Scalability Challenges in Web
Search Engines

Major components of web search engines

* Crawler: locate and download webpages for further processing

* Indexer: extracts text and features for relevance estimation from pages and
builds inverted index

* Query processor: receives online queries, evaluates them over index, presents
top results

Component Objectives

Table 1: The main quality and efficiency objectives in crawling, indexing, and query processing

Component Quality objectives Efficiency objectives
high web coverage
Crawling high page freshness high download rate

high content quality
short deployment cycle
Indexing rich features high compactness
fast index updates
high precision
Query high recall low average response time
processing result diversity bounded response time

high snippet quality

Parameters affecting Scalability

Table 2: The parameters that affect the scalability of a search engine

Component Internal parameters External parameters
rate of web growth
Crawlin e rate of web fhan e
8 available network bandwidth o
amount of malicious intent
. amount of spam content
Indexing amount of hardware e
amount of duplicate content
amount of hardware
Query :
. cache hit rate peak query traffic
processing

peak query processing throughput

Scalability Issues

-

(r

Single node

Multi-node cluster\

~

Multi-cluster site

\

Multi-site engine

Crawling

DNS caching
multi-threading
data structures
politeness
mirror detection
link farm detection
spider trap detection

link exchange
web partitioning
web repartitioning

focused crawling

web partitioning
crawler placement

Indexing

index creation
index maintenance
index compression
document id reassignment
duplicate elimination

index partitioning
load balancing
document clustering

full index replication
index pruning
tiering

partial index replication

Query
processing

caching
early termination
query degradation
personalization

o

h bot detection /
\\searc

collection selection

/

tier selection

J

query routing
query forwarding
search site placement

_/

Figure 2: Issues that have an impact on scalability.

* Single-Node System
* single computer is dedicated to each component
* web is crawled by a single computer, usually through multithreading

e common doc repository
* Crawling:
* How it works:

seed URLs fetched by establishing HTTP connections with web page servers
downloaded pages stored in repository

downloaded pages are (simultaneously on storing) parsed and extracted links are added to frontier (queue)
to be downloaded

hash values of discovered URLs are stored in hash table to check for duplicate links
encountered robots.txt and cache for DNS host entries (for DNS resolution) are maintained

* Takeaways:

threads handle each download request separately

number of threads can be increased until bandwidth limit

issues:
* main bottlenecks: disk access / memory (need efficient data structures)
* download order of URLs (by prioritization algorithms)

* maliciousintent of website owners: such as delay attacks (cause unnecessary delaysin responses),
spider traps can degrade system resource utilization, link farms can harm crawlers since a crawler may
allocatessignificant portion of its resources to download these spam pages

* Indexing:
* How it works:

* pass each doc in crawled collection through preprocessing pipeline: HTML parsing,
link/text extraction, filtering spam, feature extraction, etc

* each docis then represented by specific terms, which indexer converts into inverted
index
* try to keep index compressedin main memory for efficiency
* while processing queries, relevant portions are decompressed and used
* Takeaways:
e aims for most compact index with least compression overhead

 eliminate exact (accurate, easy) / near (inaccurate, tough and costly) duplicate
documents: reduces index size and saves computing power

* Query Processing:
* How it works:
e user’s queries are preprocessed: stemming and stopword elimination, spell correction, localization, etc
* transformed into internal representation
* looked up in result cache: for hit, cache immediately serves results; for miss, query processed over index
* Takeaways:
* mainissue with cache results: freshness
* invalidatecache entries if indexis updated for modificationsin doc collection
* try to keep most frequently/recently accessed posting lists in main memory to speed up query processing
e query degradation:

* if query processing time exceeds allowed budget, computation isterminated and search results computed
until then are returned

* in heavy traffic (query count exceeds processor capacity), queries are handled in degradation mode
(partially computed search results

Multi-Node Cluster

 parallelized execution of components
increased page download rates due to concurrent crawling
faster index creation and deployment due to many available computers
e query response times reduced due to query processing being parallelized over multiple computers
e user query is issued to broker node, which dispatches it to search nodes
broker node also merges search nodes’ results and returns them
Crawling:
* partition web across multiple parallel crawlers based on their URL hashes

e coordination issues: each crawler has local data structures so cannot check if a link has already been fetched,
crawling order cannot be optimized globally

* naive solution:simplyignore newly discovered link if current node is not responsible for fetching it: reduces
coverage

* delaydownload of non-locallinks until all local links are exhausted: full coverage, but redundantcrawling
possible

 communicatediscovered non-locallinks to nodes that are responsible for fetching them: most efficient, but
significant communication overhead

* more efficient: communicatein batches of links

* Indexing:
* created index will be stored in multiple disjoint subindexes
* each subindexacts as a separate entity that can be individually queried
* document-based partitioning: each subindex contains postings of a disjoint set of documents

* term-based partitioning: each part contains a set of posting lists associated with a disjointset of terms
* docs can also be clustered by topic: each cluster is assigned to a separate node

* Query Processing:
* document-based partitioning:
* brokerissues query to search nodes
* top k results are computed parallelyand returned to broker

* merging is a trivial operation since global collection stats are availableto all nodes and so relevance scores are
compatible

* better load balancing, lower processing times, better fault tolerance
* term-based partitioning:
* query issued only to nodes containing posting lists for those terms
» partialdoc scores are computed on nodes and then merged into globalresultset by broker
* lower performance, higher query throughput
* topical partitioning:
» collectionselection techniques determine which nodes will process query

* collectionselection: broker maintainssummaries of collectionsin each search node and issues query selectively,
according to relevance of collections to query

Multi-Cluster Site
* multiple clusters are built within a search site to run manyinstances of the three components
» each crawling cluster is specialized in fetching a certain type of content (e.g., news pages)
 for every crawled collection, an indexing cluster builds a corresponding index served by separate search
clusters (each has its own broker)
» federator blends results from multiple brokers and returns final result
* Crawling:

* usually, one large cluster crawling entire web and small-scale clusters that run focused web crawlers to harvest
web selectively according to a selected theme (e.g., news pages, blogs, images, academic papers)

* Indexing:
* creates replicas of index on multiple clusters
* indexpruning:

e objectiveisto create a small web index containing postings of docs that are more likely to appearin future
search results and process queries only over this index

* tiering:
* indexis disjointly partitioned into multiple tiers (subindexes) based on quality of documents on separate
cluster
* tiersare ordered inincreasing order of average document qualityand hit by queries in this order

* Query Processing:

» constructing multiple copies of same query processing cluster and replicatingsame index on these clusters
increases query processing throughput

* for pruned index: queries first processed on pruned index then full index
» for tiered index: query is sequentially processed over tiers, in increasing quality order of tiers

* Multi-Site Engine

* most sophisticated architecture: distributes all three components over multiple, geographically distant
sites

* Crawling: sites crawl web pages in geographical neighborhood

* Indexing: disjoint indexes are built from local doc collections by language-based or region-based
partitioning

* Query Processing: queries are first processed on local sites, then forwarded to non-local sites for
further evaluation, and all results are merged by initial local site

Open Issues

* Crawling

 effective web partitioning: come up with techniques to accurately identify locations of web sites and
map them to closest crawling sites

* Indexing

* tiering: more clarity needed on how to optimally select number and sizes of tiers, and how to place
docs in tiers

* Query Processing

* freshness: identify and refresh stale cache entries before query requests without major
computational overhead

Reference

B. Cambazoglu and R. Baeza-Yates, "Scalability Challenges in Web
Search Engines," in Synthesis Lectures on Information Concepts,
Retrieval, and Services, vol. 7, 2011, pp. 27-50. doi: 10.1007/978-3-

642-20946-8_2.

	Slide 1: Scalability Challenges in Web Search Engines
	Slide 2: Major components of web search engines
	Slide 3: Component Objectives
	Slide 4: Parameters affecting Scalability
	Slide 5: Scalability Issues
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Open Issues
	Slide 14: Reference

