
Documenting a large-scale IRLBot crawl

Paper Goals

• Issues today:
• Assumption: efficient crawling needs heavily parallelized architecture, more

hardware, thus great financial investment

• Prior crawls are usually not documented too well
• No standard way to compare crawling performances

• Lack of transparency of crawling in industry giants

• No provisions to handle spam

• Overview:
• New method proposed to analyze web crawl performance

• Break down IRLBot crawl experiment

• Compare crawl coverage to commercial search engines

Understanding web crawls

• Crawler operation
• Crawl cycle:

• Parsing (maintaining concurrent HTTP sessions and parsing HTML)

• Eliminate duplicate URLs

• Frontier ranking (seen but not-yet-crawled URLs ranking)

• Admission control on pending URLs using ranks computed in real-time

• DNS lookup

• Enforce robots.txt directives of crawled websites

• Adhere to politeness rate limits that prevent crashing of individual servers

• Factors:
• D: number of downloaded pages

• q: fraction of D that is error-free HTML content

• h: number of crawl servers

• l: average locally unique links per page

• p: fraction of l that is globally unique

• S: target crawl speed

• Crawler design is a tradeoff between {D/h, S/h, q, l}

Crawling process,
challenges, prior work

• Duplicate elimination
• First generation:

• Either kept all data in RAM or used random disk access to verify URL uniqueness
• Second generation:

• Disk-seek replaced with batch-sort that periodically scanned file of previously-seen URLs and
merged new URLs in

• Third generation:
• Focused on horizontal scalability (increasing h)
• Parallelize URL workload across server clusters/p2p networks

• Ranking and admission control
[comparison with other implementations]
• Previous literature doesn't use real-time spam avoidance or global frontier prioritization
• Other approaches such as OPIC and PageRank:

• Compute graph-theoretic metrics for ranks
• Use offline calculations due to high input/output and CPU cost

• Open-source implementations don’t publish performance/operational details and
need substantial resources (high h)

• Discussion
• Aim should be to surpass prior crawls in all four parameters, i.e. {D/h, S/h, q, l}

• Important factors for analysis: scalability and average crawl depth

• Why consider average crawl depth?
• Controls spam likelihood, number of crawled hosts/domains/IPs (cache size),

DNS/robots.txt workload, complexity of politeness rate-limiting, internet coverage

• IRLBot specifications:
• m(num of seed nodes)=h=1, max q, unrestricted l, S/D outside control (based

on university bandwidth)

Page-level Analysis

• Admitted URLs
• IRLBot handling redirects in normal URLs:

• Avoid spending bandwidth on lengthy redirect spam
• Each 301 and 302 redirect HTTP is treated as new link- sent it for regular

uniqueness verification and then admission control
• Redirects need to pass spam-related budget enforcement before reattempt
• Makes retry latency dependent on corresponding domain’s current rank/URL backlog

• Crawled URLs
• Possible reasons for failure:

• Connect and receive failures, spammer stalling tactics: host did not provide data in
time/dragged out download for long, serving infinite data streams, missing status line in HTTP
response, failed decompression: gzip corruption, bogus encoding, invalid HTTP status
code, unparsable URL, violated chunking syntax/exceeded max size on unchunking, contained
HTTP headers over max size

• Focus on crawling HTML pages

Proposed method for
documenting (large-
scale) IRLBot crawl

• Downloaded URLs
• The "accept: text/html" header with all non-robots.txt requests is universally

ignored by internet servers

• Links
• Ignored

• Tested links for correctness of syntax (invalid syntax/excessive length)

• Extensive black-list of non-HTML extensions: did not reduce workload enough,
filter can be discarded

• Removed same-page duplicates

• Web-graph created by replacing URLs with 64-bit hashes to feed into admission
control in URL cycle

Server-level Analysis

• DNS and robots
• Crawler interaction with remote hosts and their authoritative DNS servers

• IRLBot only issued DNS queries for URLs passing budget enforcer

• If a website fails to provide legit robots.txt, it prevents IRLBot from knowing
which parts of website to exclude, and so the whole host treated as non-
crawlable

• Servers sending HTTP fillers (custom error messages, redirects to default pages,
ads) instead of proper errors: provided robot files with no content-type/non-
text/plain type, assumed equivalent to not having any crawling restrictions

• Retaining only the directives that applied to either all crawlers or IRLBot
specifically

Documenting network
interactions

Extrapolating Crawls

• Stochastic model
• Webgraph of internet represented as G = (V, E)

• Crawl viewed as stochastic process {(Xn, Yn)}: n = time, Xn = crawled page that
generated link n, Yn = URL it points to

• Indicator var Qn = 1 if link (Xn, Yn) satisfies some uniqueness condition (eg. Yn
not seen before) and 0 otherwise

• Expected number of links LN satisfying Qn in crawl of size N

•

• p(t) is the growth rate of unique nodes at time t

• Expectation: p(t) starts high for small t, eventually Lt should start approaching
saturation and p(t) should become 0

Crawl dataset growth
and finiteness discussion

• Data extraction
• MapReduce algorithm to estimate p(t)

• Define bins [ti-Δ, ti+Δ]

• Map-> for each link (j, k) found in page j:

• Find bin based on j’s crawl timestamp (τj)

• Increment seen out-links (si) for it

• Map (j, k) to k’s hash (hk) and τj [i.e. <hk, τj>]

• Sort URLs by hk

• Reduce-> retain smallest timestamp for each seen URL

• For each bin p(ti) = ui (globally unique links in bin i)/si

• URLs
• K = already-crawled portion of the web

• z = t/K = time normalized to this crawl

• p’(z) = p(zK) = corresponding uniqueness function

•

• r = N (num of links needed to generate
LN globally unique nodes)/K

• Predicted: infinite hostnames and URLs

Internet-wide Coverage

• Basic properties
• Crawl coverage: graph of visible web includes

• URLs returning 200 OK HTML content

• Nodes in frontier

• HTTP errors (provide info about redirects, dead nodes, forbidden URLs, parents of crawled pages -
> useful for merging duplicate pages, spam detection, general page tracking, backtracking crawl
tree for complaints)

• Links connecting them together

Crawl coverage discussion

• TLD coverage
• Allocation of budgets to individual domains

• Understanding how much of crawler bandwidth is spent
in what parts of the Internet

• Site queries (site:domain) to restrict outcome to a single
domain -> how many pages of a domain in the total
index

• Compare TLD coverage:

• One set is base; sort domains in descending order of
page count in base dataset

• Use fractions of crawl allocated to each TLD

• IRLBot favored TLDs with many individual domains

• TLD coverage analysis helps detect
over/underrepresented parts of web in crawl data,
understanding how much of crawler bandwidth is spent
in what parts of the Internet

Reference

S. T. Ahmed, C. Sparkman, H. -T. Lee and D. Loguinov, "Around the web
in six weeks: Documenting a large-scale crawl," 2015 IEEE Conference
on Computer Communications (INFOCOM), Hong Kong, China, 2015,
pp. 1598-1606, doi: 10.1109/INFOCOM.2015.7218539.

