High-Performance Priority
Queues tor Parallel Crawlers

Introduction

Overall search engine architecture:
* Crawler
* Indexer
e Search engine (query processing)

Crawler consists of scheduler and robots (that make http connections to download webpages)

Distributed nature of asynchronous crawler architecture: several clusters of computers spread over
multiple processors

Robots are asynchronous threads running on given set of processors and compete for resources

Communication between robots is via point-to-point individual messages among processors
* Eg. Maintain (schedule, set of r robots) pair on each processor and distribute URLs by MD5 hash/domain

Issue:

» Exponential growth of web needs parallel crawling to efficiently collect/process volumes of data

« Parallel URL process management requires efficient resource allocation and utilization
across multiple machines/threads

 Solution outline:
* A new, multi-level PQueue data structure to store URLS
Aim: efficiently feed up the (schedule, set of r robots) pairs distributed over P processors

Bulk-synchronous URL computations (communication)

Inter-node optimization
e Overall parallel computationsare performed in blocks of R URLs in each processor

Each pair has a queue of URLs to download next, regularly fed by bulk-synchronouscommunication

* Queue facilitatesthe communication between asynchronous processes
* ToprP linksare downloaded ata time

Intra-node optimization

Bulk-synchronousextraction/addition of URLs to queue

In each cycle of the bulk synchronousparallel computations, each processor has to deal with a set of
URLs to be extracted from its local priority queue and a set of URLs to be inserted in the queue, and yet

another set of URLs to be sent to other processors
Algorithms proposed for these operations

Assuming that T queues are maintained in parallel: T insert-many and extract-many operationscan be
run at a time

Parallel Crawling

* Overall parallel crawling process:

 Cluster architecture setup: P processors, each with a priority queue, and a
scheduler and r robots all on separate threads

* Operation:
« Each processis treated as a bulk-synchronous parallel computer

« Computationis performed in "supersteps"
» Local processing/sending messages to other processors
 Barrier synchronization of all processors

« Messages are made available at their destination processors by underlying communication
library

« Main BSP (in crawler) runs in an infinite loop where each cycle uses
functions receiveMessages(), run(), sendMessages() and bsp sync()

« If idle robots are not found, exracted URLs are maintained in a pending jobs queue Q
« Downloaded webpages represented by graph

Priority Queues: log worst case approach

 Complete binary tree represents the PQueue (every item in the queue
is a leaf node)

* Priorities are assigned by PageRank

* Internal nodes are used to maintain a continuous binary tournament
to determine the item with higher priority at each step

 update_ cbt() operation:
» Leaf node K's priority is updated

« Tournament is updated by performing matches along the unigue path
between k and the root of the tree

PQueue is implemented as:

« CBT][] of 2N nodes: maintains match results amongst nodes
» Leaf[] of N nodes: map between items and leaves
 Prio[] of N nodes: maintains priority values

Highest priority (identifier i = CBT[1]) is maintained in Prio[i], and associated leaf
position is Leaf[i] of the CBT

Deletion: removing the child with lower priority between the children of the
parent of the rightmost leaf, and exchanging it with the target leaf to be deleted

Insertion: appending a new rightmost leaf and updating the CBT by expanding in
two leaves the first leaf of the tree

Update-cbt worst case: O(logN)
Near-perfect load balance while inserting and extracting URLs

Suitable when PQueue is to be maintained in main memory

procedure insertion-update-cbt(i, S, k)
h:= |lgk];
for j := 1 to h do I,[j]:= CBT[k div 2"~ 7*1];
Build up array D, from I, without duplicates;
for j:=1to |D,| do
a:= Dyj];
e:= SELECT(Prio[a] U S, n);

Priofa]:= { = | z € (Priofa] U §) and z > e }; procedure ezxtraction-update-cbt(k)

S:={z|x € (Priola) US) and z < e };
endfor
Prio[i]:= S;
end
Figure 1: Insertion update.

h:= [lgk];
for j := h downto 1 do

a:= 2 (k div 2h—911);

b:=a+1;

2z:= MIN(Prio[CBT[a]]);

y:= MIN(Prio[CBTb]]);

if (x <y) then swap(a,b);

CBT[k div 2" 7+1]:= q;

e:= SELECT(Prio[a] U Prio[b], n);

Prio[a]:= { = | x € (Prio[a] U Prio[b]) and = > e }:
Prio[b]:= { z | z € (Prio[a] U Prio[b]) and z < e };

endfor

Figure 2: Extraction update.

Priority Queues: amortized cost approach

* Incremental sorting problem: Given a set A of m numbers, output the elements of A from smallest to
largest, so that the process can be stopped after k elements have been output, for any k that is unknown
to the algorithm.

* QuickSelect algorithm finds the smallest element of arrays A[0, m - 1], A[1,m-1], ..., A[k-1,m-1]

* This leaves the k smallest elements sorted in A[O, k - 1]:

O(kn) complexity avoided by reusing the work across calls to Quickselect

When QuickSelect is called on A[1, m-1], a sequence of pivots has already been used to partiallysort A in the
previous call on A[0, m - 1]

These pivots are stored in stack S
For next call: check if p (max valuein S) is the index of sought minimum value:

* Yes: pop and return A[p]

* No: elements between A[1, p-1] are smaller than the rest (from previous partitioning), so run QuickSort on that array
and push new pivots into S

Worst case: O(m+klogk)

 PQueue implemented over QuickHeap:

* By QuickSelect, the array has the following structure [from right to left]: start with pivot,
chunk of elements on left is smaller; reach another pivot, and so on

 Resembles a semi-ordered heap structure
* PQueue implemented over array processed with QuickSelect

* QuickHeap implementation:
* Circular array heap to store all the elements

 stack S to store the positions of pivots partitioning heap (top is the smallest pivot, bottom
is the pivot corresponding to)

* integer idx to indicate the first cell of the QuickHeap
* integer capacity to indicate the size of heap

* Construction: Elements added to tail (heap[S[0]%cap]) and extracted from head
(heap[idx%cap])

» Top priority elements will be found in first chunk (heap cells between idx and S[top]-1)

* To insert a new element: compare with each pivot until the chunk it falls in is found and
create a new element there

* Suitable when secondary memory efficiency is important

insert(Elem x)
pidz «— 0 // moving pivots, starting from pivot S[pidz]
While TRUE Do
heap|(S|[pidz] + 1) mod capacity] «
heap|S|pidz] mod capacity]
S|pidz] « S|pidx]| + 1
If (|S| = pidz + 1) OR
(heap[S|pidz + 1] mod capacity] < z) Then
heap[(S[pidz] — 1) mod capacity| «+ z
Return // we found the chunk
Else
heap[(S[pidxz] — 1) mod capacity] —
heap|(S[pidz + 1] + 1) mod capacity]
pidz «— pidx + 1 // go to next chunk

Figure 4: Insertions on the quickheap.

extractR(int R)
finalPos « idx + R — 1, top « S.top()
While finalPos > top Do
While idz < top Do Report heaplidz|, idz «— idz + 1
S.pop(), top «— S.top() // we consumed this chunk
If idz = finalPos + 1 Then Return // we are done
// else, we have to find finalPos. We use quickselect and
first « idz, last « top() — 1 // push on S pivot positions
While TRUE Do // greater than or equal to final Pos
pidz « random/|first, last]
pidz’ «— partition(heap, heap|pidz), first,last)
If pidz’ < finalPos Then first « pidz + 1
Else
S.push(pidzx)
If pidz = finalPos Then top = pidz, Break
Else last « pidr — 1
While idz < top Do Report heaplidz],idz « idz + 1
S.pop() // we have consumed this chunk

Figure 5: Extraction of R minima.

Experimentation

e Advantage of working with chunks of URLs in each priority queue
rather than individual URLs : comparing QuickHeap to Binary Heap
implementation

8e+07 1
* Performance metric: gt T
.. Be+07 g X X
* number of key (URL priority) R S
. S + e gy
comparisons I a—
2. \.\.\"‘ RC T I— L
P g 3e+07 E , o B .'--»--. ________ I E— .
¢ Ana|ySIS. o BH, cl Apro4 —+— -
> 26+07 - BH, cl May:04 s S |
- BH, gr May'04 -3
* QHeap outperforms BHeap o7 | BHLaSep0s 5
for wide range as R scales up o QriciMayod —o-
1e+07 QlH’, gr Sep'04 A | | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R

Figure 8: Number of key comparisons for different
web samples.

120000 " QH 10%, cl Apr04 ——
100000 T GH 10%, 1 May0d -
* Number of 1/O disk operations R\ S =
* BHeap has too many random disk o x Qi 30%, 9r Sen'04 &
accesses (so cannot compare) ; o @
* QHeap performs well as R scales up .
e CBT has similar performance, but %g -
QHeap pe rforms better than CBT 000 2000 3000 4000 5oooReooo 7000 8000 900010000

for disk access operations (20%
Figure 9: Number of I/O operations for different

better) web samples, and a ram size which is 10 % and 30%
of the queue size.

* Loa

d balancing in CBT

Experimentation using T OpenMP threads in Intel’s
Quad-Xeon multi-core processor with 8 CPUs

Repeatedly executed an extract-top(R/T) operation
immediately followed by a corresponding insert-
many(R/T) operation on CBT queue

Speed up = running-time(T = 1)/running-time(T),
namely the time with 1 thread to the time obtained
with T threads

Near-optimal speed up observed

CBT queue is able to achieve very good load balance,
namely on average all computations executed in each
CBT by each thread are fairly similar

Efficiency = X/Y,

where X is the average amount of computations
performed in each CBT and Y is the average maximum
performed in any CBT

Optimal balance is achieved when efficiency is equal
to1l

Table 1 results show values very close to 1 for both
operations

Similar performance not possible for QuickHeap: high

imbalance in the extract-top(R/T) operation due to the

its amortized cost strategy

—
)

Speed Up

S = N W Rk LN 0 O
T

1 2 4 8 16 32 64

Number of openMP threads

Figure 10: Speedups for T=1, 2, 4, 8, 16, 32 and 64
light threads.

T R/T Extract Insert
1 8,000 1.00 1.00
2 4,000 0.99 0.98
4 2,000 0.98 0.97
8 1,000 0.95 0.93

Table 1: Efficiencies of extract and insert operations.

Reference

* M. Marm, R. Paredes, and C. Bonacic. "High-performance priority
queues for parallel crawlers." In Proceedings of the 10th ACM
workshop on Web information and data management, pp. 47-54. 2008.

	Slide 1: High-Performance Priority Queues for Parallel Crawlers
	Slide 2: Introduction
	Slide 3
	Slide 4: Parallel Crawling
	Slide 5: Priority Queues: log worst case approach
	Slide 6
	Slide 7
	Slide 8: Priority Queues: amortized cost approach
	Slide 9
	Slide 10
	Slide 11: Experimentation
	Slide 12
	Slide 13
	Slide 14: Reference

