̂b
i -formula. A similar result holds for Πb

i and
Π̂b
i -formulas. Sometimes the structure of Σ̂b

i and Π̂b
i will be a little too fixed

for our purposes. Given a class of formulas Ψ, we write LΨ for those formulas
which can be made into Ψ formulas by adding “dummy” quantifiers. For
example, we are interested in classes like LΣ̂b

i . We will also write expressions
like EΨ (resp. AΨ) to indicate a formula consisting of a bounded existential
(resp. universal) quantifier followed by a Ψ-formula. We write Eτ or Aτ if
we want to indicate that the quantifier has a bound coming from terms in
τ .

We formulate our theories in the sequent calculus deduction system LKB
of Buss [4] which extends the usual sequence calculus LK to directly handle
bounded quantifiers. We consider theories where we extend the different
EBASIC axioms above by various inductions schemas:

Definition 1 Let τ be a collection of 0 or 1-ary terms. A Ψ-INDτ inference
is an inference:

A(b),Γ→ A(S(b)),∆

A(0),Γ→ A(`(t(a))),∆

where b is an eigenvariable and must not appear in the lower sequent, A is
a Ψ-formula, ` is in τ , and t is a term in the language.

The formulas A in the above we call the principal formulas of the infer-
ence; all other other formulas are considered side formulas. Define |x|0 = x,
and |x|m+1 = ||x|m|. Let id(x) := x be the identity function. The nota-
tions IND , LIND , LLIND will be used instead of IND{id}, IND{|id|}, and
IND{||id||}. BASIC formulated in LKB extended by Ψ-INDτ inferences,
without any restrictions on cut, proves the same theorems as BASIC to-
gether with the following Ψ-INDτ axioms [4],[23], IND`

A:

A(0) ∧ (∀x)(A(x) ⊃ A(Sx)) ⊃ ∀xA(`(x)).

where A is from Ψ and ` is from τ . When referring to a particular induction
axiom, we will write LINDA for IND`

A when ` = |id| and LLINDA when
` = ||id||.

Definition 2 (i ≥ 0) The theories T i
2, S i2, Ri

2, T i,τ
2 are BASIC +Σb

i -IND,
BASIC +Σb

i -LIND, BASIC +Σb
i -LLIND, and BASIC +Σb

i -INDτ respectively.
We define S2 := ∪iS i2.

Let T̂ i
2, Ŝ i2, R̂i

2, T̂ i,τ
2 denote the theories above but where we only have

the defining induction scheme for Σ̂b
i -formulas. By Pollett [23], for i > 0 for

5

T̂ i
2 = T i

2 and Ŝ i2 = S i2; however, Ri
2 and R̂i

2 are not known to be the same
theory. It is also known for i ≥ 0 that

S i2 ⊆ T i
2 ⊆ S i+1

2 and R̂i
2 ⊆ Ri

2 ⊆ S i2 ⊆ R̂i+1
2 .

In the remainder of this section we recall the pairing function from Clote
and Takeuti [8], and the coding scheme from Pollett [23]. Pairing and coding
will be needed to present our collection axioms.

Definition 3 Given a term t ∈ L2 we define a monotonic term t+ as fol-
lows: If t is constant or a variable, then t = t+. If t is f(s), where f is
a unary function symbol, then t+ is f(s+). If t is s1 ◦ s2 for ◦ a binary
operation other than .− or MSP , then t+ is s+

1 ◦ s
+
2 . Lastly, if t is s1

.− s2

or MSP(s1, s2), then t+ is s+
1 .

By induction on the complexity of t, BASIC + open-LIND can show t+ is
monotonic, and t ≤ t+. Let k > 0 be a fixed natural number. Below are
some frequently used L2-terms:

x0 := 1

xk := xk−1

2|x|
0

:= 1

2|x|
k

:= 2|x|
k−1

#x

mod2(x) := x .− 2 · b1
2
xc

BIT(i, x) := mod2(MSP(x, i))

2min(x,|y|) := MSP(2|y|, |y| .− x)

cond(x, y, z) := (1 .− x) · y + (1 .− (1 .− x)) · z
LSP(x, i) := x .− 2min(i,|x|) ·MSP(x, i)

BLK(a, b, w) := MSP(LSP(w, a+ b), a)

βa(i, w) := BLK(i · a, a, w)

For any polynomial p, we can define a term 2p(|x|) using the first four defi-
nitions above. Intuitively, LSP(x, i), the least significant part of x, returns
the last i bits of x, BLK(a, b, w) projects out a bits from w starting with
the bth bit, and βa(i, w) projects out the ith block of a many bits from w.
Given a sequence of values bi with bi < 2|a|, we say a number w codes the
sequence 〈b0, . . . , b`−1〉 with block size |a| if for all i, β|a|(i, w) = bi. Notice

a#s = 2|a||s| is a bound on a number w coding a sequence of length ` = |s|
with each item bi < 2|a|. Over EBASIC using length induction, one can

6

show that any two numbers coding |s| many values bi < 2|a| must agree on
their lower order |a||s| bits.

We will make use of a pairing operation that does not rely on an explicitly
mentioned bound. Let B = 2|max(x,y)|. Pairs are coded as 〈x, y〉 := (B +
y) · 2B + (B + x). The terms (w)1 := βb 1

2
|w|c .−1(0, βb 1

2
|w|c(0, w)) and (w)2 :=

βb 1
2
|w|c .−1(0, βb 1

2
|w|c(1, w)), project out the left and right coordinates from an

ordered pair. To check if w is a pair we use the formula

ispair(w) := BIT(b1
2
|w|c .− 1, w) = 1 ∧ 2 · |max((w)1, (w)2)|+ 2 = |w| .

Definition 4 For a class of formulas Ψ, the collection inference BBΨ (some-
times called Ψ-replacement) is

Γ→ (∃y ≤ t(x))A(x, y),∆

Γ→ (∃w ≤ 2|t+(|s|)|(|s|+1))(∀x ≤ |s|)β|t+(|s|)|(x,w) ≤ t(x) ∧ A(x, β|t+(|s|)|(x,w)),∆

for each A(x, y) ∈ Ψ.

Pollett [23] gives an alternative formulation of Ri
2 as EBASIC +Σ̂b

i -
LLIND+BBΣ̂b

i which we will make use of in a later section.

3 Σ̂b
1 sub-theories of S 1

2 and R̂1
2

We are now in a position to define our sub-theories for the ∀Σ̂b
1-consequences

of S 1
2 and R̂1

2 . In the following, we will tend to use Ŝ 0
2 as our base theory,

however, later when we try to get our finite axiomatization results, we will
use EBASIC together with the BITMIN axiom:

Definition 5 BITMIN is the axiom

(∃i ≤ |a|)LEASTON(i, a)

where LEASTON(i, a) is:

(∀j < i)[(i < |a| ⊃ BIT(i, a) = 1 ∧ BIT(j, a) = 0) ∧
(i = 0 ⊃ a = 1) ∧ (i = |a| ⊃ (∀k < |a|)BIT(k, a) = 0)].

It turns out that EBASIC +BITMIN is very closely related to the theory
Ŝ 0

2 . In order to see this, we need the following lemma.

Lemma 1 Let A be an open formula. There is a term KA such that

EBASIC ` KA = 1⇔ A and EBASIC ` KA = 0⇔ ¬A.

7

Proof. This is proven by induction on the logical complexity of the formula
A. For the purposes of our argument, we will treat A ⊃ B as an abbreviation
for ¬A ∨ B and A ∨ B as an abbreviation for ¬(¬A ∧ ¬B). Given an atomic
formula s ≤ t, we can define the term Ks≤t as 1 .− ((s + 1) .− t). Using the
axioms for + and .−, EBASIC proves this formula is non-zero if and only if
the inequality s ≤ t holds. For the non-base case, if A is an open formula
its top logical connective will be one of ∧ or ¬. By defining K∧(b, c) := b · c
and K¬(b) := 1 .− b, and using the induction hypothesis on subformulas, we
can naturally get a term KA which EBASIC proves is non-zero if and only
if A holds. �

Given terms s(c, b), t(i, |c|, s(c, b), b), let BITMINs,t denote the axiom
where we “roughly” substitute t for the free variable a in BITMIN and
where we use s(c, b) rather than |a| for the number bits we are doing min-
imization over. That is, BITMINs,t is (∃i ≤ |s(c, b)|)LEASTON(i, t) where
LEASTON(i, t) is

(∀j < i)(i < |s(c, b)| ⊃ BIT(i, t(i, |c|, s(c, b), b)) = 1 ∧ BIT(j, t(j, |c|, s(c, b), b)) = 0) ∧
(i = 0 ⊃ t(0, |c|, s(c, b), b) = 1) ∧ (i = |s(c, b)| ⊃ (∀k < |s(c, b)|)BIT(k, t(k, |c|, s(c, b), b)) = 0).

Lemma 2

1. Ŝ 0
2 proves BITMIN, and for any term s(c, b), t(i, |c|, s(c, b), b), it proves

BITMINs,t.

2. Given any Π̂b
0-formula A, there are terms sA(c, b), tA(i, |c|, s(c, b), b)

such that
EBASIC + BITMINsA,tA ` LINDA.

Proof. For (1), we note BITMIN is just a special case of BITMINs,t where
s(c, b) := b and t(i, |c|, s(c, b), b) := b. So it suffices to show Ŝ 0

2 proves
BITMINs,t for arbitrary terms s(c, b), t(i, |c|, s(c, b), b). To do this, consider
the Π̂b

0-formula B(j, c, b):

(∀k < |s(c, b)|)(k < j ⊃ BIT(k, t(k, |c|, s(c, b), b)) = 0).

EBASIC provesB(0, b). So by Π̂b
0-LIND , ∃j < |d|(B(j, c, b) ∧ ¬B(S(j), c, b))

or
∀j < |d|(BIT(j, t(j, |c|, s(c, b), b)) = 0).

where d is a free variable that we may substitute with s(c, b). If we do this,
The i asserted by BITMINs,t is S(j) in the former case and i = |s(c, b)| in
the latter case. This shows Ŝ 0

2 proves BITMINs,t.

8

For (2), we make use of the term KB given by Lemma 1. Let A be
Π̂b

0-formula. By adjusting the sharply bounded term, we can show any
Π̂b

0-formula is equivalent to one where the bounded quantifier uses a strict
inequality. So we assume A is of the form ∀m < |t(j, b)|B(j,m, b), where
B is open. We want to show EBASIC +BITMINsA,tA proves LINDA for
some L2 terms sA, tA. Here j is the induction variable. The conclusion of
LINDA is equivalent to ∀m < |t(|c|, b)|B(|c|,m, b) for some free variable c.
Take sA(c, b) := 2 ·max(c, t+(|c|, b)), and to shorten things further, write d
for sA(c, b). Since we have the MSP function but not the general division
function in the language, it will be convenient to work with 2||d|| rather than
|d|. We will define a formula B′(i, b, d) where we imagine i as running over
values less than (2||d||)2, 2||d|| blocks of 2||d|| numbers. We can use the terms
BNum(i, d) := b i

2||d||
c and Pos(i, d) := i .− 2||d|| · b i

2||d||
c to determine which

block and which position in that block i has. We imagine BNum(i, d) as
playing the role of j in the original formula B and Pos(i, d) as playing the
role of m. Given this, define B′(i, |c|, d, b):

(Pos(i, d) < |t(BNum(i, d), b)| ∧ B(BNum(i, d), Pos(i, d), b)) ∨
Pos(i, d) ≥ |t(BNum(i, d), b)| ∨ BNum(i, d) ≥ |c|

Since we have defined bit minimization to hunt for the least on bit, let
B′′ := ¬B′. Write 2min(i,(2||d||)2) for the more complicated substitution in-
stance of 2min(x,|y|), given by the expression 2min(min(i,(2||d||)2),|d#d#d|). Let
tA(i, |c|, sA(c, b), b) = tA(i, |c|, d, b) be 2min(i,(2||d||)2) ·KB′′(i, |c|, d, b) and con-

sider BITMINsA,tA . The 2min(i,(2||d||)2) factor in the previous occurs because
in the bit minimization axiom we look at the ith bit of tA(i, b) to see if it
is 0 or 1; whereas, KB′′(i, |c|, d, b) by itself only returns 0 or 1 and so will
typically have nothing at its ith bit. Unwinding our definitions in EBASIC ,
we have for 0 ≤ i < 2||d||, LEASTON(i, tA) implies ¬A(0, b). Similarly,
for 2||d|| ≤ i < (2||d||)2, LEASTON(i, tA) implies ∃jA(j, b) ∧ ¬A(S(j), b)
for j = BNum(i, d) − 1, and for any greater i, LEASTON(i, tA) implies
∀j < |d|A(j, b), so LEASTON(i, tA) implies ∀m < |t(|c|, b)|B(|c|,m, b).
Hence, BITMINsA,tA over EBASIC implies LINDA. �

To define the bounded dependent choice axioms which will serve as a
basis for the new theories considered in this paper, we define the equation
a = µj < |b|(t(j, c) > 0) for some term t to mean the formula:

(∀i ≤ |b|)[((a < |b| ∧ i < a) ⊃ t(a, c) > 0 ∧ t(i, c) = 0)

∧ (a = |b| ⊃ (∀k < |b|)(t(k, c) = 0))]

It asserts that a is the least value of j less than |b| such that t(j, c) > 0

9

or a = |b| and for all values of j less than |b|, t(k, c) = 0. This sharply
bounded µ-operation is one of the functions definable in S 0

2 . The theories
we are about to give extend S 0

2 with the ability to define certain kinds of
arithmetic computation sequences where one of the allowed operations to
perform in one step is based on this µ-operation. By pulling the sharply
bounded formulas to the front and using pairing, the above formula can be
made into a Π̂b

0-formula.

Definition 6 Let τ be a set of 1-ary nondecreasing terms `(x) ≤ |x|, let
k ∈ N. We write τ -BDC for the theory consisting of Ŝ 0

2 together with
axioms BDC [`, tinit, tsel, trec, tµ, b] of the form:

(∃w ≤ 2`(b)·(|b|+1))(∀i < `(b))[(β|b|(0, w) = min(tinit(a), b) ∧
(tsel(β|b|(i, w), i,a) > 0 ⊃ β|b|(i+ 1, w) = min(trec(β|b|(i, w), i,a), b)) ∧
(tsel(β|b|(i, w), i,a) = 0 ⊃ β|b|(i+ 1, w) = µj < |b|(tµ(j, β|b|(i, w),a) > 0))].

where ` ∈ τ and tinit, tsel, trec, tµ are L2 terms.

Here BDC stands for bounded dependent choice, the name coming from the
discussion in Clote Takeuti [8] concerning the set theory principle which
inspired their weak successive nomination (WSN) rule. In English, a BDC
axiom roughly asserts the existence of a computation sequence of length
`(b) made up of blocks of length |b|, the first block having value tinit(a), and
subsequent blocks being computed from previous ones as the minimum of a
maximum width value, b, and either trec or µj < |b|(tµ > 0) applied to the
previous block. The term tsel is used to select between these two cases. Let
id denote the identity function. We will show that the ∀Σ̂b

1-consequences
of S 1

2 and R̂1
2 correspond to {|id|}-BDC and ∪m{||id||m}-BDC respectively.

Towards that end, we first observe the following relationships between our
theories.

Lemma 3

1. {||id||}-BDC ⊆ {||id||2}-BDC ⊆ · · · ∪m{||id||m}-BDC ⊆ {|id|}-BDC .

2. ∪m{||id||m}-BDC ⊆ R̂1
2 and {|id|}-BDC ⊆ S 1

2 .

Proof. For (1), given a term trec(y, i,a), using the cond function we can
make a term t′rec(y, i,a) which is equal to trec for i ≤ `(b) and is equal to y
otherwise. To ensure only t′rec is used for i > `, we can use cond to define
t′sel, a version of tsel, which is equal to tsel for i ≤ ` and is 1 otherwise. Let
t′µ := tµ. So if ` = ||id||m, given an instance of {||id||m}-BDC that uses

10

terms tinit, tsel, trec and tµ, we can in this way create an equivalent instance
of {||id||m+1}-BDC using tinit, t

′
sel, t

′
rec and t′µ.

For (2), from Theorem 22 (i) in Pollett [23] it is known R̂1
2 can prove

Σ̂b
1 induction up to terms of the form ||t||m. Using this, given an instance

A(||b||m) := BDC [||id||m, tinit, tsel, trec, tµ, b] of a {||id||m}-BDC axiom, R̂1
2

can prove A(0) as this just asserts there exists a w ≤ 2||b||
m·(|b|+1) such

that β|b|(0, w) = tinit(a), and so one could take w = tinit(a) to satisfy this.

Also, R̂1
2 proves A(j) ⊃ A(S(j)), as a witness for A(S(j)) could be had by

concatenating onto a witness w for A(j) either the minimum of b and trec or
tµ depending on whether tsel was 0 or not. Hence, by using ||id||m induction,
R̂1

2 can prove A(||b||m). The S 1
2 result is proven in a similar fashion. �

Let τ be a set of 1-ary nondecreasing terms, `(x) ≤ |x| and let r(a) be
an L2 term. If we view w as a sequence of |r+|-bit long blocks. To get the
last block of bits from this sequence, define

LAST(w, r) = min(β|r+|(d|w|/|r+|e − 1, w), r).

We say a function f(a) = y in a bounded arithmetic theory T is τ -bounded
choice defined if there is a formula ψf (w,a, r) of the form:

(∀i < `(r+))[(β|r+|(0, w) = min(tinit(a), r) ∧
(tsel(β|r+|(i, w), i,a) > 0 ⊃ β|r+|(i+ 1, w) = min(trec(β|r+|(i, w), i,a), r)) ∧
(tsel(β|r+|(i, w), i,a) = 0 ⊃ β|r+|(i+ 1, w) = (µj < |r+|)(tµ(j, β|r+|(i, w),a) > 0))].

where ` ∈ τ , r(a) and tinit(a), tsel(v, i,a), trec(v, i,a), tµ(j, v,a) are terms,
and if there is a term OUTf (v,a), computing from the last block v of w the
output of f , such that T proves

∀a∃!y ≤ 2|r
+|∃!w ≤ 2`(r

+)·(|r+|+1)ψf (w,a, r) ∧ OUTf (LAST(w, r),a) = y

and

N |= ∃w ≤ 2`(r
+)·(|r+|+1)ψf (w,a, r) ∧ OUTf (LAST(w, r),a) = f(a).

We call r the width term of the definition. It puts an upper bound on the
values which can appear in the sequence w. The term ` governs the length
of the sequence, so we call `(r+) the length term of the definition.

We will prove our conservativity results using a witnessing argument. To
do this, we first develop some closure properties for the class of functions
τ -BDC can τ -bounded choice define.

Lemma 4

11

1. If τ -BDC can τ -bounded choice define a function f using width term r
and the term q > r and q+ > r+ for all inputs, then it can τ -bounded
choice define the function f using q as the width term.

2. If τ -BDC can τ -bounded choice define a function f using length term
` and the term `′ ∈ τ , for all inputs `′ > `, then it can τ -bounded
choice define the function f using `′ as the length term.

Proof. For (1), suppose f is τ -bounded choice defined via terms r, tinit, tsel,
trec, and tµ. Let w be the witness string one gets and let OUTf be the term
used to project out f from w. Let t′rec be the term trec(min(y, r), i,a). Let
w′ be a witness to ψf which exists by bounded dependent choice. Using Π̂b

0-
LIND , τ -BDC can show for each i ≤ `(r+) that β|q+|(i, w

′) = β|r+|(i, w). We
can define t′′rec from t′rec and t′′µ from tµ, using cond so that for for i < `(r+)
that their output is as before, and for i ≥ `(r+) their effect on the sequence
is an identity step. This handles that `(q+) is potentially larger than `(r+).
Given the above, we can use the same OUTf to τ -bounded choice define f .
The same idea of using cond can also be used to show (2). �

Lemma 5 Let τ be a set of 1-ary nondecreasing terms such that for any
terms `, `′ ∈ τ there is a term `′′ such that 1 + ` + `′ ≤ `′′ for inputs larger
than some n ∈ N, provably in τ -BDC . Then τ -BDC proves its τ -bounded
choice defined functions are closed under composition.

Proof. Let f and g be τ -bounded choice defined in τ -BDC via terms rf ,
tf,init, tf,sel, tf,rec, tf,µ, OUTf , `f , rg, tg,init, tg,sel, tg,rec, tg,µ, and OUTg, `g
where `f and `g are from τ . Let `f◦g ∈ τ be such that 1 + `f + `g ≤ `f◦g
for inputs larger than some n. Define tf◦g,init := tf,init(a) and rf◦g :=
r+
g + OUT+

g + r+
f (OUT+

g). Notice rf◦g = rf◦gs
+ follows from this definition.

This is useful for when we later try to use a BDC axioms which has a single
bounding parameter b where bounded choice makes use of both bounding
terms r and r+. Let op be one of sel, rec, or µ. Using cond, we can define a
term tf◦g,op which outputs, the minimum of tg,op and rg when i ≤ `g, then
for i = `g + 1 either outputs tinit,g where OUTg(LAST(β`g |r+

f◦g |
(0, w), rf))

has been substituted in the slot being composed or 1 depending of if op
is rec or op is µ or sel, then outputs the minimum of tf,op(i − `g − 1) and
rf (OUTg(LAST(w, r))) for `g+1 < i ≤ 1+`f +`g. The factor β`g |r+

f◦g |
(0, w)

corresponds to that part of the computation sequence w computing g. Using
these tf◦g,op, `f◦g, and OUTf in the definition of τ -bounded choice define,

12

we define the composition for inputs greater than n ∈ N. To handle values
less than or equal to n, note that in these cases the f ◦g is a finite number of
compositions of tg,op, OUTg, tf,op, OUTg. This could actually be carried out
by a term t′ in the language. So we take OUTf◦g to be the term which uses
cond to check if i ≤ n and if so computes t′; otherwise, it computes OUTf .
Using an BDC [`f◦g, tf◦g,init, tf◦g,sel, tf◦g,rec, tf◦g,µ, rf◦g] axiom, τ -BDC can
prove the existence of the computation sequence satisfying the τ -bounded
choice defining Π̂b

0-formula ψf◦g. Given such a computation sequence wf◦g,
as well as sequences wf , wg satisfying ψf and ψg, τ -BDC can prove using

Π̂b
0-LIND that the output of the `g + 1 step of wf◦g matches the value of g

and that the final output of f ◦ g computed via our definition matches value
as computed from wg, and hence, also show uniqueness. �

Lemma 6 Let cl denote the closed terms in the language. Let s be a term,
and let A be a Π̂b

0-formula. Ŝ 0
2 can show that s is cl-bounded choice defined.

Further, Ŝ 0
2 can cl-bounded choice define (µy < |a|)[s(y, a,b) > 0] and KA

(the graph of A).

Proof. Given a term s(a), to show it can be cl-bounded choice defined, let
ψs be

(∀i < 2)[β|s+|(0, w) = min(s(a), s(a)) ∧
(S0 > 0 ⊃ β|s+|(i+ 1, w) = min(s(a), s(a))) ∧
(S0 = 0 ⊃ (µj < |s+|)(s(a) > 0))].

I.e., tsel := S(0), trec = tµ := s(a) and r = s. Then just take OUTs := s.
Notice the term S(0) is always greater than 0, so only the first clause ever
applies. Notice also Outs is allowed to ignore the LAST term and just
calculate based on the inputs.

To define f := (µy < |a|)[s(y, a,b) > 0], let ` = 2, r := a, tinit := tsel :=
0, trec := 0, and tµ(j, a,b) := s(j, a,b). Finally, set OUTf (v, a,b) := v.
So a witness string w of length 2 will code a sequence beginning with 0
followed (µy ≤ |a|)[s(y, a,b) > 0], so OUTf (LAST(w, a), a,b) = (µy <

|a|)[s(y, a,b) > 0], the desired value. Ŝ 0
2 can prove a witness string exists

since in this case ` is a closed term and so it can build w inductively as
it only has to do so for finitely many steps. It uses the LIND axioms to
construct the minimization for the next step after the first step.

Next given a Π̂b
0-formula A = (∀y ≤ |s(a)|)B(y,a), to define KA, we first

let KB be the term for B from Lemma 1. Using Lemma 5, we can define
KA as K=((µy < |s(a)| + 1)[KB(y,a) > 0], |s(a)| + 1) where K= is defined
in terms of the K≤ and K∧ we defined in Lemma 1. �

13

Definition 7 A function f is defined by τ -bounded primitive recursion,
BPRτ , from functions g, h, t, and r if

F (0, x) = g(x)

F (n+ 1, x) = min(h(n, x, F (n, x)), r(n, x))

f(n, x) = F (`(t(n, x)), x)

for some terms r, t and ` ∈ τ .

Lemma 7

1. {|id|}-BDC proves its {|id|}-bounded choice defined functions are closed
under BPR{|id|}.

2. ∪k{||id||k}-BDC proves its ∪k{||id||k}-bounded choice defined func-

tions are closed under BPR∪k{||id||
k}.

Proof. Both of these statements are proven in essentially the same way,
so we show only the harder second statement. For (2), let f be defined by

BPR{||id||
k} for some fixed k > 0 via ∪m{||id||m}-bounded choice defined

functions g, h, terms t and r, and where the ` term in the recursion is
||id||k. Assume g and h are ∪m{||id||m}-bounded choice defined via tg,init,
tg,sel, tg,rec, tg,µ, OUTg, `g := ||id||k′ , th,init, th,sel, th,rec, th,µ, and OUTh,
`h := ||id||k′′ . Using Lemma 4, without loss of generality, we assume that k =
k′ = k′′, i.e., that ` = `g = `h. The idea is to unwind the bounded primitive
recursion as a sequence of compositions and use an argument similar to
Lemma 5. We will use the power of 2, 2k|||id|||, which satisfies for inputs
greater than 0: 2 · ||id||k ≥ 2k|||id||| ≥ so we can use MSP rather than division
in what follows. Pick `f ∈ ∪m{||id||m} such that

`f := ||id||k′′′ >= (||id||k+1)+(||id||k+1) ·2k|||id||| = (||id||k+1)(2k|||id|||+1)

for all inputs larger than some fixed natural number. The first ||id||k + 1 in
the above definition comes from the length needed to handle the computation
of g, the remaining (||id||k + 1) ·2k|||id||| factor comes from the length needed
to compute the recursions made with h. Let

rf := r+(||t(n, x)||k, x) + r+
g + r+

h + OUT+
g (r+

g) + OUT+
h (r+

h).

So rf will be larger than any of the maximum values r, r+
g , r+

h , OUTg and
OUTh used in any of the intermediate compositions needed to unwind the

14

recursion. Also, notice rf = r+
f . Using Lemma 4 (1), we can ∪m{||id||m}-

bounded choice define g, h, using rf rather than rg and rh. Set tf,init :=
tg,init. Let op be one of sel, rec, µ. Using cond, we can define a term tf,op
whose output depends on a fixed list of cases (we suppress arguments of
terms which do not change):

1. For i ≤ ||r+
f ||

k, it outputs the minimum of tg,op and rg.

2. For i = ||r+
f ||

k+1, it either outputs th,init with OUTg(LAST(β`g |r+
f |

(0, w), rf))

appropriately substituted, or 1, depending on whether op is rec or op
is µ or sel.

3. For ||r+
f ||

k + 1 < i ≤ (||r+
f ||

k + 1)(2k|||r
+
f ||| + 1), let j abbreviate b(i −

||r+
f ||

k − 1)/2k|||r
+
f |||)c.

(a) For i such that (j + 1) · (`h + 1) < i ≤ (j + 1) · (`h + 1) + `h, it
outputs the minimum of th(i .− j · (`h + 1)) and rh(i .− j · (`h+ 1)).

(b) For i = (j+1)·(`h+1), it outputs the minimum of OUTh(LAST(β`h|r+
f |

(j+

1, w), rh)) and r(j).

(c) For values i, (j + 1) · (`h + 1) < i ≤ (j + 1) · 2k|||id|||, let tf,op be
the identity function.

4. For i > (||r+
f ||

k + 1)(2k|||r
+
f ||| + 1), let tf,op be the identity function.

Notice in the above, `g · |r+
f | := ||r

+
f ||

k · |r+
f | and `h · |r+

f | := ||r
+
f ||

k · |r+
f | are

used in β to project out the whole subsequences corresponding to computing
g or one application of h, then LAST is applied to get the final element of
this subsequence. Using

BDC [`f , tf,init, tf,sel, tf,rec, tf,µ, r
+
f],

∪k{||id||k}-BDC can prove the existence of the computation sequence wf
satisfying the {`f}-bounded choice defining, Π̂b

0-formula ψf corresponding
to the terms `f , tf,inittf,sel, tf,rec, tf,µ, r

+
f . Given wf , as well as the sequences,

wg, wh,j , satisfying ψg and ψh (wh,j correspond to h taking as the input of

the j step of the recursion), ∪k{||id||k}-BDC can prove using Π̂b
0-LIND that

the output of the `g + 1 step of wf matches the value of g, the interim j
steps correspond to wh,j and that the final output of f computed via our
definition matches the value the value as computed from wh, `. �

15

4 ∀Σ̂b
1-conservativity

In this section, we give a witnessing argument to establish ∀Σ̂b
1-conservativity

between the theories {|id|}-BDC and ∪k{||id||k}-BDC and S 1
2 and R̂1

2 . To
begin we introduce our witness predicate as follows:

If A(a) ∈ LΠ̂b
0, define WITA(w,a) := w = 0 ∧ A(a).

If A(a) is (∃x ≤ t(a))B and A ∈ Σ̂b
1, define WITA(w,a) := w ≤ t(a) ∧

B(w,a).
Finally, if A(a) is (∃x1 ≤ t1)(∃x2 ≤ t2)B and A ∈ EΣ̂b

1, define

WITA(w,a) := ispair(w) ∧ β(1, w) ≤ t1 ∧ β(2, w) ≤ t2 ∧
B(β(1, 2), β(2, w),a).

Thus, if A ∈ LEΣ̂b
1 then WITA is equivalent in Ŝ 0

2 to a Π̂b
0-formula.

The witness predicate above is simplified from Buss [4]. The simplification
arises because we are in the prenex setting. From the definition of witness
the next useful properties follow:

Lemma 8 If A(a) ∈ LEΣ̂b
1, then:

(a) Ŝ 0
2 `WITA(w,a) ⊃ A(a).

(b) There is a tA so that Ŝ 0
2 ` A(a)⇔ (∃w ≤ tA(a))WITA(w,a).

(c) For tA, Ŝ 0
2 `WITA(w,a) ⊃ w ≤ tA.

Proof. (a) This statement is immediate from the definition of WITA.
(b) If A ∈ Σ̂b

1 then tA is just the bounds on the outermost existential quan-
tifier. Otherwise, if the outermost two existential quantifiers are bounded
by t1 and t2, their pair is bounded by 22·(|max(t1,t2)|+1).
(c) Follows from (b) and the definition of WITA. In particular, the definition
of ispair forces any pair for a witness to be unique. �

As the deductive system of our theories is the sequent calculus LKB
of Buss [4], we need to extend our witness predicate definition to cedents.
Given a cedent Γ = {A1, . . . , An}, we write ∧ Γ (resp. ∨ Γ) to denote the
conjunction (resp. disjunction) of its formulas. Let w = 〈〈w1, · · · , wn〉〉
denote pairings of the form 〈w1, 〈w2, · · · , 〈wn−1, wn〉 · · · 〉〉.

We define WIT∧Γ(w,a) (resp. WIT∨Γ(w,a)) by induction:

1. If Γ = ∅, define WIT∧Γ(w,a) (resp. WIT∨Γ(w,a)) to be 0 = 0 (resp.
¬(0 = 0)).

16

2. If Γ = {A}, define WIT∧Γ(w,a) and WIT∨Γ(w,a) to be WITA(w,a).

3. If Γ = {A1, . . . , An}, let Γ′ be {A2, . . . An} and set WIT∧Γ(w,a) (resp.
WIT∨Γ(w,a)) to be
WITA1(β(1, w),a) ∧WIT∧Γ′(β(2, w),a),
(resp. WITA1(β(1, w),a) ∧ w1 ≤ tA1) ∨WIT∨Γ′(β(2, w),a)).

Both WIT∧Γ and WIT∨Γ are equivalent to Π̂b
0-formulas in Ŝ 0

2 .

Lemma 9 Let Γ,∆ be cedents of LEΣ̂b
1-formulas with free variables a.

There is a term tΓ such that Ŝ 0
2 ` WIT∧Γ(w,a) ⊃ w ≤ tΓ and Ŝ 0

2 `
WIT∨Γ(w,a) ⊃ w ≤ tΓ.

We also have

Ŝ 0
2 ` (∃w ≤ tΓ)WIT∧Γ(w,a)→ (∃w ≤ t∆)WIT∨∆(w,a)

if and only if Ŝ 0
2 ` Γ→ ∆.

Proof. This follows from the definition of witness for a cedent, the fact that
witnesses for a cedent are made up of pairs, and by the bounds for witnesses
for formulas given by Lemma 8. �

Theorem 1

1. Suppose S 1
2 = Ŝ 1

2 ` Γ → ∆ where Γ and ∆ are cedents of LEΣ̂b
1-

formulas. Let a be the free variables in this sequent. Then there is an
{|id|}-choice defined in {|id|}-BDC function f such that:

{|id|}-BDC ` ψf (v, w,a, rf) ∧WIT∧∧Γ(w,a) ⊃
WIT∨∨∆(OUTf (LAST(v, rf), w,a),a).

2. Suppose R̂1
2 ` Γ → ∆ where Γ and ∆ are cedents of LEΣ̂b

1-formulas.
Let a be the free variables in this sequent. Then there is an ∪k{||id||k}-
choice defined in ∪k{||id||k}-BDC function f such that:

∪k{||id||k}-BDC ` ψf (v, w,a, rf) ∧WIT∧∧Γ(w,a) ⊃
WIT∨∨∆(OUTf (LAST(v, rf), w,a),a).

Proof. In both cases, Theorem 1 is proven by induction on the number
of sequents in the proof of Γ → ∆. By cut-elimination, we can assume all
the sequents in the proof are LEΣ̂b

1. Both of the statements are proven in

17

the essentially same way, so we only prove (2). Further, most of the other
cases are similar to previous witnessing arguments and rely on closure under
composition of the class of witnessing functions and Lemma 6, so we only
show the base case, (∀ : right) case, Σ̂b

1-LLIND case as these highlight the
use of the closure properties of the BDC axioms.
(Base case) In the base case, an R̂1

2- proof consists of a BASIC axiom, a
logical axiom, or an equality axiom. The formulas in the R̂1

2 proof of Γ→ ∆
will all be open and so the witness predicate for them will have the form
w = 0 ∧ A(a). A witness to a formula is thus just 0, and a witness to
WIT∨∨∆ will be just a fixed number of pairings of 0’s, so witnessable by a
closed term. Hence, f is ∪k{||id||k}-choice defined by Lemma 6 and

∪k{||id||k}-BDC ` ψf (v, w,a, rf) ∧WIT∧∧Γ(w,a) ⊃
WIT∨∨∆(OUTf (LAST(v, rf), w,a),a)

will follow from this and the axiom we are trying to witness itself.
(∀:right case) Suppose we have the inference:

b ≤ t,Γ→ A(b),∆

Γ→ ∀x ≤ tA(x),∆

By the induction hypothesis there is a ∪k{||id||k}-bounded choice defined
function g such that

∪k{||id||k}-BDC ` ψg(v, w, b,a, rg) ∧WIT b≤t∧(∧∧Γ)(w, b,a) ⊃
WITA∨(∨∨∆)(OUTg(LAST(v, rg), w, b,a), b,a) .

By cut-elimination, (∀x ≤ t)A(x) is a Π̂b
0-formula, so t must be of the form

t = |s| and A is an open formula. Let y be (µi < |s| + 1)(K¬A(i) > 0)
(using Lemma 1) and define f to be g(〈0, w〉,a, y). The 0 in the ordered
pair is the witness to WIT b≤t(w, b,a) := b ≤ t(a) ∧ w = 0. The function f
is ∪k{||id||k}-bounded choice defined by Lemma 6 and Lemma 5 and it is
not hard to show that

∪k{||id||k}-BDC ` ψf (v′, w,a) ∧WIT∧∧Γ(w,a) ⊃
WIT ∀x≤|s| A∨(∨∨∆)(OUTf (LAST(v′, rf), w,a),a) .

(Σ̂b
1-LLIND case) Suppose we have the inference

A(b),Γ→ A(Sb),∆

A(0),Γ→ A(||s||),∆

18

where A is an Σ̂b
1-formula and s is a term. We assume a contains all of

the free variables except b in the upper and lower sequent. By the induction
hypothesis there is a ∪k{||id||k}-bounded choice defined function g such that

∪k{||id||k}-BDC ` ψg(v, w, b,a) ∧WITA(b)∧(∧∧Γ)(w, b,a) ⊃
WITA(Sb)∨(∨∨∆)(OUTg(v, w, b,a), b,a).

Informally, the idea to witness the lower sequent is the following: Run g on
w a witness for A(0),Γ. Either this witnesses A(S(0)) or it witnesses ∆. In
the latter case, we are done. In the former case, we run g on the witness just
produced for A(S(0)) together with (w)2 which is supposed to be a witness
for Γ. We keep repeating this process until we get a witness for ∆ or we
finally get a witness for A(||s||). More formally, using Lemma 7, we bounded
choice define a function f by BPR{||id||} in the following way. First, we let

k(v, w,a) = cond(KWIT∨∆
((v)2,a), w, v).

This is ∪k{||id||k} bounded choice definable by Lemma 6 and Lemma 5. We
would like to define f by the following recursion

F (0, w,a) = 〈(w)1, 0〉
F (Sb,w,a) = min(k(F (b, w,a), g((F (b, w,a))1, (w)2, b,a),a), tA(Sb)∨(∨∆)(b,a))

f(u,w,a) = F (min(u, ||s||), w,a).

which is not exactly that of Lemma 7. To solve this problem, let F ′(b, w,a, H)
be an abbreviation for

min(k(β|m|(b,H(b, w,a)), g((β|m|(b,H(b, w,a)))1, (w)2,a)), tA(Sb)∨(∨∆)(b,a)).

in the following definition

H(0, w,a) = 〈(w)1, 0〉
H(Sb,w,a) = F ′(b, w,a, H) · 2(b+1)·|m| +H(b, w,a)

h(w,a) = H(||s(a)||, w,a)

where min’s have been suppressed for readability and wherem = t+A(Sb)(||s||,a)∨
∨

∆,

a term bounding the witness size for A(Sb) ∨ (∨ ∆). Then f(u,w,a) =
β|m|(min(u, ||s||), h(w,a)). So both f and h will be bounded choice defined
by Lemma 7. We would like to show

∪k{||id||k}-BDC ` ψf (v, w,a) ∧WITA(0)∧Γ(w,a) ⊃
WITA(||s||)∨∆(OUTf (LAST(v, rf), ||s||, w,a),a).

19

To see this notice as f(u,w,a) = β|m|(min(u, ||s||), h(w,a)) we have both

∪k{||id||k}-BDC ` ψh(v, w,a) ∧WITA(0)∧(∧∧Γ)(w,a) ⊃
WITA(0)∨(∨∨∆)(β|m|(0,OUTh(LAST(v, rh), w,a)),a)

since f(0, w,a) is a witness for A(0), and

∪k{||id||k}-BDC ` ψh(v, w,a) ∧WITA(0)∧Γ(w,a) ∧ Sb ≤ ||s|| ∧
WITA(b)∨(∨∨∆)(β|m|(b,OUTh(LAST(v, rh), w,a)), b,a) ⊃
WITA(Sb)∨(∨∨∆)(β|m|(Sb,OUTh(LAST(v, rh), w,a)), Sb,a).

By Π̂b
0-LIND on WITA(b)∨(∨∨∆)(β|m|(b,OUTh(LAST(v, rh), w,a)), b,a), this

implies

∪k{||id||k}-BDC ` ψh(LAST(v, rh), w,a) ∧WITA(0)∧(∧∧Γ)(w,a) ⊃
WITA(||s||)∨(∨∨∆)(β|m|(||s||,OUTh(LAST(v, rh), w,a)), ||s||,a).

Hence, as

β|m|(||s||,OUTh(v, w,a)) = OUTf (LAST(v, rh), ||s||, w,a)

and ψf = ψh we have

∪k{||id||k}-BDC ` ψf (v, w,a) ∧WITA(0)∧(∧∧Γ)(w,a) ⊃
WITA(||s||)∨(∨∨∆)(OUTf (LAST(v, rf), ||s||, w,a),a).

�

Corollary 1 The following conservation results hold:

1. S 1
2 is ∀Σ̂b

1-conservative over {|id|}-BDC .

2. R̂1
2 is ∀Σ̂b

1-conservative over ∪k{||id||k}-BDC .

Proof. Both statements are proven in the same way, so we show only the
first. First, {|id|}-BDC is contained in S 1

2 by Lemma 3. Suppose Ŝ 1
2 proves

∀x(∃y ≤ t)B(x, y, c) where B is Π̂b
0. Then Ŝ 1

2 proves (∃y ≤ t)B(a, y, c)
where a is free, so by Theorem 1 and the definitions of witnesses for sequents,
{|id|}-BDC will prove:

ψf (v, a, c) ⊃WIT (∃y≤t)B(OUTf (LAST(v, rf), a, c), a, c)

20

for some {|id|} choice defined function f . By the definitions of {|id|} choice
defined, {|id|}-BDC proves ∃vψf (v, a, c), where v is bounded by Parikh’s
Theorem. So combined with Lemma 8, this shows {|id|}-BDC proves (∃y ≤
t)B(a, y, c), and hence, ∀x(∃y ≤ t)B(x, y, c). �

A formula A(a) is ∆̂b
1 with respect to a theory T , if there exists a Σ̂b

1

formula AΣ and a Π̂b
1 formula AΠ and

T ` A(a)⇔ AΣ(a)⇔ AΠ(a).

Corollary 2 Let T be S 1
2 or R̂1

2. Then T proves every ∆̂b
1-formula is equiv-

alent to a Σ̂b
1-formula of the form C(a, 1) and to a Π̂b

1-formula equivalent to
¬C(a, 0) where C(a, b) is:

(∃w ≤ 2`(r
+)|r++1|)(∀i < `(r+)))[(β|r+|(0, w) = min(tinit(a), r(a)) ∧

(tsel(i,a) > 0 ⊃ β|r+|(i+ 1, w) = min(trec(β|r+|(i, w), i,a), r(a))) ∧
(tsel(i,a) = 0 ⊃ β|r+|(i+ 1, w) = µj < |r+|(tµ(j, β|r+|(i, w),a) > 0)) ∧
BIT(0,LAST(w, r(a))) = b].

where is ` := |id| when T = S 1
2 , and ` is of the form ||id||k for some k when

T = R̂1
2, and where r, tinit, tsel, trec, tµ, OUT are L2 terms.

Proof. In what follows ` will be either |id| or ||id||k for some fixed k.
Suppose A is ∆̂b

1 in T . Let AΣ ∈ Σ̂b
1 and AΠ ∈ Π̂b

1 be provably equivalent
to A in T . Consider B(x, y) :=

(¬AΠ(x) ∧ y = 0) ∨ (AΣ(x) ∧ y = 1).

Then T proves (∀x)(∃y ≤ 1)B(x, y). Further, (∃y ≤ 1)B(x, y) is equivalent
to a EΣ̂b

1-formula. So by Theorem 1 there is an ` bounded choice definable
g such that T ` ψg(x, y) ⊃WIT (∃y≤1)B(x, y). This implies

T ` ψg(x, y) ⊃ B(x, (y)1).

Let f(x) = (g(x))1. Since g is ` bounded choice definable, by closure under
composition and L2 terms, f will be ` bounded choice definable. Further,
the definition of B implies f(x) = 1 ⇔ B(x, 1) ⇔ A(x). To get the form
of our definition exactly as in the statement of the Corollary, we can re-
place the OUT(LAST(w, r(a)),a) = 1 in `-bounded choice definition of f
with BIT(0,LAST(w, r(a)),a) = 1 by tacking onto the sequence w given
with at least one more block which computes the most significant bit of
OUT(LAST(w, r(a)),a), then copies this value for the remaining blocks,
adjusting r to handle this slightly longer sequence. �

21

5 Finite Axiomatizability

Next we show our finitely axiomatization results. As we mentioned in the
introduction it was previously shown by Cook and Kolokolova [9] that the
∀Σ̂b

1-consequences of S 1
2 are finitely axiomatized. Their proof goes through

a second-order theory V1-HORN. We will give a completely first-order ar-
gument for this as well as results concerning axiomatizations of variants of
R̂1

2 . We begin by considering how to encode terms.
By Parikh’s Theorem [21], if a bounded theory T ` ∃yA(a, y) then T `

∃y ≤ t(a)A(a, y) for some term t. Recall # is the fastest growing function
in our language. If t does not contain #, then for some fixed n > 0 and∑

i ai > n, t(a) ≤ 2|
∑
i ai|2 . Let C#(t) denote the number of occurences

of # in the term t, the smash complexity of t. Then, in general, for

large enough inputs, t(a) ≤ 2|
∑
i ai|

C#(t)+1

. As the # function grows more
slowly than the exponential function, we have to be a careful in defining our
encoding. We can code a fixed term t as a number et according to some

choice of encoding, and an expression like 2|
∑
i ai|

C#(t)+1

would then bound
the output of t based on inputs a. Moreover, for a reasonable encoding
C#(t) + 1 ≤ |et|. Since we would like to use encoding e in some of our
formulas as a free variable, we imagine adding a second free variable z to
our formulas. If a fixed number et is the encoding of a term t, we set

zt = 2(|
∑
i ai|)

C#(t)+1

as the value for z. Finally, the computation sequences
w that ∪k{||id||k}-BDC and R1

2 can easily manipulate involve length length
many steps, not length many steps. To get around this in a way that still
works in the fixed term t and code et case, we use a code E such that the
first decode operation is to take the length e = |E|. In this set up, we will
have C#(t) + 1 ≤ |et| ≤ ||Et||.

Lemma 10 Let n ∈ N. ∪k{||id||k}-BDC can ∪k{||id||k} bounded choice
define and{|id|}-BDC can {|id|} bounded choice define a function term(E, z, a1, . . . an)
such that for any fixed n-ary term t there is an et = |Et|, where if we let

zt = 2|
∑
i ai|

C#(t)+1

and ψterm, OUTterm be from either of these bounded
choice definitions, then Ŝ 0

2 proves:

∀a∃w ≤ 2|et|·|Et+zt|ψterm(w,Et, zt,a, 2
|Et+zt|) ∧

OUTterm(LAST(w, 2|Et+zt|), Et,a, 2
|Et+zt|) = t(a).

Proof. The {|id|} bounded choice definition in {|id|}-BDC will follow
from the ∪k{||id||k} bounded choice definition using Lemma 4. Throughout
our proof will use e to abbreviate |E|. The rterm(E, z,a) in the ∪k{||id||k}

22

bounded choice definition will be 2|E+z| and we will take ` = ||id||. In the

choice definition, the witness string would hence be bounded by 2||r
+
term||·|r

+
term| =

2||E+z||·|E+z| where ||r+
term|| = ||E + z|| ≥ ||E|| = |e|. We can use the tech-

niques of Lemma 4 to pad our computation sequences to the longer lengths
to meet this definition rather than the bound implied by generalizing the
Ŝ 0

2 result mentioned above. To show the Ŝ 0
2 result we develop a coding

scheme for terms in our language. First, we fix codes for 0, for the seven
function symbols of L2, and for the variables a1, . . . an. We use de around
a symbol to denote the code for that symbol. I.e., d+ e is the code for +.
We choose our coding so that all codes require less than |m| bits, where
m ≥ 10 + n. We choose 0 to code dNOP e, meaning no operation, and 1
to code dINIT e, meaning initialize the computation stack. Given the code
for dNOP e is 0, if one tries to project out operations beyond the end of a
code, one naturally just projects outs dNOP e’s. The code for a term t is
a number E such that e = |E| can be viewed as a sequence of blocks of
length |m| that write out t in postfix order. So s1 + s2 would be coded as
the three blocks ds1

eds2
ed+ e. To make our definition below a little easier

we require all term codes to have dINIT e in the first, low-order, |m| bit
block. Given this coding, we next define tterm,init, tterm,sel, tterm,rec, tterm,µ,
needed for the bounded choice definition. First, we define tterm,init := 0 and
tterm,sel := tterm,µ := 1. Since tterm,sel = 1, we will only make use of tterm,rec

and not tterm,µ in computing a witnessing computation w for the ∪k{||id||k}
bounded choice definition. The block-size |b| used in the witnessing com-
putation will be |r+

term| = |E + z| ≥ |z|. In the case of a term t, the value
|Et + zt| ≥ |zt| will be greater than or equal to the number of bits needed to
represent any intermediate computation of t by the discussion proceeding
the lemma. We imagine the ith block as coding the ith state of a stack
used to compute the postfix computation of term represented by e. The
total number of blocks needed to carry out this computation is less than |e|,
hence our bound on w in the statement of the lemma. We divide the stack
in turn into blocks of size 2b

1
2
||b||c, with the 0th block being the top of the

stack. Using cond we can define the output of trec(u, i, E,a, b), where we are
especially interested when u = β|b|(i, w) and b = rterm, by cases as follows:

1. If i = 0 or β|m|(i, e) = dINIT e, trec(u, i, E,a, b) = 0. This initializes
the stack.

2. If β|m|(i, e) = dNOP e, tterm,rec(u, i, E,a, b) = u.

3. If β|m|(i, e) = daj
e, 1 ≤ j ≤ n, then tterm,rec(u, i, E,a, b) := aj + u ·

23

22b
1
2 ||b||c . The effect here is to push aj onto the stack.

4. If β|m|(i, e) = d0e, then tterm,rec(u, i, E,a, b) := 0 + u · 22b
1
2 ||b||c . The

effect here is to push 0 onto the stack.

5. If β|m|(i, e) = dSe, then tterm,rec(u, i, E,a, b) := (β
2b

1
2 ||b||c

(0, u) + 1) +

MSP(u, 2b
1
2
||b||c) · 22b

1
2 ||b||c . This pops the top of the stack, adds 1, and

pushes the result onto the stack.

· · ·

6. If β|m|(i, e) = d#e, then tterm,rec(u, i, E,a, b) :=

(β
2b

1
2 ||b||c

(0, u)#(β
2b

1
2 ||b||c

(1, u)) + MSP(u, 2 · 2b
1
2
||b||c) · 22b

1
2 ||b||c .

This pops the top two elements off the stack, computes their #, and
pushes the result onto the stack.

To complete our choice definition, we define OUTterm(u,a) := β
2b

1
2 ||b||c

(0, u),

which returns the top of the stack. Given these definitions, by induction on
the complexity of t (a fixed finite number), Ŝ 0

2 can show:

∀a∃w ≤ 2|et|·|Et+zt|ψterm(w,Et, zt,a, 2
|Et+zt|) ∧

OUTterm(LAST(w, 2|Et+zt|), Et,a, 2
|Et+zt|) = t(a).

�
We next want to isolate a finitely axiomatized theory T such that Ŝ 0

2 ⊆T⊆
R1

2 . The idea is to use Lemma 2. Given a Π̂b
0 formula A, let sA and tA

be the terms from Lemma 2. Suppose we had a new axiom that asserts
the existence of a string y whose ith bit for i ≤ |sA| is on if and only if
tA(i, b) > 0. Using the string yA in the BITMIN axiom would then imply
the BITMINsA,tA axiom and, hence, LINDA. This new axiom together with
EBASIC and BITMIN would thus imply Ŝ 0

2 . The discussion motivates the
following axiom:

Definition 8 Let bd(E, z) = 2||E||·|E+z|. Define UC (E, d, a,bd(E, z)) to be
the axiom

(∃y ≤ 2|d|)(∃w ≤ bd(E, z)#(2d))TERMCOMP(E, z, d, a, y, w)

where TERMCOMP is:

∀k ≤ |d|ψterm(β|bd(E,z)|(k,w), E, k, a, rterm) ∧
BIT(k,OUTterm(LAST(β|bd(E,z)|(k,w), rterm), E, k, a, rterm)) = BIT(k, y).

24

Using pairing, UC is provably equivalent to a Σ̂b
1-formula. Let TUC :=

EBASIC +BITMIN+UC . So TUC is finitely axiomatized. Moreover, we
have:

Lemma 11 Ŝ 0
2 ⊆ TUC ⊆ R1

2.

Proof. The discussion prior to the definition shows the first containment
where we take a substitution instance of UC with d = sA, E = EtA and
z = ztA . To see the TUC ⊆ R1

2 , first note that by Lemma 10 and by
Lemma 4, Ŝ 0

2 ⊆ R1
2 proves:

(∀k ≤ |d|)(∃w′ ≤ bd(E, z))ψterm(w′, E, k, a, rterm).

So by BBΣ̂b
1, R1

2 proves:

(∃w ≤ bd(E, z)#(2d))(∀k ≤ |d|)ψterm(β|bd(E,z)|(k,w), E, k, a, rterm). (1)

Let A(j, 2min(b,|d|)) be the formula

(∃y ≤ 2min(b,|d|))(∃w ≤ bd(E, z)#(2d))(∀k ≤ |d|)[
ψterm(β|bd(E,z)|(k,w), E, k, a, rterm) ∧
(j ≤ k ∧ k ≤ j + b ∧ j + b ≤ |d| ⊃
BIT(k,OUTterm(LAST(β|bd(E,z)|(k,w), rterm), E, k, a, rterm)) = BIT(k, y))]

Notice using pairing, A(j, 2min(b,|d|)) is provably equivalent in R1
2 to a Σ̂b

1

formula. Roughly, the formula A asserts the existence of a string whose bits
match the jth through j + bth of the string y asserted to exist by the UC
axiom. Also, A(j, 2min(0,|d|)) follows easily from (1). Further, A(j, 2min(b,|d|))
and A(j+ 2min(b,|d|), 2min(b,|d|)), imply A(j, 2min(S(b),|d|)), so the result follows
by Σ̂b

1-LLIND . �

Remark 1 By using our pairing function multiple times, we can define
terms for triples, and, in general, n-tuples. For any term t(a0, ..., an), the
term t′(u) = t((u)0, . . . , (u)n) satisfies t(a0, . . . , an) = t′(〈a0, . . . , an〉). Fur-
ther, this is provable in Ŝ 0

2 . Using this idea, we can show over Ŝ 0
2 , and hence

over TUC , that

BDC [tinit(a), tsel(v, i,a), trec(v, i,a), tµ(j, v,a), b]

is equivalent to an axiom

BDC [t′init(〈a〉), t′sel(v, i, 〈a〉), t′rec(v, i, 〈a〉), t′µ(j, v, 〈a〉), b]

25

where we have suitably modified the original terms. So in terms of axioma-
tizing τ -BDC , it suffices to only consider BDC axioms with one free variable
(parameters i, j, v in the terms above will always be used for bound variable
in BDC axioms). This same idea can also be applied to the BDC ′ axioms
we will describe in a moment.

In what follows, we assume that our BDC axiom have a single parameter
a rather than a vector a. In order to get our finite axiomatization results,
we need to modify our BDC axioms so that the way in which the µ operator
is computed is more directly recorded in the witness string. To this end, we
next formulate a variant of the BDC axiom:

Definition 9 Let τ be a collection of 1-ary nondecreasing terms. Define τ−
BDC ′ to be the theory consisting of TUC together with BDC ′[`, tinit, tsel, trec, tµ, b]
axioms:

(∃w ≤ 2`(b)·|b|)(∃w′ ≤ 2`(b)|b
′|)(∀i < `(b))[

(β|b|(0, w) = min(tinit(a), b) ∧ β|b′|(0, w′) = 0) ∧
(tsel(β|b|(i, w), i, a) > 0 ⊃ β|b|(i+ 1, w) = min(trec(β|b|(i, w), i, a), b) ∧

∧ β|b′|(i, w′) = 0) ∧
(tsel(β|b|(i, w), i, a) = 0 ⊃ (ispair(β|b′|(i, w

′)) ∧
TERMCOMP(Etµ , ztµ , b, 〈β|b|(i, w), a〉, (β|b′|(i, w′))1, (β|b′|(i, w

′))2) ∧
LEASTON(β|b|(i+ 1, w), (β|b′|(i, w

′)))1)))].

where ` ∈ τ , and tsel, trec, tµ are L2-terms. Here Etµ is the fixed code for

the term tµ, ztµ = 2|a|
C#(tµ)+1

, and b′ = 22·|bd(Etµ ,ztµ)#2b|+1.

The clause beginning with β|b|(0, w) and the one beginning with tsel(β|b|(i, w), i, a) >
0 above correspond to the same clauses in a BDC axiom except that we also
assert a second string w′ has β|b|(0, w

′) = 0 or β|b|(i, w
′) = 0. Here the

string w′ is used to store the computations related to doing a µ operation,
and neither of these clauses concerns a µ-operation. The third clause, be-
ginning with tsel(β|b|(i, w), i, a) = 0, concerns a µ computation step. In a
BDC axiom the µ-operation is over values less than |b|. Here we imagine
the ith block of bits of w′ is a pair, the first component being a string of
length 2|b| recording in its jth bit whether tµ(j, a) > 0, and the second
component being a computation sequence of length bd(Etµ , ztµ)#2b > 2|b|,
computing the value of tµ(j, a). So the length of this pair is bounded by
2 · |bd(Etµ , ztµ)#2b|+ 1.

26

Define R′12 to be R̂1
2+UC . From this definition and Lemma 11, we have

R̂1
2 ⊆ R′12 ⊆ R1

2 . For Ŝ 1
2 , since R1

2 ⊆ Ŝ 1
2 = S 1

2 , Ŝ 1
2 +UC = Ŝ 1

2 = S 1
2 .

Theorem 2

1. ∪k{||id||k}-BDC ⊆ ∪k{||id||k}-BDC ′.

2. R′12 is ∀Σ̂b
1-conservative over ∪k{||id||k}-BDC ′.

Proof. For (1), TUC can prove using LIND on the Π̂b
0 matrices of

BDC ′[||id||m, tinit, tsel, trec, tµ, b] and BDC [||id||m, tinit, tsel, trec, tµ, b],

that when one projects out blocks of size |b| from a witness w for outer
existential in the former they match projections of size |b| bits of a witness
for existential in the latter. As part of the induction step of the LIND a
secondary LIND is used to show that the blocks of w′ give pairs correctly
computing µ step of the BDC axiom.

For (2), consider any A := BDC ′[||id||m, tinit, tsel, trec, tµ, b]. Using pair-
ing, A is provably equivalent to a Σ̂b

1-formula. Let B(i, w,w′, a, b) be the
formula inside the (∀i < ||b||m) quantifier of A. Let A′(k, a, b) be the for-
mula where we replace B(i, w,w′, a, b) in A with i ≤ k ⊃ B(i, w,w′, a, b).
R′12 proves A′(0, a, b) because w just needs to contain tinit and w′ can be 0.
Given witnesses for w and w′ for A′(k, a, b), then depending on the value of
tsel, we can either use trec or the UC axiom to concatenate on a string to
witness A′(S(k), a, b). Hence, using LLIND with speed-up of induction, R′12
proves A′(||b||m, a, b) which in turn implies A. So R′12 contains ∪k{||id||k}-
BDC ′. Now suppose R′12 proves some Σ̂b

1 formula C(a). Then this proof
will involve some finite number of substitution instances of the UC axiom,
call these UC 1, . . . ,UCm. So R̂1

2 proves UC 1, . . . ,UCm → C(~a) and so by
Theorem 1, there is a ∪k{||id||k}-choice defined in ∪k{||id||k}-BDC function
f such that:

∪k{||id||k}-BDC ` ψf (v, w, a) ∧WIT∧∧UC j (w, a) ⊃
WITC(OUTf (LAST(v, rf), a), a).

Using the UC axiom, ∪k{||id||k}-BDC ′ proves that there exists a w witness-
ing WIT∧∧UC j (w, a), from which it can prove there is a witness to WITC .

It then follows that ∪k{||id||k}-BDC ′ proves C by Lemma 8. �

Lemma 12 There exist Σ̂b
1-formulas U(E, z, a, b) and Uk(E, z, a, b), k > 0,

such that for any term t defined as a 4-tuple 〈tinit(a), tsel(v, i, a), trec(v, i, a), tµ(j, v, a)〉
the following hold:

27

1. TUC proves there is a code Et ∈ N and bound zt such that
U(Et, zt, a, b) ⊃ BDC ′[|id|, tinit, tsel, trec, tµ, b].

2. TUC proves there is a code Et ∈ N and bounds zt, b such that
Uk(Et, zt, a, b) ⊃ BDC ′[||id||k, tinit, tsel, trec, tµ, b].

Proof. Both results are proven in the same way, so we show only (2). Let
t?op = min(top, b) for op = init, sel, rec. Let t?µ be defined via cond to be tµ for
j < |b| and be 1 otherwise. Using the ? variants of our original terms will help
guarantee that we bound completed computation steps by b appropriately in
what follows. Consider the 4-tuple term t := 〈t?init, t?sel, t?rec, t?µ〉(i, j, v, a, b),
where (i, j, v, a, b) list all of its parameters. Let Et denote the code for t and

let et abbreviate |Et|. In Lemma 10, we would set zt = 2|i+j+v+a+b|C#(t)+1

.

As i, j, v ≤ b, for this lemma we will use zt = 2|4b+a|
C#(t)+1

. For this lemma,
Et will almost be the code for the 4-tuple you would get using Lemma 10;
however, we will slightly modify what is used for the t?µ component of the
4-tuple as explained later. Let m be the number of distinct code symbols
as given by Lemma 10. Let tterm,init, tterm,sel, tterm,rec, tterm,µ be the terms
used in the bounded choice definition of term(E, z, a1, a2, a3, a4, a5). We will
rename the variables in t as a1 = i, a2 = j, a3 = v, and a4 = a, a5 = b,
we will use i, j, v from now on to refer to the variables in tterm,op. We
define Uk as a conjunction U ′k ∧ U ′′k ∧ U ′′′k where U ′k, U

′′
k and U ′′′k will all

be BDC ′ axioms. We define U ′k as BDC ′[||id||k, t′init, t′sel, t′rec, t′µ, b′] where

b′ = 2|E+z| and using terms t′init, t
′
sel, t

′
rec, t

′
µ which we shall now describe.

Set u = d|e|/|m|e + 2. So u − 1 is greater than the number of non-NOP
operations in a computation of e = |E|. Let t′init = 0. Using cond, we define
t′sel, t

′
rec, t

′
µ by cases as follows:

1. If i < u− 1 , then

t′init := tterm,init(E, z, 0, 0, 0, a4, a5, b
′),

t′sel := 1, and

t′rec := tterm,rec(v, i, E, z, 0, 0, 0, a4, a5, b
′)

We will use these values of i when E = Et, z = zt to compute the
value t?init, in the first component of the output 4-tuple.

2. If i = u − 1, let out = OUTterm(β|b′|(i, w), E, z,a, b′). So if E = Et,
(out)1 computes t?init. For this i, we set t′sel := 1 and t′rec := 〈0, (out)1〉.
For higher i’s, t′rec will continue to output pairs, the first coordinate

28

will represent intermediate computations in computing t, the second
coordinate will represent the output of the last full computation of t.

3. If u ≤ i < u · ||b′||k and i mod u < u − 1, then let a1 = bi/uc − 1
. Let v represent a pair, the first coordinate being an intermediate
computation, the second, the value of the last full computation of t.
Set a3 = (v)2, a4 = a, a5 = b. Define

t′sel := 1, recall we defined tterm,sel to be 1 in Lemma 10,

t′rec := 〈tterm,rec((v)1, i, E, z,a, b
′), (v)2〉.

So in these steps when E = Et, intermediate computations of t?sel and
t?rec are computed. It should be noted we will also be computing t?init
and t?µ but ignoring them.

4. If i < u · ||b′||k and i mod u = u−1, then let v be a pair as above, use
a1, a3, and out for bi/uc − 1, (v)2, and OUTterm(β|b′|(i, w), E, z,a, b′)
respectively. Let a4 = a, a5 = b. So when E = Et, z = zt, (out)2 would
be the value of t?sel(a3, a1, a4, a5) and (out)3 would be t?rec(a3, a1, a4, a5).
Define t′sel := (out)2 and t′rec := (out)3. To handle the case where
(out)2 = 0, consider the open formula

A := (j)1 = 0 ∧ t?µ((j)2, a3, a4) > 0

This formula is true when there is an ordered pair whose first coordi-
nate is 0 and whose second coordinate makes tµ nonzero. If a sharply
bounded number makes tµ nonzero, then this pair is sharply bounded
too (albeit with slightly bigger bound). Define t′µ to be K¬A. The
computation of t′µ is handled by the TERMCOMP clause of the BDC ′

axiom using a separate witness string w′, the result of the computation
though is β|b′|(i + 1, w) and in this case would be a pair 〈0, j′〉 such
that tµ(j′, a3, a4) > 0. Recall earlier, we mentioned we would slightly
tweak the code Et for t. What we meant was, when giving the code
Et for t, we use t′µ rather than t?µ in the 4-tuple.

5. If i ≥ u · ||b′||k, we don’t want the witness strings w and w′ to contain
any additional information. To ensure this we set t′sel = 1, t′rec = 0,
and t′µ = 0.

We note when E = Et, z = zt

u · ||b′||k = (d|et|/|m|e+ 2)||b′||k < |et| · ||b′||k = |et||Et + zt|

29

so all cases will apply in U ′k = BDC ′[||id||k, t′init, t′sel, t′rec, t′µ, 2|Et+zt|]. Let

ψUk be the Π̂b
0-subformula of this axiom and let ψt be the Π̂b

0-subformula
corresponding to BDC ′[||id||k, tinit, tsel, trec, tµ, b]. Given a witness w1 to the
outer existential of U ′k and a witness w2 to the outer existential of

BDC ′[||id||k, tinit, tsel, trec, tµ, b],

TUC can use length induction to prove β|b′|((i+1)·u−1, w1) = β|b|(i+1, w2).
By itself, this does not prove that U ′k implies a witness w2 for ψt. However,
we can define t′′init := 0, t′′sel := t′′µ := 1 and define t′′rec to be the concatenation
of the second coordinate from the (i + 1) · u − 1th block of |b′| bits of w
using a block size of |b| onto whatever was the previous value. If we define
U ′′k = BDC ′[||id||k, t′′init, t′′sel, t′′rec, t′′µ, b′], this second axiom would allow us to
prove the existence of w2 from w1. We can handle the conversion problem for
the second existential of BDC ′[||id||k, tinit, tsel, trec, tµ, b] in the same fashion
using one more BDC ′ axiom U ′′′k completing the proof. �

Lemma 13 S 1
2 proves the formula U(E, z, a, b) and for each k ≥ 1, R′12

proves the formula Uk(E, z, a, b).

Proof. By the proof of Lemma 12, U is a conjunction of {|id|}-BDC ′

axioms so provable in {|id|}-BDC ′ and, hence, by Lemma 3 provable in S 1
2 .

Similarly, the lemma also shows Uk is conjunction of {||id||k}-BDC ′ axioms
and, hence, provable in {||id||k}-BDC ′ and R′12 . �

Theorem 3

1. ∀Σ̂b
1(S 1

2) can be finitely axiomatized as TUC +U .

2. ∀Σ̂b
1(R′12) can be axiomatized as TUC +∪kUk.

Proof. This follows from Remark 1, Theorem 2, Lemma 12, and Lemma 13.
�

6 Towards Separations

In view of Theorem 3, we know that if R̂1
2 = S 1

2 , then ∀Σ̂b
1(R̂1

2) and ∀Σ̂b
1(R′12)

will be finitely axiomatized. It also follows that if we could show that for
all k, there is a k′ > k such that {||id||k}-BDC ′ ({||id||k′}-BDC ′, then
∀Σ̂b

1(R′12) would not be finitely axiomatized and R̂1
2 ⊆ R′12 (S 1

2 . If we

30

define x#3y := 2|x|#|y| and add axioms for this symbol to our language, we
obtain theories R̂1

3, R′13, S1
3 , and {||id||k}-BDC ′3. The proof of Theorem 3

generalizes to this setting by making a few minor changes: First, let C#3(t)
be the number of occurrences of #3 in term t. In Lemma 10, we would set

zt = 22||
∑
i ai||

C#3
(t)+1

to handle the higher growth rates that might occur in
intermediate computations, we would also add a clause to trec to handle #3.
The changed value of zt would then be propagated through the remaining
lemmas and theorems of the section and, otherwise, there would be no other
substantive changes. In this language, however, there is a term t(x) such
||t(x)|| = ||x||k, and so {||id||}-BDC ′3 = ∪k{||id||k}-BDC ′3 and we have:

Theorem 4 ∀Σ̂b
1(R′13) can be finitely axiomatized as TUC 3+U1,3.

Here TUC 3 and U1,3 are the generalizations of the theory TUC and the ax-
iom U1 from the previous section to handle #3. That is, TUC 3 is EBASIC 3+BITMIN+UC
and U1,3 is obtained from U1 by adding adding another clause in Lemma 10
to handle #3. In the introduction, we mentioned it is hard to express the
sharply bounded µ-operator in a way that will both work in our witnessing
arguments and in our universal predicates in connection with the R′13 above.
This problem was dealt with in our results without #3, and hence in our
results with #3, by using the BDC ′ axioms in which µ-computation steps
are expanded rather than the BDC axioms.

The result above highlights that if separations exists between {||id||k}-BDC ′

and {||id||k′}-BDC ′ for k′ > k that the proof will be sensitive to the choice
of base functions.

On the other hand, our normal forms and predicate Uk are sufficient to
give us some limited diagonalization results. We generalize the notion of the
smash complexity to Corollary 2 normal form predicates A, by defining the
C#(A) to be the sum of the smash complexities of its defining terms r+,
tsel, trec, and tµ and the power of ||id||m used in the normal form.

Theorem 5 For any k > 0, there is a ∆̂b
1-predicate in R′12 , which if it is

a ∆̂b
1-predicate in R̂1

2, then it is a ∆̂b
1-predicate in R̂1

2 of smash complexity
greater than k.

Proof. Let C(a) be a ∆̂b
1-predicate in R̂1

2 of smash complexity k and let r,
tinit, tsel, trec, and tµ be the terms of its normal form. Let Et be the code for
the 4-tuple computed by the terms other than r where we modify them to
compute min(top, r) for op = init, sel, rec and for op = µ to compute tµ for
j < |r+| and 1 otherwise. By Lemma 5, Lemma 12 and the proof of Theo-
rem 2, Uk(Et, zt, a, r

+(a)) implies BDC [||id||k, tinit, tsel, trec, tµ, r] where et =

31

Et and zt = 2|4r
+(a)+a|C#(t)+1

= 2|4r
+(a)+a|k+1

. Since C#(r) ≤ k, by at most

tweaking Et slightly as per Lemma 4, we can replace r with 2|a|
k+1 ≥ a and

use zt = 2|a|
(k+1)2+5 ≥ 2|4r

+(a)+a|k+1
in Uk and still imply BDC [||id||k, tinit, tsel, trec, tµ, r].

This same choice of zt can be used for any formula C(a) of smash complexity
k. So we have a single formula

U(E, a) := Uk(E, 2
|a|(k+1)2+5, a, 2|a|

k+1
),

such that for any smash complexity k formula C(a), there is a term t such
that U(Et, a) implies the BDC axiom corresponding to the normal form of
C(a). Moreover, a witness w to the outer existential of the U ′k component
of the Uk axiom above has blocks corresponding to each of the blocks in
the BDC axiom, and the 0th bit of w in the last block would be 1 only
if the witness to BDC ’s axiom’s existential has a last block with 0th bit
equal to 1. Let A(E, a, c) be the formula which has c = 1 if bit 0 of the
last block of U ′k is 0 and vice-versa. R′12 proves ∃!y ≤ 1A(E, a, c) and that

A(E, a, 1) ⇔ ¬A(E, a, 0), so A(E, a, 1) is ∆̂b
1 in R′12 . Our reasoning above

shows for any C(a) of smash complexity of k is equivalent to ¬A(Et, a, 1) for
some term t. If A(E, a, 1) had smash complexity k, then we could find a code
for it, EtA , and the truth or falsity of A(EtA , EtA , 1) would be contradictorily
defined. �

References

[1] B. Allen. Arithmetizing Uniform NC. Annals of Pure Applied Logic.
Vol.53 Iss. 1. 1991. pp. 1–50.

[2] S. Boughattas and L. A. Ko lodziejczyk. The strength of sharply bounded
induction requires MSP. Annals of Pure and Applied Logic. Vol. 161.
2010. pp. 504-510.

[3] S. Boughattas and J.P. Ressayre. Bootstrapping I. Annals of Pure and
Applied Logic. Vol. 161. 2010. pp. 511-533.

[4] S.R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[5] S.R. Buss and J. Kraj́ıček. An application of Boolean complexity to
separation problems in bounded arithmetic. Proceedings of the London
Mathematical Society. Vol. 69. 1994. pp. 1–21.

[6] S. Cook and P. Nguyen. Logical Foundations of Proof Complexity. Per-
spectives in Logic, Cambridge University Press. 2010.

32

[7] P. Clote. Polynomial size Frege proofs of certain combinatorial princi-
ples In P. Clote and J. Kraj́ıček, eds., Arithmetic, Proof Theory and
Computational Complexity. Oxford Science Publications. 1993.

[8] P. Clote and G. Takeuti. First-order bounded arithmetic and small
boolean circuit complexity classes. In P. Clote and J. Remmel, eds.,
Feasible Mathematics II. Birkhauser. Boston. 1995. pp. 154–218.

[9] S. Cook and A. Kolokova. A second-order system for polytime reasoning
based on Grädel’s theorem. Annals of Pure and Applied Logic. Vol. 124.
Dec. 2003. pp. 193–231.

[10] L. Fortnow. Time-space tradeoffs for satisfiability. Journal of Computer
and System Sciences. Vol. 60. Iss. 2. Apr. 2000. pp. 337–253.

[11] M. Garĺık. Construction of models of bounded arithmetic by restricted
reduced powers. To appear.

[12] P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetics.
Springer-Verlag, 1993.

[13] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity
Theory, volume 60 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press. Cambridge. 1995.

[14] J. Kraj́ıčekP. Pudlák. Quantified propositional calculi and fragments of
bounded arithmetic. Zeitschr. f. Math. Logic und Grundlagen d. Math..
Vol. 36. 1990. pp. 29–46.

[15] J. Kraj́ıček, P. Pudlák, and G. Takeuti. Bounded arithmetic and poly-
nomial hierarchy. Annals of Pure and Applied Logic. Vol. 52. 1991.
pp.143–154.

[16] E. Jeřábek. The strength of sharply bounded induction. Mathematical
Logic Quarterly. Vol. 52. 2006. No. 6. pp. 613–624.

[17] J. Johannsen. On Sharply Bounded Length Induction. In Proc. of
Computer Science Logic ’95. Paderborn 1995. Springer LNCS 1092. 1996.
pp. 362–367.

[18] J. Johannsen. A model-theoretic property of sharply bounded formulae,
with some applications. Mathematical Logic Quarterly. Vol. 44. No. 2.
pp. 205–215, 1998.

33

[19] J. Johannsen and C. Pollett. On Proofs about Threshold Circuits and
Counting Hierarchies. In Proceedings of Thirteenth IEEE Symposium on
Logic in Computer Science. pp.444–452.

[20] J. Johannsen and C. Pollett. On the ∆b
1-bit-comprehension rule. In

Sam Buss, Petr Hájek, and Pavel Pudlák, eds., Logic Colloquium ’98.
ASL Lecture Notes in Logic. 2000. pp. 262–279.

[21] R. Parikh. Existence and feasibility in arithmetic. Journal of Symbolic
Logic. Vol. 36. 1971. pp. 494–508.

[22] C. Pollett. A Propositional Proof System For Ri2. In P. W. Beame,
S. R. Buss eds., Proof Complexity and Feasible Arithmetics. DIMACS
Series in Math. and Theoretical Computer Science. Vol. 39. 1998. pp.
253–278.

[23] C. Pollett. Structure and definability in general bounded arithmetic
theories. Annals of Pure and Applied Logic. Vol. 100. October 1999. pp.
189–245.

[24] C. Pollett. Multifunction algebras and the provability of PH ↓. Annals
of Pure and Applied Logic. Vol. 104. July 2000. pp. 279–303.

34

