
Scalability Challenges in Web 
Search Engines



Major components of web search engines

• Crawler: locate and download webpages for further processing

• Indexer: extracts text and features for relevance estimation from pages and 
builds inverted index

• Query processor: receives online queries, evaluates them over index, presents 
top results



Component Objectives



Parameters affecting Scalability



Scalability Issues



• Single-Node System
• single computer is dedicated to each component

• web is crawled by a single computer, usually through multithreading

• common doc repository

• Crawling:

• How it works:

• seed URLs fetched by establishing HTTP connections with web page servers

• downloaded pages stored in repository

• downloaded pages are (simultaneously on storing) parsed and extracted links are added to frontier (queue) 
to be downloaded

• hash values of discovered URLs are stored in hash table to check for duplicate links

• encountered robots.txt and cache for DNS host entries (for DNS resolution) are maintained

• Takeaways:

• threads handle each download request separately

• number of threads can be increased until bandwidth limit

• issues:

• main bottlenecks: disk access / memory (need efficient data structures)

• download order of URLs (by prioritization algorithms)

• malicious intent of website owners: such as delay attacks (cause unnecessary delays in responses), 
spider traps can degrade system resource utilization, link farms can harm crawlers since a crawler may 
allocate significant portion of its resources to download these spam pages



• Indexing:

• How it works:

• pass each doc in crawled collection through preprocessing pipeline: HTML parsing, 
link/text extraction, filtering spam, feature extraction, etc

• each doc is then represented by specific terms, which indexer converts into inverted 
index

• try to keep index compressed in main memory for efficiency

• while processing queries, relevant portions are decompressed and used

• Takeaways:

• aims for most compact index with least compression overhead

• eliminate exact (accurate, easy) / near (inaccurate, tough and costly) duplicate 
documents: reduces index size and saves computing power



• Query Processing:
• How it works:

• user’s queries are preprocessed: stemming and stopword elimination, spell correction, localization, etc

• transformed into internal representation

• looked up in result cache: for hit, cache immediately serves results; for miss, query processed over index

• Takeaways:

• main issue with cache results: freshness

• invalidate cache entries if index is updated for modifications in doc collection

• try to keep most frequently/recently accessed posting lists in main memory to speed up query processing

• query degradation:

• if query processing time exceeds allowed budget, computation is terminated and search results computed 
until then are returned

• in heavy traffic (query count exceeds processor capacity), queries are handled in degradation mode 
(partially computed search results



• Multi-Node Cluster
• parallelized execution of components

• increased page download rates due to concurrent crawling

• faster index creation and deployment due to many available computers

• query response times reduced due to query processing being parallelized over multiple computers

• user query is issued to broker node, which dispatches it to search nodes

• broker node also merges search nodes’ results and returns them

• Crawling:
• partition web across multiple parallel crawlers based on their URL hashes

• coordination issues: each crawler has local data structures so cannot check if a link has already been fetched, 
crawling order cannot be optimized globally

• naive solution: simply ignore newly discovered link if current node is not responsible for fetching it: reduces 
coverage

• delay download of non-local links until all local links are exhausted: full coverage, but redundant crawling 
possible

• communicate discovered non-local links to nodes that are responsible for fetching them: most efficient, but 
significant communication overhead

• more efficient: communicate in batches of links



• Indexing:
• created index will be stored in multiple disjoint subindexes

• each subindex acts as a separate entity that can be individually queried
• document-based partitioning: each subindex contains postings of a disjoint set of documents
• term-based partitioning: each part contains a set of posting lists associated with a disjoint set of terms
• docs can also be clustered by topic: each cluster is assigned to a separate node

• Query Processing:
• document-based partitioning:

• broker issues query to search nodes

• top k results are computed parallely and returned to broker
• merging is a trivial operation since global collection stats are available to all nodes and so relevance scores are 

compatible
• better load balancing, lower processing times, better fault tolerance

• term-based partitioning:
• query issued only to nodes containing posting lists for those terms
• partial doc scores are computed on nodes and then merged into global resultset by broker
• lower performance, higher query throughput

• topical partitioning:
• collection selection techniques determine which nodes will process query

• collection selection: broker maintains summaries of collections in each search node and issues query selectively, 
according to relevance of collections to query



• Multi-Cluster Site
• multiple clusters are built within a search site to run many instances of the three components
• each crawling cluster is specialized in fetching a certain type of content (e.g., news pages)
• for every crawled collection, an indexing cluster builds a corresponding index served by separate search 

clusters (each has its own broker)
• federator blends results from multiple brokers and returns final result
• Crawling:

• usually, one large cluster crawling entire web and small-scale clusters that run focused web crawlers to harvest 
web selectively according to a selected theme (e.g., news pages, blogs, images, academic papers)

• Indexing:
• creates replicas of index on multiple clusters
• index pruning:

• objective is to create a small web index containing postings of docs that are more likely to appear in future 
search results and process queries only over this index

• tiering:
• index is disjointly partitioned into multiple tiers (subindexes) based on quality of documents on separate 

cluster
• tiers are ordered in increasing order of average document quality and hit by queries in this order

• Query Processing:
• constructing multiple copies of same query processing cluster and replicating same index on these clusters 

increases query processing throughput

• for pruned index: queries first processed on pruned index then full index
• for tiered index: query is sequentially processed over tiers, in increasing quality order of tiers



• Multi-Site Engine
• most sophisticated architecture: distributes all three components over multiple, geographically distant 

sites

• Crawling: sites crawl web pages in geographical neighborhood

• Indexing: disjoint indexes are built from local doc collections by language-based or region-based 
partitioning

• Query Processing: queries are first processed on local sites, then forwarded to non-local sites for 
further evaluation, and all results are merged by initial local site



Open Issues

• Crawling
• effective web partitioning: come up with techniques to accurately identify locations of web sites and 

map them to closest crawling sites 

• Indexing
• tiering: more clarity needed on how to optimally select number and sizes of tiers, and how to place 

docs in tiers

• Query Processing
• freshness: identify and refresh stale cache entries before query requests without major 

computational overhead



Reference

B. Cambazoglu and R. Baeza-Yates, "Scalability Challenges in Web 
Search Engines," in Synthesis Lectures on Information Concepts, 
Retrieval, and Services, vol. 7, 2011, pp. 27-50. doi: 10.1007/978-3-
642-20946-8_2.


	Slide 1: Scalability Challenges in Web Search Engines
	Slide 2: Major components of web search engines
	Slide 3: Component Objectives
	Slide 4: Parameters affecting Scalability
	Slide 5: Scalability Issues
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Open Issues
	Slide 14: Reference

