
Yioop Ranking Mechanisms

Crawling Intro

• Meta-keywords are added to queries for more info eg. Language, safe search, etc.

• Document scoring in Yioop:
• Doc Rank: doc importance as a whole

• Relevance: importance of search words to doc

• Proximity (2+ non-meta keywords): how frequently search words appear close to each other

• Assumption: docs indexed by importance (by DR)

• Crawl processes:
• Name server: coordinator, starts/stops crawls

• Queue servers: each holds a priority queue of what to download next

• Fetchers: page (from queue server) download and processing

• urls are assigned to QS based on their hostname hashes

• Fetchers pick up a schedule of DOWNLOAD_SIZE_INTERVAL urls from QS to
download at a time

Fetchers (impact on Search ranking)
• Batches of 100 urls

• Request PAGE_RANGE_REQUEST num bytes from each url

• Process (per batch):
• Find mimetype and choose page processor (+ scraper for HTML pages)

• Page processor extracts doc summary

• Indexing plugins for page processor to generate aux summary/modify extracted summary

• Run classifiers on the summary and add any class labels and rank scores

• Calculate hash from downloaded page minus tags/non-word characters for deduplication

• Prune no. of links extracted from the document down to MAX_LINKS_PER_PAGE (def: 50)

• Apply any user-defined page rules to the summary extracted

• Retain summaries (full caches of pages if configured) in fetcher mem until either schedule
is fully downloaded or hit SEEN_URLS_BEFORE_UPDATE_SCHEDULER: in that case, ship
info off to appropriate queue server

• HTTP headers are used to determine mimetype, which determines page
processor

• Page processor extracts:
• Language

• Stemmer applied based on lang
• Title
• Description

• Split text into sentences, assign score, concatenate top sentences in the original order
• Scores used later while computing importance of term to doc

• Links
• Used to find new pages for download, "mini-docs"
• <= 300 links per doc, link text used as description

• Robot Metas

• After processing, pruneLinks used to return the top 50 links
• Links are treated as separate docs
• Hostname might not match that of the queue server of current schedule
• Fetcher partitions link docs based on which queue server handles that

hostname and returns info to appropriate server when it is req its schedule
• If memory is low, info is returned to appropriate queue server earlier

Queue servers (impact on Search ranking)
• Fetcher writes data to QS web-app, web-app writes:

• Urls to crawl in ScheduleData

• robot.txt data in RobotData

• Mini inverted-index/summary data in IndexData

• QS processes:

• Indexer: adds IndexData to active partition, periodically runs DictionaryUpdater

• DictionaryUpdater: builds inverted-index out of full partition and adds to overall index

• Scheduler: priority queue holds urls to be downloaded next, reads ScheduleData

• Indexer saves IndexData to active partition of IndexDocBundle

• IndexDocBundle:

• Documents:

• PartitionDocBundle folder

• Contains partitions (file pair):

• .txt.gz: compressed doc_summary, doc_objects

• .ix: record format (doc_id, offset in .txt.gz to summary, offset in .txt.gz to doc, len(doc _object))

• Pos_doc_map

• One folder per partition:

• Doc_map (doc_id -> {pos, score})

• Urls with same hash value are grouped and one representative doc_id (webpage) is used

• First pair: doc offset in .txt.gz, overall score

• Rest: term pos in doc, score for terms between prev pos and current pos

• Last: scores for doc wrt classifiers

• Positions: for each partition's worth of docs, store locations of term in every doc it appears in

• Postings:

• One for partition new doc will be added to, one for others

• Inverted_index for partition (term_id -> posting_list_term)

• Posting_list_term: doc_index in doc_map, term_freq, offset of terms position list in positions
file, len(positions file entry)

• Last_entries:

• Record keeping for each term to output postings correctly

• (term_id, last_doc_index, last_offset, num_occ)

• Postings stores doc_index and term offsets in posting list as difference from previous value (delta list format),
last_entries keeps track of the original/non-delta values for easy computation of approximate value for next
posting list to be added

• Dictionary: B+ tree where each node: (term_id -> posting_list)

• Next_partition

• Archive_info

Constructing doc_map

• Doc importance measured by (partition, doc_map_index)

• Two types of grouping to create doc_map file:
• By url hash (selected doc assigned sum of scores)

• By text hash (doc with max score chosen as representative: selected doc assigned sum
of scores)

Doc Rank Score
• Find num of docs after doc A: sum over the number of documents in partition

after A's partition + A' number of document after its doc_map_index in its
partition.

• (Considering max 1 billion docs) DR <= 10

Crawling

• Previously: best first search, OPIC

• Yioop uses "Host Budgeting", inspired by IRLBot

• Fetcher writes urls to /ScheduleData/ -> Scheduler picks up oldest timestamp
and sorts into cache/QueueBundle subfolders:
• UrlQueue: robot.txt downloaded
• WaitRobotUrl: still waiting for robot.txt to be downloaded
• CrawlDelayedHosts

• BloomFilter ensures urls aren't added to QueueBundle multiple times

• Find UrlQueue tier:
• CLDData linear hash table:

• SEEN_URLS: raw count of urls for a CLD
• WEIGHTED_SEEN_URLS: less important urls add more weight
• WEIGHTED_INCOMING_URLS: adjusted for incoming links from different CLD

• Takeaways:
• CLD with more incoming good links has more pages in lower tiers

• Higher the tier, more the urls waiting to be scheduled

• Scheduler picks urls by round robin, order in which urls entered tier

• Wrinkles to Crawling Process:
• Crawl delay:

• Robot.txt can indicate crawl delay/Yioop decides to induce delay for overloaded sites

• Url needs to be spaced in schedule at least one batch (100 urls) from url of same host

• If current schedule is full, url moved to CrawlDelayedHosts before requeued to UrlQueue

• Yioop allows recrawl based on Etag and Expires url header to accommodate changes in page

• Takeaways:
• Two fetchers can get consecutive schedules from same scheduler and return data to

Indexer out of order

• Rely on query time manipulation to try and improve accuracy

Search Time Ranking Factors

• Incoming query modifications:
• Control words calculated

• Guess semantics

• Stemming/char n-gramming, rewrite abbreviations/acronyms

• Iterator built from resultant terms to fetch summaries/links with all terms

• Single QS:
• One iterator per term

• Intersect iterator returns common docs with all terms, timeout added

• Grouping iterator groups links/summaries/docs with same hashes from diff partitions

• Docs scored, sorted, top 10 returned

• Multiple QS:
• Network iterator

• Multiply n (expected num of results) by alpha, divide by num of QS, get resultant from all intersect iterators

• Group on name server

Scoring Docs

• Bonus scores for meeting certain criteria

• Rel: divergence from randomness

• Prox: tags

• Final doc score = DR + bonus + rel + prox

