Documenting a large-scale IRLBot crawl

Paper Goals

* Issues today:

* Assumption: efficient crawling needs heavily parallelized architecture, more
hardware, thus great financial investment

* Prior crawls are usually not documented too well
* No standard way to compare crawling performances
* Lack of transparency of crawling in industry giants

* No provisions to handle spam

* Overview:
* New method proposed to analyze web crawl performance
* Break down IRLBot crawl experiment
 Compare crawl coverage to commercial search engines

Understanding web crawls

* Crawler operation
* Crawl cycle:

Parsing (maintainingconcurrent HTTP sessions and parsing HTML)
Eliminate duplicate URLs

Frontier ranking (seen but not-yet-crawled URLs ranking)

Admission control on pending URLs using ranks computed in real-time
DNS lookup

Enforce robots.txt directives of crawled websites

Adhere to politeness rate limits that prevent crashing of individual servers

* Factors:

D: number of downloaded pages

q: fraction of D thatis error-free HTML content

h: number of crawl servers

|: average locally unique links per page

p: fraction of | that is globally unique

S: target crawl speed

Crawler design is a tradeoff between {D/h, S/h, g, I}

Crawling process,
challenges, prior work

* Duplicate elimination
* First generation:
* Either kept all data in RAM or used random disk access to verify URL unigueness
e Second generation:

* Disk-seek replaced with batch-sort that periodically scanned file of previously-seen URLs and
merged new URLs in

e Third generation:
* Focused on horizontal scalability (increasing h)
 Parallelize URL workload across server clusters/p2p networks

* Ranking and admission control .
[comparison with other implementations]

* Previous literature doesn't use real-time spam avoidance or global frontier prioritization

e Other approaches such as OPIC and PageRank:
 Compute graph-theoretic metrics for ranks
» Use offline calculations due to high input/output and CPU cost

* Open-source implementations don’t publish performance/operational details and
need substantial resources (high h)

* Discussion
* Aim should be to surpass prior crawls in all four parameters, i.e. {D/h, S/h, q, I}
* Important factors for analysis: scalability and average crawl depth

 Why consider average crawl depth?

* Controls spam likelihood, number of crawled hosts/domains/IPs (cache size),
DNS/robots.txt workload, complexity of politeness rate-limiting, internet coverage

 |IRLBot specifications:

* m(num of seed nodes)=h=1, max g, unrestricted |, S/D outside control (based
on university bandwidth)

Proposed method for

Page-level Analysis dovnmenting (large.

scale) IRLBot crawl

e Admitted URLs

* IRLBot handling redirects in normal URLs:
* Avoid spending bandwidth on lengthy redirect spam

e Each 301 and 302 redirect HTTP is treated as new link- sent it for regular
unigueness verification and then admission control

» Redirects need to pass spam-related budget enforcement before reattempt
* Makes retry latency dependent on corresponding domain’s current rank/URL backlog

 Crawled URLs

* Possible reasons for failure:

e Connect and receive failures, spammer stalling tactics: host did not provide data in
time/dragged out download for long, serving infinite data streams, missing status line in HTTP
response, failed decompression: gzip corruption, bogus encoding, invalid HTTP status

code, unparsable URL, violated chunking syntax/exceeded max size on unchunking, contained
HTTP headers over max size

* Focus on crawling HTML pages

e Downloaded URLs

* The "accept: text/html" header with all non-robots.txt requests is universally
ignored by internet servers

* Links
* Ignored
* Tested links for correctness of syntax (invalid syntax/excessive length)

» Extensive black-list of non-HTML extensions: did not reduce workload enough,
filter can be discarded

 Removed same-page duplicates

* Web-graph created by replacing URLs with 64-bit hashes to feed into admission
control in URL cycle

Documenting network

Server-level Analysis interactions

* DNS and robots

 Crawler interaction with remote hosts and their authoritative DNS servers
* |IRLBot only issued DNS queries for URLs passing budget enforcer

* |f a3 website fails to provide legit robots.txt, it prevents IRLBot from knowing
which parts of website to exclude, and so the whole host treated as non-
crawlable

» Servers sending HTTP fillers (custom error messages, redirects to default pages,
ads) instead of proper errors: provided robot files with no content-type/non-
text/plain type, assumed equivalent to not having any crawling restrictions

e Retaining only the directives that applied to either all crawlers or IRLBot
specifically

Crawl dataset growth

EXt I'a pO | at| N g C raw | S and finiteness discussion

e Stochastic model

 Webgraph of internet representedas G = (V, E)

e Crawl viewed as stochastic process {(Xn, Yn)}: n = time, Xn = crawled page that
generated link n, Yn = URL it points to

* Indicator var Qn = 1 if link (Xn, Yn) satisfies some unigueness condition (eg. Yn
not seen before) and 0 otherwise

e Expected number of links LN satisfying Qn in crawl of size N

° N N
ElLy] = > BIQul~ [plt)at
* p(t) is the growth rate of unique nodes at time t

e Expectation: p(t) starts high for small t, eventually Lt should start approaching
saturation and p(t) should become O

Data extraction
* MapReducealgorithm to estimate p(t)
Define bins [ti-A, ti+A]
Map->for each link (j, k) found in page j:
* Find bin based on j’s crawl timestamp (tj)
* Increment seen out-links (si) for it
* Map (j, k) to k’s hash (hk) and Tj [i.e. <hk, Ttj>]
e Sort URLs by hk
e Reduce-> retain smallest timestamp for each seen URL
For each bin p(ti) = ui (globallyunique linksin bin i)/si

-1 -2
10 . : . 10 . .

URLs ; ; " [data ; [dama
* K = already-crawled portion of the web i i - POWOL AL ol s L oxponcriie
z = t/K = time normalized to this crawl

p’(z) = p(zK) = corresponding uniqueness function

[J
probability
probability

ElLy] ~ K f " 5(2)dz

e r= -4 5 -5 : : : :
r=N (n o to generate LU0 00T 04 0B om0 00T 04 T06 e
LN globally unique nodes)/K crawl fraction z crawl fraction z

* Predicted: infinite hostnames and URLs (a) host (o = 0.79) (b) PLD (\ = 4)

Fig. 6. Host/PLD discovery rate p(z) in IRLbot.

| nte rn et—W| d e Cove ra ge Crawl coverage discussion

* Basic properties
* Crawl coverage: graph of visible web includes
* URLs returning 200 OK HTML content
* Nodes in frontier

 HTTP errors (provide info about redirects, dead nodes, forbidden URLs, parents of crawled pages -
> useful for merging duplicate pages, spam detection, general page tracking, backtracking crawl
tree for complaints)

* Links connecting them together

INTERNET COVERAGE OF EXISTING CRAWLS

Dataset Date Crawled (HTML 200 OK) Web graph Host graph PLD graph TLD graph
pages hosts PLDs TLDs | nodes edges nodes edges | nodes edges nodes edges
AltaVista [10] 10/99 - - - - 271M 2.1B - - - - - -
Polybot [37] 5/01 121M 5M - - - - - - - - - -
Google [7] 6/01 - - — — 1.3B 19.56B | 12.8M 395M - - - -
Mercator [11] 7/02 429M ~ 10M - — - 18.3B - — - - - -
WebFountain [21] 2004 1B - — — 4.75B 37B 19."™M 1.1B — — — -
WebBase [17] 6/07 9&M 51K - - - 4.2B - - - - - -
ClueWeb09 [20] 1/09 1B - - - 4.8B 7.9B - - - - - -
IRLbot 6/07 6.3B 117" 33M 256 41B 310B 641M 6.8B 89M 1.8B 256 46K
UbiCrawler .uk [8] 5/07 106M 114K - 1 106M 3.7B 114K - - - 1 1
IRLbot .uk 6/07 197"M 2.8M 1.2M 1 1.3B 9.5B oM 54M 1.5M 18M 1 1
TeaPot .cn [42] 1/06 837" 16.9M 790K 1 83™™ 43B 16.9M N 790K — 1 1
IRLbot .cn 6/07 209M 3.3M 539K 1 1.1B 11.9B 8.4M 103M | 711K 19."M 1 1

* TLD coverage

Allocation of budgets to individual domains

Understandinghow much of crawler bandwidthis spent
in what parts of the Internet

Site queries (site:domain) to restrict outcome to a single
domain -> how many pages of a domain in the total
index

Compare TLD coverage:

* Onesetisbase; sort domainsin descending order of
page countin base dataset

 Use fractions of crawl allocated toeach TLD
* |RLBot favored TLDs with many individual domains

TLD coverage analysis helps detect
over/underrepresented parts of web in crawl data,
understandinghow much of crawler bandwidthis spent
in what parts of the Internet

fraction of pages

0 50 100 150 200
TLD sequence number

(a) Yahoo (all)

250

|
N
T

-t
o

|
N

-t
o

|
w

fraction of pages
=

1
S

—y
o

0 10 20 30 40
TLD sequence number

(c) Yahoo (top 40)

Fig. 7.

S

fraction of page

fraction of pages

0 50 100 150 200 250
TLD sequence number

(b) IRLbot (all)

—IRLbot

0 10 20 30 40
TLD sequence number

(d) IRLbot (top 40)

TLD coverage (Google order).

Reference

S. T. Ahmed, C. Sparkman, H. -T. Lee and D. Loguinov, "Around the web
in six weeks: Documenting a large-scale crawl,” 2015 IEEE Conference
on Computer Communications (INFOCOM), Hong Kong, China, 2015,
pp. 1598-1606, doi: 10.1109/INFOCOM.2015.7218539.

