
Metrics and Queries
Write Performance: Data Loading Time
Read Performance: Query Performance (Multiple queries)
Data Storage FootPrint: Size of the data file

Queries
double-groupby-5 : This query does multiple group-by by time and host_id .Returns the
average of 5 metrics per host per day

cpu-max-all-8 : This query finds the maximum value for all metrics for 1 hour for 8 hosts

lastpoint : This query finds the latest reading for every device in the dataset.

groupby-orderby-limit : This query does a single rollup on time to get the MAX reading of
a CPU metric on a per-minute basis for the last 5 intervals for which there are readings
before a specified end time that is randomly selected.

Performing MongoDB
Queries

MongoDB Naive

MongoDB: Data Generation and Data Loading

Data Loading : 246 seconds

MongoDB:Query–double-groupby-5

Total Time: 118 sec

MongoDB: Query–cpu-max-all-8

Total Time: 0.86 sec

MongoDB: Query–lastpoint

Total Time: 66.79 sec

MongoDB: Query–groupby-orderby-limit

Total Time: 239 sec

MongoDB Recommended

MongoDB: Data Generation and Data Loading

Data Loading : 123 seconds

MongoDB:Query–double-groupby-5

Total Time: 16.39 sec

MongoDB: Query–cpu-max-all-8

Total Time: 14.48 sec

MongoDB: Query–lastpoint

Total Time: 19.44 sec

MongoDB: Query–groupby-orderby-limit

Total Time: 13.47 sec

Performing TimescaleDB
Queries

TimescaleDB: Data Generation and Data Loading

Data Loading : 59 seconds

TimescaleDB: Query–double-groupby-5

Total Time: 30.94 sec

TimescaleDB: Query–cpu-max-all-8

Total Time: 1.05 sec

TimescaleDB: Query–lastpoint

Total Time: 0.35 sec

TimescaleDB: Query–groupby-orderby-limit

Total Time: 0.24 sec

Performing influxDB
Queries

InfluxDB: Data Generation and Data Loading

Data Loading : 2.337 seconds

InfluxDB: Query–double-groupby-5

Total Time: 27.84 sec

InfluxDB: Query–cpu-max-all-8

Total Time: 0.44 sec

InfluxDB: Query–lastpoint

Total Time: 11.60 sec

InfluxDB: Query–groupby-orderby-limit

Total Time: 83.66 sec

Performing QuestDB
Queries

QuestDB: Data Generation and Data Loading

Data Loading : 20.68 sec

QuestDB:Query–double-groupby-5

Total Time: 7.97sec

QuestDB: Query–cpu-max-all-8

No Output

QuestDB: Query–lastpoint

Total Time: 0.31 sec

QuestDB: Query–groupby-orderby-limit

Total Time: 0.16 sec

Result Summary

Data Storage Size

MongoDB: 23.72 GB
TimescaleDB : 5.62 GB
InfluxDB : 8.97 GB
QuestDB: 8.97 GB

 Data Loading(Write Performance)

MongoDB(Naive): 246 sec
MongoDB(Recommended): 123 sec
TimescaleDB : 59 sec
InfluxDB : 2.33 sec
QuestDB: 20.68 sec

Query Execution (Read Performance)
double-groupby-5 cpu-max-all-8 lastpoint groupby-orderby-limit

MongoDB (Naive) 118 0.86 66.79 239

MongoDB(Recommende
d)

16.39 14.48 19.44 13.47

TimeScaleDB 30.94 1.05 0.35 0.24

InfluxDB 27.84 0.44 11.60 83.66

QuestDB 7.97 N/A 0.32 0.16

Data Storage Comparison
● TimeScaleDB wins as it uses compression technique to compress the

generated data.

● InfluxDB and QuestDB has the same data size for two datasets. So the reason
might the similarity in their storage structure as both uses SQL tables for
storing data ,resulting in similar size.

● Both MongoDB methods resulted in 24 gb of data generated .Its prominent
that storing every data in a different document and also chunking will result
in the same size of data .But the data loading time will be affected as the
chunking the data means that data can be uploaded quickly.

Write Performance
InfluxDB uses storage engine called the Time-Structured Merge Tree (TSM), which is designed to
write data quickly and compactly. Also, InfluxDB works with very well with datasets having low
cardinality and so it wins in write performance as the data used in this benchmark is relatively small .

QuestDB is designed for high performance and offers a number of features to optimize write
performance, such as vectorization and zero-garbage collection.

TimescaleDB offers chunking and indexing thus grouping data helps in importing data quickly, but its
little slow than QuestDB.

MongoDB doesn’t provide any special feature for write performance and so Mongo-naive approach
takes minutes to insert the data . But changing ‘document-per-event’ to false, helps the data to be
grouped together and result in half time as MongoDb naive.

MongoDB Comparison

Naive vs Recommended
The default and straightforward method in storing data in MongoDB is to store them in document as MongoDB is a
document database . So, MongoDB naive is where each reading is stored in a document.

The results of data write and queries were very bad compared to other databases . I found a better approach to store
time series data in MongoDB.The better approach is to aggregate the time series data in a group based on a time.For
E.g. : for each device, a document is created for every hour. So, this contains is a matrix with 60*60 (minutes and
seconds) as the data is updated constantly.These data for an hour is stored as one document for a particular
device.The document is updated accordingly when a reading is done and so there is no need to make a new
document for every reading.

This allows the overall structure of data to be simple and efficient.We can see from the result that there is huge
difference in efficiency in the recommended method. The data loading took almost half a time (246 vs 123) as
because of aggregation, the data can be quickly inserted into the database .This grouped data can also be filtered
quickly as we don't have to go to every document for query execution. So lesser documents result in the
recommended method outperforming the naive method in most of the queries by a big margin.

TimeScaleDB
● TimeScaleDB is built on PostgreSQL and is specifically designed for handling time

series data.
● Timescale DB supports SQL and has a wide range of features like Group By

functions and JOINS.
● This makes timescableDB a good choice for storing and querying time series data.
● Timescale DB uses a unique hypertable concept to partition data across time, which

allows for efficient querying and analysis of time series data.

TimeScaleDB
● In my benchmarking , I have used chunk size as 12 hours and total duration of data is

3 days . So there will be 6 hyper tables created of duration 12 hrs and all the data will
be divided and stored according to the tampstamp .

● Because of this TimeScale DB performed better than MongoDb and influxDB for
queries like lastpoint and groupby as the grouping of data in chunks make it faster and
efficient to query .

● But, the performance was worse for double-groupby query and comparatively bad for
cpu-max query. But overall it beats majority of the databases in the benchmarking.

InfluxDB

InfluxDB
● InfluxDB is built around the concept of time-stamped data, which makes it easy to

store and query time series data.
● InfluxDB includes features such as retention policies, which allow you to

automatically expire old data, and continuous queries, which allow you to
pre-aggregate data for faster queries.

● The TSM Tree storage engine of InfluxDB helps in storing the data by data points in a
chronological order.

● This data is organized in sorted key value pairs with each each pair corresponds to a
specific timestamp. Depending on the query, the data can be retrieved for the time
range by looping over the key-value points.

InfluxDB
● But, InfluxDB does not allow joins, which makes queries using joins perform worse

as the code has to be made without Joins to get the desired result.
● Also, InfluxDB works only with recent data (depending on the retention rate) and so

grouping can be done with recent time only,which makes it slow for groubpy queries.
● I used InfluxDB version 1 for this benchmarking as that's the only supported one,

which may have impacted the results as the later version have optimizations.
● While InfluxDB read performance is the best amongst the databases, its performance

is bad for query performance.
● InfluxDB performs worse for the groupby-orderby queries and that is because of not

using joins, so it has to take a longer route to loop the data and get the results.
● It also took InfluxDB more time to find the latest reading of the data as it performed

worse than TimeScaleDB and QuestDB.

QuestDB
● Like TimeScaleDB, QuestDB also uses SQL and other operations that are specifically

designed for aggregation and querying time series data.
● Questdb has special functions for time series data :

ASOF JOIN: Allows you to join two tables based on a specific timestamp.
SAMPLE BY: Allows you to aggregate data by time intervals.
LATEST ON: Allows you to get the most recent value for a given timestamp.
AGGREGATES: Supports aggregates like MIN, MAX, AVG, and SUM.

● Another important advantage of QuestDB is that the data is stored in column and not
rows and fields like timestamp are accessed by column, so this makes querying fast.

● Questdb partitions data by time, allowing efficient querying.

QuestDB

● QuestDB outperforms other Databases because of its special features. ‘Latest
On’ operator lets Quest DB win in the last point query .

● QuestDB wins by a big ratio in other group by queries ,showing how the
storage and partitioning system with other features designed specially for data
series data makes QuestDb a better choice for time series data.

Conclusion
● All four databases have their own advantages and disadvantages and so choosing the right database for time series data

depends on factors like data size ,simplicity,time and resources.
● While MongoDb is the worst performant ,it is a good choice if the developers have expertise in NoSQL database and

familiar with MongoDB.
● InfluxDB is not open source ,so for multi node requirements it can be little costly. Also, it will take time to learn

InfluxDB as it's not a simple database.
● TimeScaleDB is a optimal choice as its support for SQL and have better read and write performance as seen in this

benchmarking
● Questdb also uses SQL and other special operators and is specially designed for time series data making it a optimal

choice based on the the results of this benchmark and other databases used in performance evaluation.
● Comparing NoSQL database i.e. MongoDB with specific time series databases, we can conclude that its a good choice

to use time series database depending on the ease of use and functionality than MongoDB.
● But ,we the application is already using MongoDB for non-time series storage ,then it can be a good option to use

MongoDB for time-series data and so the developers don't have to spent time learning new database and storing data in
it .

● Also , if the developers are proficient in SQl queries ,then its better to use time series data as they can run SQL series
as we can see from the database and this benchmarking .

