Yioop Ranking Mechanisms

Crawling Intro

Meta-keywords are added to queries for more info eg. Language, safe search, etc.

Document scoring in Yioop:
* Doc Rank: doc importance as a whole
* Relevance: importance of search words to doc
* Proximity (2+ non-meta keywords): how frequently search words appear close to each other

Assumption: docs indexed by importance (by DR)

Crawl| processes:
* Name server: coordinator, starts/stops crawls
* Queue servers: each holds a priority queue of what to download next
* Fetchers: page (from queue server) download and processing

urls are assigned to QS based on their hostname hashes

Fetchers pick up a schedule of DOWNLOAD_SIZE INTERVALurls from QS to
download at a time

Fetchers (impact on Search ranking)

* Batches of 100 urls
* Request PAGE_ RANGE_REQUEST num bytes from each url
* Process (per batch):

Find mimetype and choose page processor (+ scraper for HTML pages)

Page processor extracts doc summary

Indexing plugins for page processor to generate aux summary/modify extracted summary
Run classifiers on the summary and add any class labels and rank scores

Calculate hash from downloaded page minus tags/non-word characters for deduplication
Prune no. of links extracted from the document down to MAX_LINKS PER_PAGE (def: 50)
Apply any user-defined page rules to the summary extracted

Retain summaries (full caches of pages if configured) in fetcher mem until either schedule
is fully downloaded or hit SEEN_URLS BEFORE_UPDATE_SCHEDULER: in that case, ship
info off to appropriate queue server

 HTTP headers are used to determine mimetype, which determines page
processor

¢ Page processor extracts:
* Language
e Stemmer applied based on lang
Title
Description
» Split text into sentences, assign score, concatenate top sentences in the original order
» Scores used later while computing importance of term to doc

Links
e Used to find new pages for download, "mini-docs"
e <=300 links per doc, link text used as description

Robot Metas

* After processing, pruneLinks used to return the top 50 links

Links are treated as separate docs

* Hostname might not match that of the queue server of current schedule

* Fetcher partitions link docs based on which queue server handles that
hostname and returns info to appropriate server when it is req its schedule

* |f memory is low, info is returned to appropriate queue server earlier

Queue servers (impact on Search ranking)

Fetcher writes data to QS web-app, web-app writes:
e Urls to crawl in ScheduleData
e robot.txt data in RobotData
* Mini inverted-index/summary data in IndexData

QS processes:
* Indexer: adds IndexData to active partition, periodically runs DictionaryUpdater
* DictionaryUpdater: builds inverted-index out of full partition and adds to overall index
e Scheduler: priority queue holds urls to be downloaded next, reads ScheduleData

Indexer saves IndexData to active partition of IndexDocBundle

IndexDocBundle:
* Documents:
* PartitionDocBundle folder
* Containspartitions (file pair):
e .txt.gz: compressed doc_summary, doc_objects
» .ix: record format (doc_id, offset in .txt.gz to summary, offset in .txt.gz to doc, len(doc _object))

* Pos_doc_map
* One folder per partition:
* Doc_map (doc_id -> {pos, score})
* Urls with same hash value are grouped and one representative doc_id (webpage) is used
* First pair: doc offset in .txt.gz, overall score
* Rest: term pos in doc, score for terms between prev pos and current pos

* Last: scores for doc wrt classifiers
* Positions: for each partition's worth of docs, store locations of term in every doc it appears in

* Postings:
* One for partition new doc will be added to, one for others
* Inverted_index for partition (term_id -> posting_list_term)
* Posting_list_term: doc_index in doc_map, term_freq, offset of terms position list in positions
file, len(positions file entry)
* Last_entries:
* Record keeping for each term to output postings correctly
* (term_id, last_doc_index, last_offset, num_occ)

* Postings stores doc_index and term offsets in posting list as difference from previous value (delta list format),
last_entries keeps track of the original/non-delta values for easy computation of approximate value for next

posting list to be added
* Dictionary: B+ tree where each node: (term_id -> posting_list)

* Next_partition
* Archive_info

Constructing doc map

* Doc importance measured by (partition, doc_map index)

* Two types of grouping to create doc_map file:
e By url hash (selected doc assigned sum of scores)

e By text hash (doc with max score chosen as representative: selected doc assigned sum
of scores)

Doc Rank Score

* Find num of docs after doc A: sum over the number of documents in partition

after A's partition + A" number of document after its doc_map_index in its
partition.

DOC_RANK(A) = log;,number_of_document_after(A)

 (Considering max 1 billion docs) DR <= 10

Crawling

* Previously: best first search, OPIC
* Yioop uses "Host Budgeting", inspired by IRLBot

* Fetcher writes urls to /ScheduleData/ -> Scheduler picks up oldest timestamp
and sorts into cache/QueueBundle subfolders:
* UrlQueue: robot.txt downloaded
e WaitRobotUrl: still waiting for robot.txt to be downloaded
* CrawlDelayedHosts

* BloomFilter ensures urls aren't added to QueueBundle multiple times

 Find UrlQueue tier:

e CLDData linear hash table:
 SEEN_URLS: raw count of urls for a CLD
 WEIGHTED_SEEN_URLS: less important urls add more weight
 WEIGHTED_INCOMING_URLS: adjusted for incoming links from different CLD

* Takeaways:

* CLD with more incoming good links has more pages in lower tiers
* Higher the tier, more the urls waiting to be scheduled

e Scheduler picks urls by round robin, order in which urls entered tier

* Wrinkles to Crawling Process:
* Crawl delay:
* Robot.txt can indicate crawl delay/Yioop decides to induce delay for overloaded sites
* Url needs to be spaced in schedule at least one batch (100 urls) from url of same host
 If current schedule is full, url moved to CrawlDelayedHosts before requeued to UrlQueue
* Yioop allows recraw| based on Etag and Expires url header to accommodate changes in page

* Takeaways:

* Two fetchers can get consecutive schedules from same scheduler and return data to
Indexer out of order

* Rely on query time manipulation to try and improve accuracy

Search Time Ranking Factors

Incoming query modifications:
* Control words calculated
* Guess semantics
* Stemming/char n-gramming, rewrite abbreviations/acronyms

Iterator built from resultant terms to fetch summaries/links with all terms
Single QS:

* One iterator per term

* |ntersect iterator returns common docs with all terms, timeout added

* Grouping iterator groups links/summaries/docs with same hashes from diff partitions
* Docs scored, sorted, top 10 returned

Multiple QS:
* Network iterator
* Multiply n (expected num of results) by alpha, divide by num of QS, get resultant from all intersect iterators
* Group on name server

Scoring Docs

e Bonus scores for meeting certain criteria
* Rel: divergence from randomness

* Prox: tags

 Final doc score = DR + bonus + rel + prox

