
ENHANCING THE QUEUING
PROCESS FOR YIOOP'S
SCHEDULER

Committee:

Dr. Chris Pollett (Advisor)

Dr. Robert Chun

Dr. Ben Reed
Gargi Sheguri

AGENDA

• Introduction

• Background

• Preliminary Work

• Deliverable#1: Bonus Factors

• Deliverable#2: SERP Freshness

• Deliverable#3: Improving

Queries

• Conclusion

20XX

INTRODUCTION

• Yioop is a PHP-based, open-source web search engine

• Aim: Improve the overall quality of search results generated for a user query

• There are three major processes in search: crawling, indexing, and retrieval

• This project works on improving the indexing and retrieval processes

• Deliverables:

• Uplifting certain results by incorporating new bonus factors

• Improving the overall "freshness" of the SERP (Search Engine Results Page) with latest

results

• Increasing the number of results generated and making lookup faster

20XX

BACKGROUND

20XX

High-Level Components of Yioop Search

• Fetchers:

• Download web pages

• Perform initial parsing of downloaded content

• Scheduler:

• Creates batches of URLs to be crawled next by priority

• Indexer:

• Handles pre-processing and storage of documents in index

• Query Processor:

• Processes users' search queries

• Handles lookup

20XX

BACKGROUND

Document-at-a-time Processing

• Each document in the index is treated as an independent entity

• Scores are provided to individual documents based on the search terms

• The matched documents are sorted and the top k results are returned to

form the SERP

Inverted Indexing

• Mapping terms to the documents they appeared in

• Each term (key) points to a list of positions of documents in the index

• Fast and efficient retrieval in large indexes

Dictionary Posting List

20XX

BACKGROUND

Indexing in Yioop

• Yioop uses a directory of files to store its inverted index

• This is because the entire index is too large to fit into main

memory

• Index is thus divided into several independent partitions

• Important index components:

• documents

• Stores info about partition, document summaries,

compression formats used

• positions_doc_map

• Holds serially numbered directories (for each partition)

• Made up of:

• doc_map

• Scoring information for constituent terms

• positions

• Locations of term in documents

• postings

• Posting lists for term

• dictionary

• B+ tree mapping term_id to cumulative posting list

20XX

BACKGROUND

Meta Keywords in Yioop

• Query parameters denoted as <key:value> pairs

• Can be included in search queries to filter results by specific criteria

• Yioop automatically adds certain meta keywords to queries, such as

lang and safe

• Users can specify additional meta keywords in the search query

• If the no:guess keyword is added to the query, no additional meta

keywords are assumed from the search terms

20XX

BACKGROUND

Bloom Filters

• Aimed at creating memory-efficient data structure to check membership in sets

• Uses multiple hash functions to map member elements to positions in bit array

• Same functions are used to test for membership

• If the bits in the corresponding to the hash outputs are set, the element is

present in the set

• Constant time complexity for insertion and membership testing

• Primary advantage: no false negatives

DELIVERABLE#1: BONUS FACTORS INSPIRED BY YANDEX

20XX

What are bonus factors?

What is Yandex Search?

• Boost certain results in SERP ranking

• Add "bonus" scores to documents meeting
certain criteria in index

• Aim: Improving Click-Through-Rate (CTR)

• Eg. Documents wherein the query terms
appearing in the page title or URL get
bonus scores

• Russian multinational IT company, most
popular for its search engine

• Often considered to be Russia's equivalent
to Google

• Close to 45GB of source code was leaked in
January 2023

• Leak revealed more than 1,920 search
factors used by Yandex

DELIVERABLE#1: BONUS FACTORS

20XX

NUM_SLASHES_BONUS

• Based on Yandex Search's
FI_NUM_SLASHES bonus

• Boosts results with lesser '/' in URL

• Idea: the further a page is from the
"home" page, the less important it is

WIKI_BONUS

• Based on Yandex Search's FI_IS_WIKI bonus

• Boosts Wikipedia page results

• Idea: Wikipedia pages tend to be more
relevant than other results

DELIVERABLE#1: BONUS FACTORS INSPIRED BY YANDEX

DELIVERABLE#1: BONUS FACTORS

20XX

Why Wikipedia?

• Most popular web search engines boost Wikipedia results

• Reliable and trustworthy source of information due to collaborative nature

• Pages usually have a list of references, easy to verify accuracy

• Updated frequently

• Exhaustive range of topics

DELIVERABLE#1: BONUS FACTORS INSPIRED BY YANDEX

IMPLEMENTATION

20XX

• DOC_ID format in Yioop:

• Length: 24 bytes

• Uniquely identifies an

indexed entry

• Doctype code:

▪ Holds descriptive information

▪ Represents type of document (eg. binary, image, text, etc)

• Modifying doctype code:

• Length: 1 byte

• Number of Slashes representation:

▪ 0: Between 0 and 1 slashes

▪ 1: Between 2 and 4 slashes

▪ 2: Between 5 and 6 slashes

▪ 3: 7 or more slashes

IMPLEMENTATION

20XX

How does it work?

• When the score for a matched document is being calculated, the code calls specific

functions to check for additional bonuses

• If the 3rd bit of the doctype code of a found doc_id is set, the WIKI_BONUS is added to the

final score

• A fraction of the total NUM_SLASHES_BONUS is added the final score based on the count of

'/' in the document URL

• The first two bits of the doctype code of a found doc_id are extracted to find this fraction

• The number NUM_SLASHES_BONUS is divided by this extracted value and added to the final

score

• Thus, the bonus factor added is inversely proportional to the depth of the page

EXPERIMENTATION: SETUP

20XX

EXPERIMENTATION: WIKI_BONUS

20XX

• > 0.5 values boosted Wikipedia too far up

o Wikipedia results appeared in the top three results
on searching for google, verizon, weather, apple

o It even appeared as the top result in some cases

o It beat URLs from the corresponding domain sites

• = 0.5 gave the best results

o The domain site appeared as the top result

o Wikipedia results appeared after seemingly more
important URLs, but in the top 10

• < 0.5 did not boost some Wikipedia results enough

o Wikipedia results ranked lower than some deep-
nested URL subdirectories

o Sometimes Wikipedia results didn't make it into the
top 10

EXPERIMENTATION:NUM_SLASHES_BONUS

20XX

• > 0.5 values worsened the SERP ranking: domain sites
came up higher than any nested pages, even if the
latter were more relevant

o Eg. www.verizon.com and www.ebay.com came up
higher than www.apple.com/products/...,
www.apple.com/support..., etc. for a search on
apple

• = 0.5 gave the best results

o Bucket range {0-1, 2-4, 5-6, 7+} gave better results
than {0, 1, 2, 3+} and {0-2, 3-4, 5+}

• < 0.5 did not affect the prior Yioop results noticeably

o Deeper-nested URLs (nested in 3+ subdirectories) did
not appear in the expected order of importance

DELIVERABLE#2: IMPROVING SERP FRESHNESS

• Yioop uses a Bloom filter to keep track of URLs that have been crawled to avoid repetition

• This filter is cleared periodically to avoid space inefficiency and keep up with sites that are

updated frequently

• Problem:

o Multiple versions of a page result

o Yioop considers the first-crawled version to be the most important

o "Stale" results might come up

o The SERP might not include the latest version of a result

o The latest version of a page might not contain the search query terms

• Lookup has to be modified to show updated results

20XX

IMPLEMENTATION

20XX

Terms Bloom filter:

• Indexing logic is modified to include the top 300 words
present in a document via a Bloom filter

• This will help during lookup, to confirm that the search term
exists in the indexed document

• The Bloom filter is added to doc_map entries

IMPLEMENTATION

20XX

Finding the most recent version of a result:

• Lookup comprises of word iterators to fetch documents associated with a
single search term

• The WordIterator class constructor now accepts a flag marking whether
the most recent version of a result needs to be looked up

• A cache of URLs and the positions of their latest versions in the index are
maintained to improve lookup time

EXPERIMENTATION: SETUP

20XX

EXPERIMENTATION: OBSERVATIONS

20XX

Takeaways:

• Response generation time did not increase

dramatically for most queries

• Search time increased by 0.1s for goodread

book and horse

• Overall, tradeoff (increased lookup time v/s

freshness) seems fair and does not diminish

efficiency

EXPERIMENTATION: OBSERVATIONS

20XX

DELIVERABLE#3: IMPROVING SEARCH QUERIES

Conjunctive v/s disjunctive queries:

• Conjunctive queries separate search terms using AND operators

• Disjunctive queries separate search terms using OR operators

• Why use disjunctions?

o Broadened search scope

o Search for synonyms

o Diverse set of results

• Quotes and terms separated by '&' operators are retained as conjunctions

• Disjunctive terms/phrases are separated by '|' operators

20XX

Search Query chatgpt openai

Conjunctive Query Equivalent chatgpt AND openai

Disjunctive Query Equivalent chatgpt OR openai

DELIVERABLE#3: IMPROVING SEARCH QUERIES

Query Processing with Heaps:

• Consider that the top k documents are to be returned, the number of search terms is n, and

there are m matching documents in the index

• The overall time complexity of retrieving and sorting m documents is θ(m*n + m*log m)

• Issues:

o Unnecessary cost of sorting m documents

o Need to go through all n terms to calculate score, even if document text doesn't contain

them

• Heaps efficiently overcome these issues

20XX

DELIVERABLE#3: IMPROVING SEARCH QUERIES

MaxScore:

• Idea: Finding an upper bound on a term's overall contribution

• Yioop uses Divergence-from-Randomness to score documents

20XX

• The maximum relevance score that a document can achieve for a query is:

where N is the total number of documents in the index and lt is the total number of
occurrences of the search term

• Using this relevance calculation, the MaxScore that a document containing (only) the
search term in question can possibly achieve is given as:

where DRmax is the maximum Doc Rank score that can be achieved

IMPLEMENTATION

20XX

Converting to disjunctive:

• The search string is divided by whitespaces into multiple disjuncts

• Each disjunct is treated as an independent search query

• Meta words are tacked onto each query

• Documents matching each query are retrieved

• A UnionIterator instance is used to score, combine, and sort the top results obtained
from each WordIterator

IMPLEMENTATION

20XX

Maintaining heaps:

• Query processing now includes heaps to make search more efficient

• Three min heaps used:

o Results heap: Maintains top k documents found until now

o Search terms heap: Maintains query terms being searched for

o Low-scoring terms heap: Maintains query terms with low MaxScore values

IMPLEMENTATION

20XX

• The search terms heap is used to find the position of the next document matching the search
criteria

• The corresponding score is calculated for this document (a sum of its DocRank and relevance
scores for each search term appearing in it)

• If the found score is greater than the current kth best score in the results heap, it is inserted into
the results heap (and reheap is invoked)

• Before looking for the next matching document, any terms on the search terms heap with a
MaxScore value lower than the current kth best score in the results heap are maintained in the
low-scoring terms heap instead

• These terms are not used for lookup, but their relevance scores are added to the appropriate
total document score

EXPERIMENTATION: SETUP

20XX

• Conjunctive v/s disjunctive queries

• Query Processing with Heaps

• MaxScore

EXPERIMENTATION: OBSERVATIONS

Conjunctive Query Disjunctive Query Crawl#1

Conj

Crawl#1

Disj

Crawl#2

Conj

Crawl#2

Disj

Crawl#3

Conj

Crawl#3

Disj

google verizon pinterest

safe:true

google safe:true |

verizon safe:true |

pinterest safe:true

0 412 0 200 1 290

prime-minister no:guess prime-minister no:guess 2 2 2 2 0 0

prime minister prime | minister |

prime-minister

12 513 9 634 1 501

apple & mac lang:en

safe:true

apple & mac lang:en safe:true 14 14 21 21 11 11

lang:en media:news w:1

-i:100 #1#

lang:en media:news w:1

-i:100 #1#

542 542 564 564 1110 1110

sand beach california

safe:false

sand safe:false |

beach safe:false |

california safe:false

0 307 2 399 0 299

"chatgpt openai" & gpt4

safe:true lang:en

"chatgpt openai" & gpt4 safe:true

lang:en

0 0 0 0 0 0

justin trudeau lang:en

safe:true

justin lang:en safe:true |

trudeau lang:en safe:true |

justin-trudeau lang:en safe:true

2 49 0 32 11 81

20XX

EXPERIMENTATION: COMPARISON WITH POPULAR WEB SEARCH ENGINES

20XX

• Conjunctive v/s disjunctive queries

• Query Processing with Heaps

• MaxScore

• Human factors used to judge relevance:

o Relevance of top 10 search results for the query

o Verified sources and content quality of the top 10 search results for the query

o Overall recency of pages

• Categorization:

o True Positive: Relevant websites making it to the top 10 results

o False Positive: Irrelevant websites making it to the top 10 results

o True Negative: Irrelevant websites in the top 20 results that did not make it into the top 10 results

o False Negative: Relevant websites in the top 20 results that did not make it into the top 10 results

• Note:
The term “irrelevant” is misleading in this context: this experiment considers results that did not crack the top
10 (or usually the first page of results) as less relevant to the search query despite being appropriate
responses primarily because the odds of them being clicked on are considerably low

EXPERIMENTATION: COMPARISON WITH POPULAR WEB SEARCH ENGINES

20XX

• Conjunctive v/s disjunctive queries

• Query Processing with Heaps

• MaxScore

Observations

Yioop (Disjunctive)

Yioop (Conjunctive) Google

Yandex

EXPERIMENTATION: COMPARISON WITH POPULAR WEB SEARCH ENGINES

20XX

• Conjunctive v/s disjunctive queries

• Query Processing with Heaps

• MaxScore

Observations

EXPERIMENTATION: COMPARISON WITH POPULAR WEB SEARCH ENGINES

20XX

• Conjunctive v/s disjunctive queries

• Query Processing with Heaps

• MaxScore

Takeaways:

• (Yioop's) conjunctive logic precision surpasses disjunctive logic

• Top 3 results of conjunctive logic SERP appear in top 10 results of disjunctive logic SERP

• Disjunctive logic has a low False Positives score, while conjunctive logic has a high False Positives score

• The second page of the disjunctive logic SERP almost always comprises of results that are less
relevant to the query than the top 10 results

• Disjunctive logic gives better results for search terms that are seemingly meaningful to each other
(such as searching for synonyms)

• Eg. apple mac, election potus america, and goodread book

• For seemingly unrelated search terms, conjunctive logic results were better than disjunctive logic
results

• Eg. Searching for prime minister also included a few Amazon Prime pages in the top 20 results

• By comparison, Google and Yandex’s SERP results for each of the queries more in tune with the
expected results. However, as this experimentation of Yioop was done on a limited index (of
approximately 1500000 documents), it is unfair to compare the quality of search results.

CONCLUSION

20XX

• Implemented new bonus factors to improve the relevance of search

results

• Improved SERP freshness by ensuring that only latest-crawled versions

of result pages are offered

• Increased and diversified the search results' space by using disjunctive

queries

• Improved lookup time by using heaps and MaxScore calculation in

query processing

REFERENCES

20XX

C. Pollett, Yioop Search Engine Ranking Mechanisms. https://www.seekquarry.com/p/Ranking.

M. King, "Yandex scrapes Google and other SEO learnings from the source code leak,"

SearchEngineLand, 2023. https://searchengineland.com/yandex-leak-learnings-392393.

C. Pollett, "Lecture Slides for CS267, 2022", San Jose State University, Accessed: October 23, 2023.

[Online]. Available: https://www.cs.sjsu.edu/faculty/pollett/267.1.22s.

C. Shepard, “10 Illustrations of How Fresh Content May Influence Google Rankings”, Moz blog, 2016.

https://moz.com/blog/google-fresh-factor-new.

G. Amati and C. Rijsbergen, “Probabilistic Models of Information Retrieval based on Measuring the

Divergence from Randomness”, ACM Transactions of Information Systems (TOIS), 2022.

B. Bloom. "Space/time trade-offs in hash coding with allowable errors." Communications of the ACM 13,

no. 7, 1970. pp 422-426.

https://www.seekquarry.com/p/Ranking
https://searchengineland.com/yandex-leak-learnings-392393
https://www.cs.sjsu.edu/faculty/pollett/267.1.22s

THANK YOU!

Huge shout out to: Dr. Chris Pollett

20XX

	Slide 1: Enhancing the Queuing Process for Yioop's Scheduler
	Slide 2: Agenda
	Slide 3: introduction
	Slide 4: background
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Deliverable#1: bonus factors inspired by yandex
	Slide 10: Deliverable#1: bonus factors
	Slide 11: Deliverable#1: bonus factors
	Slide 12: implementation
	Slide 13: implementation
	Slide 14: Experimentation: SETUP
	Slide 15: Experimentation: wiki_bonus
	Slide 16: ExperimentatioN:NUM_SLASHES_BONUS
	Slide 17: Deliverable#2: improving serp freshness
	Slide 18: implementation
	Slide 19: implementation
	Slide 20: Experimentation: SETUP
	Slide 21: Experimentation: OBSERVATIONS
	Slide 22: Experimentation: OBSERVATIONS
	Slide 23: Deliverable#3: improving search queries
	Slide 24: Deliverable#3: improving search queries
	Slide 25: Deliverable#3: improving search queries
	Slide 26: implementation
	Slide 27: implementation
	Slide 28: implementation
	Slide 29: Experimentation: SETUP
	Slide 30: Experimentation: observations
	Slide 31: Experimentation: Comparison with popular Web Search Engines
	Slide 32: Experimentation: Comparison with popular Web Search Engines
	Slide 33: EXPERIMENTATION: COMPARISON WITH POPULAR WEB SEARCH ENGINES
	Slide 34: EXPERIMENTATION: COMPARISON WITH POPULAR WEB SEARCH ENGINES
	Slide 35: conclusion
	Slide 36: References
	Slide 37: Thank you!

