
High-Performance Priority 
Queues for Parallel Crawlers



Introduction
• Overall search engine architecture:

• Crawler

• Indexer

• Search engine (query processing)

• Crawler consists of scheduler and robots (that make http connections to download webpages)

• Distributed nature of asynchronous crawler architecture: several clusters of computers spread over 
multiple processors

• Robots are asynchronous threads running on given set of processors and compete for resources

• Communication between robots is via point-to-point individual messages among processors
• Eg. Maintain (schedule, set of r robots) pair on each processor and distribute URLs by MD5 hash/domain

• Issue:
• Exponential growth of web needs parallel crawling to efficiently collect/process volumes of data

• Parallel URL process management requires efficient resource allocation and utilization 
across multiple machines/threads



• Solution outline:

• A new, multi-level PQueue data structure to store URLs

• Aim: efficiently feed up the (schedule, set of r robots) pairs distributed over P processors

• Bulk-synchronous URL computations (communication)

• Inter-node optimization
• Overall parallel computations are performed in blocks of R URLs in each processor

• Each pair has a queue of URLs to download next, regularly fed by bulk-synchronous communication

• Queue facilitates the communication between asynchronous processes

• Top rP links are downloaded at a time

• Intra-node optimization
• Bulk-synchronous extraction/addition of URLs to queue

• In each cycle of the bulk synchronous parallel computations, each processor has to deal with a set of 
URLs to be extracted from its local priority queue and a set of URLs to be inserted in the queue, and yet 
another set of URLs to be sent to other processors

• Algorithms proposed for these operations

• Assuming that T queues are maintained in parallel: T insert-many and extract-many operations can be 
run at a time



Parallel Crawling

• Overall parallel crawling process:
• Cluster architecture setup: P processors, each with a priority queue, and a 

scheduler and r robots all on separate threads

• Operation:
• Each process is treated as a bulk-synchronous parallel computer

• Computation is performed in "supersteps"

• Local processing/sending messages to other processors

• Barrier synchronization of all processors

• Messages are made available at their destination processors by underlying communication 
library

• Main BSP (in crawler) runs in an infinite loop where each cycle uses 
functions receiveMessages(), run(), sendMessages() and bsp sync()

• If idle robots are not found, exracted URLs are maintained in a pending jobs queue Q

• Downloaded webpages represented by graph



Priority Queues: log worst case approach

• Complete binary tree represents the PQueue (every item in the queue 
is a leaf node)

• Priorities are assigned by PageRank

• Internal nodes are used to maintain a continuous binary tournament 
to determine the item with higher priority at each step

• update_cbt() operation:
• Leaf node k's priority is updated

• Tournament is updated by performing matches along the unique path 
between k and the root of the tree



• PQueue is implemented as:
• CBT[] of 2N nodes: maintains match results amongst nodes

• Leaf[] of N nodes: map between items and leaves

• Prio[] of N nodes: maintains priority values

• Highest priority (identifier i = CBT[1] ) is maintained in Prio[i], and associated leaf 
position is Leaf[i] of the CBT

• Deletion: removing the child with lower priority between the children of the 
parent of the rightmost leaf, and exchanging it with the target leaf to be deleted

• Insertion: appending a new rightmost leaf and updating the CBT by expanding in 
two leaves the first leaf of the tree

• Update-cbt worst case: O(logN)

• Near-perfect load balance while inserting and extracting URLs

• Suitable when PQueue is to be maintained in main memory





Priority Queues: amortized cost approach

• Incremental sorting problem: Given a set A of m numbers, output the elements of A from smallest to 
largest, so that the process can be stopped after k elements have been output, for any k that is unknown 
to the algorithm.

• QuickSelect algorithm finds the smallest element of arrays A[0, m − 1], A[1,m−1], ..., A[k−1,m−1]

• This leaves the k smallest elements sorted in A[0, k − 1]:
• O(kn) complexity avoided by reusing the work across calls to Quickselect

• When QuickSelect is called on A[1, m-1], a sequence of pivots has already been used to partially sort A in the 
previous call on A[0, m − 1]

• These pivots are stored in stack S

• For next call: check if p (max value in S) is the index of sought minimum value:
• Yes: pop and return A[p]

• No: elements between A[1, p-1] are smaller than the rest (from previous partitioning), so run QuickSort on that array 
and push new pivots into S

• Worst case: O(m+klogk)



• PQueue implemented over QuickHeap:
• By QuickSelect, the array has the following structure [from right to left]: start with pivot, 

chunk of elements on left is smaller; reach another pivot, and so on

• Resembles a semi-ordered heap structure

• PQueue implemented over array processed with QuickSelect

• QuickHeap implementation:
• Circular array heap to store all the elements

• stack S to store the positions of pivots partitioning heap (top is the smallest pivot, bottom 
is the pivot corresponding to ∞)

• integer idx to indicate the first cell of the QuickHeap

• integer capacity to indicate the size of heap

• Construction: Elements added to tail (heap[S[0]%cap]) and extracted from head 
(heap[idx%cap])

• Top priority elements will be found in first chunk (heap cells between idx and S[top]-1)

• To insert a new element: compare with each pivot until the chunk it falls in is found and 
create a new element there

• Suitable when secondary memory efficiency is important





Experimentation
• Advantage of working with chunks of URLs in each priority queue 

rather than individual URLs : comparing QuickHeap to Binary Heap 
implementation

• Performance metric: 
• number of key (URL priority)

comparisons

• Analysis:
• QHeap outperforms BHeap 

for wide range as R scales up



• Number of I/O disk operations
• BHeap has too many random disk

accesses (so cannot compare)

• QHeap performs well as R scales up

• CBT has similar performance, but 
QHeap performs better than CBT 
for disk access operations (20% 
better)



• Load balancing in CBT
• Experimentation using T OpenMP threads in Intel’s 

Quad-Xeon multi-core processor with 8 CPUs
• Repeatedly executed an extract-top(R/T) operation 

immediately followed by a corresponding insert-
many(R/T) operation on CBT queue

• Speed up = running-time(T = 1)/running-time(T),
namely the time with 1 thread to the time obtained 
with T threads

• Near-optimal speed up observed
• CBT queue is able to achieve very good load balance, 

namely on average all computations executed in each 
CBT by each thread are fairly similar

• Efficiency = X/Y ,
where X is the average amount of computations 
performed in each CBT and Y is the average maximum 
performed in any CBT

• Optimal balance is achieved when efficiency is equal 
to 1

• Table 1 results show values very close to 1 for both 
operations

• Similar performance not possible for QuickHeap: high 
imbalance in the extract-top(R/T) operation due to the 
its amortized cost strategy



Reference

• M. Marin, R. Paredes, and C. Bonacic. "High-performance priority 
queues for parallel crawlers." In Proceedings of the 10th ACM 
workshop on Web information and data management, pp. 47-54. 2008.


	Slide 1: High-Performance Priority Queues for Parallel Crawlers
	Slide 2: Introduction
	Slide 3
	Slide 4: Parallel Crawling
	Slide 5: Priority Queues: log worst case approach
	Slide 6
	Slide 7
	Slide 8: Priority Queues: amortized cost approach
	Slide 9
	Slide 10
	Slide 11: Experimentation
	Slide 12
	Slide 13
	Slide 14: Reference 

