Metrics and Queries

Write Performance: Data Loading Time
Read Performance: Query Performance (Multiple queries)
Data Storage FootPrint: Size of the data file

Queries

double-groupby-5 : This query does multiple group-by by time and host id .Returns the
average of 5 metrics per host per day

cpu-max-all-8 : This query finds the maximum value for all metrics for 1 hour for 8 hosts
lastpoint : This query finds the latest reading for every device in the dataset.
groupby-orderby-limit : This query does a single rollup on time to get the MAX reading of

a CPU metric on a per-minute basis for the last 5 intervals for which there are readings
before a specified end time that is randomly selected.

Performing MongoDB
Queries

MongoDB Nalive

MongoDB: Data Generation and Data Loading

spartan@IMS-089MBA cmd % tsbs_load_mongo --file=/Users/spartan/tmp/mongo_data —--document-per—-event=true —--meta-field-index="" --timeseries-collection=true --workers=10
time,per. metric/s,metric total,overall metric/s,per. row/s,row total,overall row/s
1682541455,1008856.33,1.010000E+07,1008856.33,—,—,—
1682541465,1141174.71,2.150000E+07,1074943.97, -,
1682541475,1120001.31,3.270000E+07,1089962.55, -,
1682541485,1080083.40,4.350000E+07,1087492.97, -,
1682541495,1029832.62,5.380000E+07,1075959.46,—,
1682541505,1050088.23, 6.430000E+07,1071648.02, —,
1682541515,1089998.52,7.520000E+07,1074269.49,—,
1682541525,1040055.23,8.560000E+07,1069992.96, —,
1682541535,1069941.01,9.630000E+07,1069987.19, -,
1682541545,1080003.73,1.071000E+08,1070988.83,-,—, -

U

U

U

U

'

'

'

'

1682541555,1079998.83,1.179000E+08,1071807.91, -
1682541565,1060000.29,1.285000E+08,1070823.95, -
1682541575,1059998.87,1.391000E+08,1069991.26, —
1682541585,1060087.32,1.497000E+08,1069283.89, -
1682541595,1059914.89,1.603000E+08, 1068659 .25, -
1682541605,1069034.10,1.710000E+08,1068682.70, -
1682541615,1070965.06,1.817000E+08,1068816.83, -
1682541625,1030002.63,1.920000E+08,1066660.50, —
1682541635,1029999.70,2.023000E+08, 1064731.00, -
1682541645,979999.67,2.121000E+08, 1060494 .45, —, -, —
1682541655,1020012.62,2.223000E+08,1058566.78, -, —, —
1682541665,1059984.55,2.329000E+08,1058631.22, -, —, —
1682541675,1050075.86, 2. 434000E+08,1058259.28, -,

1682541685,1029927.12,2.537000E+08,1057078.69, -, -, —

Summary:
loaded 259200000 metrics in 246.463sec with 10 workers (mean rate 1051678.34 metrics/sec)

Data Loading : 246 seconds

MongoDB:Query—double-groupby-5

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 —--query-type="c
ble-groupby-5" --format="mongo" > /Users/spartan/tmp/mongo_queryl

Mongo [NAIVE] mean of 5 metrics, all hosts, random 12h@m@s by 1h: 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_mongo --file=/Users/spartan/tmp/mongo_queryl --workers=10

After 100 queries with 10 workers:

Interval query rate: 0.84 queries/sec Overall query rate: 0.84 queries/sec

Mongo [NAIVE] mean of 5 metrics, all hosts, random 12h@m@s by 1h:

min: 10570.75ms, med: 11972.09ms, mean: 11818.73ms, max: 12559.36ms, stddev: 541.97ms, sum: 1181.9sec, count: 100
all queries :

min: 10570.75ms, med: 11972.09ms, mean: 11818.73ms, max: 12559.36ms, stddev: 541.97ms, sum: 1181.9sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate ©.84 queries/sec):

Mongo [NAIVE] mean of 5 metrics, all hosts, random 12h@m@s by 1h:

min: 10570.75ms, med: 11972.09ms, mean: 11818.73ms, max: 12559.36ms, stddev: 541.97ms, sum: 1181.9sec, count: 100
all queries :

min: 10570.75ms, med: 11972.09ms, mean: 11818.73ms, max: 12559.36ms, stddev: 541.97ms, sum: 1181.9sec, count: 100
wall clock time: 118.517551sec

Total Time: 118 sec

MongoDB: Query—cpu-max-all-8

spartan@IMS-@89MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" —--timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="cpu
-max-all-8" —-format="mongo" > /Users/spartan/tmp/mongo_query2

Mongo max of all CPU metrics, random 8 hosts, random 8h@m@s by 1h: 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_mongo —-file=/Users/spartan/tmp/mongo_query2 —-workers=10

After 100 queries with 10 workers:

Interval query rate: 120.50 queries/sec Overall query rate: 120.50 queries/sec

Mongo max of all CPU metrics, random 8 hosts, random 8h@m@s by 1h:

min: 56.46ms, med: 76.84ms, mean: 80.63ms, max: 120.60ms, stddev: 13.73ms, sum: 8.1sec, count: 100
all queries :
min: 56.46ms, med: 76.84ms, mean: 80.63ms, max: 120.60ms, stddev: 13.73ms, sum: 8.1sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 117.42 queries/sec):
Mongo max of all CPU metrics, random 8 hosts, random 8h@m@s by 1h:

min: 56.46ms, med: 76.84ms, mean: 80.63ms, max: 120.60ms, stddev: 13.73ms, sum: 8.1sec, count: 100
all queries :
min: 56.46ms, med: 76.84ms, mean: 80.63ms, max: 120.60ms, stddev: 13.73ms, sum: 8.1sec, count: 100

wall clock time: 0.865436sec

Total Time: 0.86 sec

MongoDB: Query—lastpoint

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="las
tpoint" --format="mongo" > /Users/spartan/tmp/mongo_query3

Mongo last row per host: 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_mongo —-file=/Users/spartan/tmp/mongo_query3 —--workers=10

After 100 queries with 10 workers:

Interval query rate: 1.50 queries/sec Overall query rate: 1.50 queries/sec

Mongo last row per host:

min: 6049.79ms, med: 6676.48ms, mean: 6654.48ms, max: 7151.10ms, stddev: 230.87ms, sum: 665.4sec, count: 100

all queries :

min: 6049.79ms, med: 6676.48ms, mean: 6654.48ms, max: 7151.1@ms, stddev: 230.87ms, sum: 665.4sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 1.50 queries/sec):

Mongo last row per host:

min: 6049.79ms, med: 6676.48ms, mean: 6654.48ms, max: 7151.1@ms, stddev: 230.87ms, sum: 665.4sec, count: 100
all queries 3

min: 6049.79ms, med: 6676.48ms, mean: 6654.48ms, max: 7151.1@0ms, stddev: 230.87ms, sum: 665.4sec, count: 100
wall clock time: 66.799807sec

Total Time: 66.79 sec

MongoDB: Query—groupby-orderby-limit

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="gro
upby-orderby-limit" --format="mongo" > /Users/spartan/tmp/mongo_query4

Mongo max cpu over last 5 min-intervals (random end): 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_mongo —-file=/Users/spartan/tmp/mongo_query4 —-workers=10

After 100 queries with 10 workers:

Interval query rate: 0.42 queries/sec Overall query rate: ©.42 queries/sec

Mongo max cpu over last 5 min-intervals (random end):

min: 743.58ms, med: 24287.23ms, mean: 22353.91ms, max: 52387.84ms, stddev: 14397.68ms, sum: 2235.4sec, count: 100

all queries :

min: 743.58ms, med: 24287.23ms, mean: 22353.91ms, max: 52387.84ms, stddev: 14397.68ms, sum: 2235.4sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate @.42 queries/sec):

Mongo max cpu over last 5 min-intervals (random end):

min: 743.58ms, med: 24287.23ms, mean: 22353.91ms, max: 52387.84ms, stddev: 14397.68ms, sum: 2235.4sec, count: 100
all queries)

min: 743.58ms, med: 24287.23ms, mean: 22353.91ms, max: 52387.84ms, stddev: 14397.68ms, sum: 2235.4sec, count: 100
wall clock time: 239.25889@sec

Total Time: 239 sec

MongoDB Recommended

MongoDB: Data Generation and Data Loading

spartan@IMS-089MBA cmd % tsbs_generate_data —-use-case="cpu-only" --seed=123 --scale=1000 —-timestamp-start="2023-04-01T00:00:00Z" —-timestamp-end="2023-04-04T00:00:00Z" —--log-interval="10s" —-format="mon
go" > /Users/spartan/tmp/mongo_data
spartan@IMS-089MBA cmd % tsbs_load_mongo --file=/Users/spartan/tmp/mongo_data ——document-per-event=false —-meta-field-index="" —-timeseries-collection=false —--workers=10

time,per. metric/s,metric total,overall metric/s,per. row/s,row total,overall row/s
1682842129,1999819.55,2.000000E+07,1999819.55,-, -, -
1682842139,2390153.32,4.390000E+07,2194971.37 ,-, -, -
1682842149,2589794.95,6.980000E+07,2326585.03, -, -, -
1682842159,2600169.82,9.580000E+07,2394976.08, -, -, —
1682842169,1956493.44,1.154000E+08,2307154.56, -, -, —
1682842179,1773190.43,1.331000E+08,2218321.15, -, -, -
1682842189,1755354.24,1.507000E+08,2152033.35,—,—,—
1682842199,2185625.17,1.725000E+08,2156221.47,—,-,—
1682842209,2549514.17,1.980000E+08,2199927.54,—,—,—
1682842219,2410619.51,2.221000E+08,2220991.24, -, -, -
1682842229,1559889.26,2.377000E+08,2160887.40,—,—,—
1682842239,1750006.06,2.552000E+08, 2126647 .71,-,-, -

Summary:
loaded 259200000 metrics in 123.49@sec with 10 workers (mean rate 2098963.30 metrics/sec)

Data Loading : 123 seconds

MongoDB:Query—double-groupby-5

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T700:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="dou
ble-groupby-5" ——format="mongo" > /Users/spartan/tmp/mongo_queryl

Mongo [NAIVE] mean of 5 metrics, all hosts, random 12h@m@s by 1h: 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_mongo —-file=/Users/spartan/tmp/mongo_queryl —-workers=10

After 100 queries with 10 workers:

Interval query rate: 6.11 queries/sec Overall query rate: 6.11 queries/sec

Mongo [NAIVE] mean of 5 metrics, all hosts, random 12h@m@s by 1h:

min: 447.06ms, med: 1677.06ms, mean: 1634.85ms, max: 2606.34ms, stddev: 672.73ms, sum: 163.5sec, count: 100

all queries :

min: 447.06ms, med: 1677.06ms, mean: 1634.85ms, max: 2606.34ms, stddev: 672.73ms, sum: 163.5sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 6.11 queries/sec):

Mongo [NAIVE] mean of 5 metrics, all hosts, random 12h@m@s by 1h:

min: 447.06ms, med: 1677.06ms, mean: 1634.85ms, max: 2606.34ms, stddev: 672.73ms, sum: 163.5sec, count: 100
all queries P

min: 447.06ms, med: 1677.06ms, mean: 1634.85ms, max: 2606.34ms, stddev: 672.73ms, sum: 163.5sec, count: 100
wall clock time: 16.392735sec

Total Time: 16.39 sec

MongoDB: Query—cpu-max-all-8

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 —-timestamp-start="2023-04-01T700:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="cpu
-max-all-8" --format="mongo" > /Users/spartan/tmp/mongo_query2

Mongo max of all CPU metrics, random 8 hosts, random 8h@m@s by 1h: 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_mongo —-file=/Users/spartan/tmp/mongo_query2 —-workers=10

After 100 queries with 10 workers:

Interval query rate: 6.92 queries/sec Overall query rate: 6.92 queries/sec

Mongo max of all CPU metrics, random 8 hosts, random 8h@m@s by 1h:

min: 640.13ms, med: 1255.93ms, mean: 1444.24ms, max: 2425.86ms, stddev: 519.55ms, sum: 144.4sec, count: 100

all queries i

min: 640.13ms, med: 1255.93ms, mean: 1444.24ms, max: 2425.86ms, stddev: 519.55ms, sum: 1l44.4sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 6.91 queries/sec):

Mongo max of all CPU metrics, random 8 hosts, random 8h@m@s by 1h:

min: 640.13ms, med: 1255.93ms, mean: 1444.24ms, max: 2425.86ms, stddev: 519.55ms, sum: 144.4sec, count: 100
all queries :

min: 640.13ms, med: 1255.93ms, mean: 1444.24ms, max: 2425.86ms, stddev: 519.55ms, sum: 1l44.4sec, count: 100
wall clock time: 14.483609sec

Total Time: 14.48 sec

MongoDB: Query—lastpoint

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T700:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="las
tpoint" —-format="mongo" > /Users/spartan/tmp/mongo_query3

Mongo last row per host: 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_mongo —-file=/Users/spartan/tmp/mongo_query3 —-workers=10

After 100 queries with 10 workers:

Interval query rate: 5.16 queries/sec Overall query rate: 5.16 queries/sec

Mongo last row per host:

min: 1277.18ms, med: 1660.10ms, mean: 1936.99ms, max: 3109.38ms, stddev: 553.58ms, sum: 193.7sec, count: 100

all queries 2

min: 1277.18ms, med: 1660.10ms, mean: 1936.99ms, max: 3109.38ms, stddev: 553.58ms, sum: 193.7sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 5.15 queries/sec):

Mongo last row per host:

min: 1277.18ms, med: 1660.10ms, mean: 1936.99ms, max: 3109.38ms, stddev: 553.58ms, sum: 193.7sec, count: 100
all queries :

min: 1277.18ms, med: 1660.10ms, mean: 1936.99ms, max: 3109.38ms, stddev: 553.58ms, sum: 193.7sec, count: 100
wall clock time: 19.440762sec

Total Time: 19.44 sec

MongoDB: Query—groupby-orderby-limit

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T700:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="gro
upby-orderby-limit" —-format="mongo" > /Users/spartan/tmp/mongo_query4

Mongo max cpu over last 5 min-intervals (random end): 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_mongo —-file=/Users/spartan/tmp/mongo_query4 ——workers=10

After 100 queries with 10 workers:

Interval query rate: 7.44 queries/sec Overall query rate: 7.44 queries/sec

Mongo max cpu over last 5 min-intervals (random end):

min: 783.49ms, med: 1213.25ms, mean: 1342.95ms, max: 2411.26ms, stddev: 525.59ms, sum: 134.3sec, count: 100

all queries :

min: 783.49ms, med: 1213.25ms, mean: 1342.95ms, max: 2411.26ms, stddev: 525.59ms, sum: 134.3sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 7.43 queries/sec):

Mongo max cpu over last 5 min-intervals (random end):

min: 783.49ms, med: 1213.25ms, mean: 1342.95ms, max: 2411.26ms, stddev: 525.59ms, sum: 134.3sec, count: 100
all queries S

min: 783.49ms, med: 1213.25ms, mean: 1342.95ms, max: 2411.26ms, stddev: 525.59ms, sum: 134.3sec, count: 100
wall clock time: 13.470554sec

Total Time: 13.47 sec

Performing TimescaleDB
Queries

TimescaleDB: Data Generation and Data Loading

spartan@IMS-089MBA cmd % tsbs_generate_data —-use-case="cpu-only" --seed=123 —-scale=1000 —-timestamp-start="2023-04-01T00:00:00Z" —-timestamp-end="2023-04-04T00:00:00Z" ——-log-interval="10s" ——format="tim
escaledb" > /Users/spartan/tmp/timescaledb_data

spartan@IMS-089MBA cmd % tsbs_load config --target=timescaledb --data-source=FILE
Wrote example config to: ./config.yaml

spartan@IMS-889MBA cmd % vim config.yaml

spartan@IMS-089MBA cmd % vim config.yaml

spartan@IMS-089MBA cmd % tsbs_load load timescaledb --config=./config.yaml

Using config file: ./config.yaml

time,per. metric/s,metric total,overall metric/s,per. row/s,row total,overall row/s
1682618887,4177237.49,4.180000E+07, 4177237 .49,417723.75,4.180000E+06,417723.75
1682618897,4982734.19,9.160000E+07,4579742.18,498273.42,9.160000E+06,457974.22
1682618907,4659910.16,1.382000E+08, 4606464.18,465991.02,1.382000E+07, 460646.42
1682618917,3810117.51,1.763000E+08, 4407388.68,381011.75,1.763000E+07,440738.87
1682618927,4289971.99,2.192000E+08, 4383905.69,428997.20,2.192000E+07,438390.57

Summary:
loaded 259200000 metrics in 59.507sec with 10 workers (mean rate 4355805.22 metrics/sec)
loaded 25920000 rows in 59.507sec with 10 workers (mean rate 435580.52 rows/sec)

Data Loading : 59 seconds

TimescaleDB: Query—double-groupby-5

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="dou
ble-groupby-5" ——format="timescaledb" > /Users/spartan/tmp/timescaledb_queryl

TimescaleDB mean of 5 metrics, all hosts, random 12h@m@s by 1h: 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_timescaledb —-file=/Users/spartan/tmp/timescaledb_queryl —-workers=10 —postgres="host=localhost user=postgres sslmode=disable"

After 100 queries with 10 workers:

Interval query rate: 3.24 queries/sec Overall query rate: 3.24 queries/sec

TimescaleDB mean of 5 metrics, all hosts, random 12h@m@s by 1h:

min: 982.11ms, med: 1842.05ms, mean: 3006.75ms, max: 6132.99ms, stddev: 1856.19ms, sum: 300.7sec, count: 100

all queries :

min: 982.11ms, med: 1842.05ms, mean: 3006.75ms, max: 6132.99ms, stddev: 1856.19ms, sum: 300.7sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 3.23 queries/sec):

TimescaleDB mean of 5 metrics, all hosts, random 12h@m@s by 1h:

min: 982.11ms, med: 1842.05ms, mean: 3006.75ms, max: 6132.99ms, stddev: 1856.19ms, sum: 300.7sec, count: 100
all queries :

min: 982.11ms, med: 1842.05ms, mean: 3006.75ms, max: 6132.99ms, stddev: 1856.19ms, sum: 300.7sec, count: 100
wall clock time: 30.942844sec

Total Time: 30.94 sec

TimescaleDB: Query—cpu-max-all-8

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="cpu
-max-all-8" --format="timescaledb" > /Users/spartan/tmp/timescaledb_query2

TimescaleDB max of all CPU metrics, random 8 hosts, random 8h@m@s by 1h: 10@ points

spartan@IMS-089MBA cmd % tsbs_run_queries_timescaledb --file=/Users/spartan/tmp/timescaledb_query2 --workers=10 —postgres="host=localhost user=postgres sslmode=disable"

After 100 queries with 10 workers:

Interval query rate: 97.49 queries/sec Overall query rate: 97.49 queries/sec

TimescaleDB max of all CPU metrics, random 8 hosts, random 8h@m@s by 1h:
min: 45.92ms, med: 82.13ms, mean: 100.15ms, max: 222.29ms, stddev: 48.02ms, sum: 10.@0sec, count: 100
all queries :
min: 45.92ms, med: 82.13ms, mean: 100.15ms, max: 222.29ms, stddev: 48.02ms, sum: 10.@0sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 96.25 queries/sec):
TimescaleDB max of all CPU metrics, random 8 hosts, random 8h@m@s by 1h:

min: 45.92ms, med: 82.13ms, mean: 100.15ms, max: 222.29ms, stddev: 48.02ms, sum: 1@.@sec, count: 100
all queries :
min: 45.92ms, med: 82.13ms, mean: 100.15ms, max: 222.29ms, stddev: 48.02ms, sum: 1@.@0sec, count: 100

wall clock time: 1.050035sec

Total Time: 1.05 sec

TimescaleDB: Query—lastpoint

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="las
tpoint" ——format="timescaledb" > /Users/spartan/tmp/timescaledb_query3

TimescaleDB last row per host: 100 points

spartan@IMS-@89MBA cmd % tsbs_run_queries_timescaledb —-file=/Users/spartan/tmp/timescaledb_query3 —-workers=10 —postgres="host=localhost user=postgres sslmode=disable"

After 100 queries with 10 workers:

Interval query rate: 289.01 queries/sec Overall query rate: 289.01 queries/sec

TimescaleDB last row per host:

min: 11.46ms, med: 20.73ms, mean: 34.06ms, max: 190.82ms, stddev: 41.80ms, sum: 3.4sec, count: 100
all queries :
min: 11.46ms, med: 20.73ms, mean: 34.06ms, max: 190.82ms, stddev: 41.80ms, sum: 3.4sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 284.87 queries/sec):
TimescaleDB last row per host:

min: 11.46ms, med: 20.73ms, mean: 34.06ms, max: 190.82ms, stddev: 41.80ms, sum: 3.4sec, count: 100
all queries :
min: 11.46ms, med: 20.73ms, mean: 34.06ms, max: 190.82ms, stddev: 41.80ms, sum: 3.4sec, count: 100

wall clock time: 0.358746sec

Total Time: 0.35 sec

TimescaleDB: Query—groupby-orderby-limit

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="gro
upby-orderby-limit" —-format="timescaledb" > /Users/spartan/tmp/timescaledb_query4

TimescaleDB max cpu over last 5 min-intervals (random end): 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_timescaledb --file=/Users/spartan/tmp/timescaledb_query4 —-workers=10 —postgres="host=localhost user=postgres sslmode=disable"
After 100 queries with 10 workers:

Interval query rate: 462.49 queries/sec Overall query rate: 462.49 queries/sec

TimescaleDB max cpu over last 5 min-intervals (random end):

min: 4.28ms, med: 7.66ms, mean: 21.22ms, max: 157.94ms, stddev: 37.63ms, sum: 2.1sec, count: 100
all queries H
min: 4.28ms, med: 7.66ms, mean: 21.22ms, max: 157.94ms, stddev: 37.63ms, sum: 2.1sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 430.33 queries/sec):
TimescaleDB max cpu over last 5 min-intervals (random end):

min: 4.28ms, med: 7.66ms, mean: 21.22ms, max: 157.94ms, stddev: 37.63ms, sum: 2.1sec, count: 100
all queries]
min: 4.28ms, med: 7.66ms, mean: 21.22ms, max: 157.94ms, stddev: 37.63ms, sum: 2.1sec, count: 100

wall clock time: @.244566sec

Total Time: 0.24 sec

Performing influxDB
Queries

InfluxDB: Data Generation and Data Loading

spartan@IMS-089MBA cmd % tsbs_generate_data --use-case="cpu-only" --seed=123 --scale=1000 —-timestamp-start="2023-04-01T00:00:00Z" --timestamp-end="2023-04-04T00:00:002" —-log-interval="10s" —-format="inf
lux" > /Users/spartan/tmp/influx_data

spartan@IMS-@89MBA cmd % tsbs_load_influx --file=/Users/spartan/tmp/influx_data —-workers=10
time,per. metric/s,metric total,overall metric/s,per. row/s,row total,overall row/s
1682547173,3309635.31,3.310000E+07,3309635.31,330963.53,3.310000E+06,330963.53
1682547183, 3400009.63,6.710000E+07,3354819.92,340000.96,6.710000E+06,335481.99
1682547193 ,3449994.83,1.016000E+08,3386543.78,344999.48,1.016000E+07,338654.38
1682547203,3200292.41,1.336000E+08,3339985.40,320029.24,1.336000E+07,333998.54
1682547213,2209830.86,1.557000E+08, 3113941.44,220983.09,1.557000E+07,311394.14
1682547223,2590202.42,1.816000E+08, 3026658.66,259020.24,1.816000E+07,302665.87
1682547233,3289994.74,2.145000E+08, 3064278.06,328999.47,2.145000E+07,306427.81
1682547243,3090026.28,2.454000E+08,3067496.56,309002.63,2.454000E+07,306749.66
[worker 4] backoffs took a total of 0.000000sec of runtime

[worker @] backoffs took a total of 0.000000sec of runtime

[worker 2] backoffs took a total of ©.000000sec of runtime

[worker 1] backoffs took a total of 0.000000sec of runtime

[worker 6] backoffs took a total of 0.000000sec of runtime

[worker 9] backoffs took a total of 0.000000sec of runtime

[worker 7] backoffs took a total of 0.000000sec of runtime

[worker 8] backoffs took a total of 0.000000sec of runtime

[worker 5] backoffs took a total of 0.000000sec of runtime

[worker 3] backoffs took a total of ©.000000sec of runtime

Summary:

loaded 259200000 metrics in 84.49@sec with 1@ workers (mean rate 3067833.17 metrics/sec)
loaded 25920000 rows in 84.49@sec with 10 workers (mean rate 306783.32 rows/sec)

Data Loading : 2.337 seconds

InfluxDB: Query—double-groupby-5

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" —--timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="dou
ble-groupby-5" ——format="influx" > /Users/spartan/tmp/influxdb_queryl

Influx mean of 5 metrics, all hosts, random 12h@m@s by 1h: 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_influx --file=/Users/spartan/tmp/influxdb_queryl --workers=10

After 100 queries with 10 workers:

Interval query rate: 3.60 queries/sec Overall query rate: 3.60 queries/sec

Influx mean of 5 metrics, all hosts, random 12h@m@s by 1h:

min: 1893.76ms, med: 2642.30ms, mean: 2702.75ms, max: 3811.33ms, stddev: 371.99ms, sum: 270.3sec, count: 100

all queries 4

min: 1893.76ms, med: 2642.30ms, mean: 2702.75ms, max: 3811.33ms, stddev: 371.99ms, sum: 270.3sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 3.60 queries/sec):

Influx mean of 5 metrics, all hosts, random 12h@m@s by 1h:

min: 1893.76ms, med: 2642.30ms, mean: 2702.75ms, max: 3811.33ms, stddev: 371.99ms, sum: 270.3sec, count: 100
all queries :

min: 1893.76ms, med: 2642.30ms, mean: 2702.75ms, max: 3811.33ms, stddev: 371.99ms, sum: 270.3sec, count: 100
wall clock time: 27.840203sec

Total Time: 27.84 sec

InfluxDB: Query—cpu-max-all-8

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 —--query-type="cpu
-max-all-8" —--format="influx" > /Users/spartan/tmp/influxdb_query2

Influx max of all CPU metrics, random 8 hosts, random 8hem@s by 1h: 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_influx --file=/Users/spartan/tmp/influxdb_query2 --workers=10

After 100 queries with 10 workers:

Interval query rate: 234.91 queries/sec Overall query rate: 234.91 queries/sec

Influx max of all CPU metrics, random 8 hosts, random 8h@m@s by 1h:

min: 9.09ms, med: 33.37ms, mean: 41.20ms, max: 131.13ms, stddev: 27.50ms, sum: 4.1sec, count: 100
all queries :
min: 9.09ms, med: 33.37ms, mean: 41.20ms, max: 131.13ms, stddev: 27.50ms, sum: 4.1sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 228.79 queries/sec):
Influx max of all CPU metrics, random 8 hosts, random 8h@m@s by 1h:

min: 9.09ms, med: 33.37ms, mean: 41.20ms, max: 131.13ms, stddev: 27.50ms, sum: 4.1sec, count: 100
all queries :
min: 9.09ms, med: 33.37ms, mean: 41.20ms, max: 131.13ms, stddev: 27.50ms, sum: 4.1sec, count: 100

wall clock time: 0.442937sec

Total Time: 0.44 sec

InfluxDB: Query—lastpoint

spartan@IMS-089MBA cmd % tsbs_generate_queries —-use-case="cpu-only" --seed=123 —-scale=1000 --timestamp-start="2023-04-01T00:00:00Z" —-timestamp-end="2023-04-04T00:00:01Z" —--queries=100 —-query-type="las
tpoint" ——format="influx" > /Users/spartan/tmp/influxdb_query3

Influx last row per host: 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_influx --file=/Users/spartan/tmp/influxdb_query3 --workers=10

After 100 queries with 10 workers:

Interval query rate: 8.64 queries/sec Overall query rate: 8.64 queries/sec

Influx last row per host:

min: 728.10ms, med: 1091.58ms, mean: 1143.43ms, max: 1817.41ms, stddev: 225.52ms, sum: 114.3sec, count: 100

all queries -

min: 728.10ms, med: 1091.58ms, mean: 1143.43ms, max: 1817.41ms, stddev: 225.52ms, sum: 114.3sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 8.63 queries/sec):

Influx last row per host:

min: 728.10ms, med: 1091.58ms, mean: 1143.43ms, max: 1817.41ms, stddev: 225.52ms, sum: 114.3sec, count: 100
all queries 3

min: 728.10ms, med: 1091.58ms, mean: 1143.43ms, max: 1817.41ms, stddev: 225.52ms, sum: 114.3sec, count: 100
wall clock time: 11.604377sec

Total Time: 11.60 sec

InfluxDB: Query—groupby-orderby-limit

spartan@PIMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="gro
upby-orderby-limit" --format="influx" > /Users/spartan/tmp/influxdb_querys

Influx max cpu over last 5 min-intervals (random end): 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_influx --file=/Users/spartan/tmp/influxdb_query4 --workers=10

After 100 queries with 10 workers:

Interval query rate: 1.20 queries/sec Overall query rate: 1.20 queries/sec

Influx max cpu over last 5 min-intervals (random end):

min: 376.00ms, med: 8529.41ms, mean: 8017.41ms, max: 17327.10ms, stddev: 5057.94ms, sum: 801.7sec, count: 100
all queries :

min: 376.00ms, med: 8529.41ms, mean: 8017.41ms, max: 17327.10ms, stddev: 5057.94ms, sum: 801.7sec, count: 100

Run complete after 100 queries with 1@ workers (Overall query rate 1.20 queries/sec):

Influx max cpu over last 5 min-intervals (random end):

min: 376.00ms, med: 8529.41ms, mean: 8017.41ms, max: 17327.10ms, stddev: 5057.94ms, sum: 801.7sec, count: 100
all queries :

min: 376.00ms, med: 8529.41ms, mean: 8017.41ms, max: 17327.10ms, stddev: 5057.94ms, sum: 801.7sec, count: 100
wall clock time: 83.662794sec

Total Time: 83.66 sec

Performing QuestDB
Queries

QuestDB: Data Generation and Data Loading

spartan@IMS-089MBA cmd % tsbs_load_questdb --file=/Users/spartan/tmp/questdb_data —-workers=10
time,per. metric/s,metric total,overall metric/s,per. row/s,row total,overall row/s
1682553114,12319782.97,1.232000E+08,12319782.97,1231978.30,1.232000E+07,1231978.30
1682553124,12730012.25,2.505000E+08,12524895.70,1273001.23,2.505000E+07,1252489.57

Summary:

loaded 259200000 metrics in 20.681sec with 10 workers (mean rate 12533378.67 metrics/sec)
loaded 25920000 rows in 20.681sec with 10 workers (mean rate 1253337.87 rows/sec)

Data Loading : 20.68 sec

QuestDB:Query—double-groupby-5

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="dou
ble-groupby-5" --format="questdb" > /Users/spartan/tmp/questdb_queryl

QuestDB mean of 5 metrics, all hosts, random 12h@m@s by 1h: 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_questdb —-file=/Users/spartan/tmp/questdb_queryl --workers=10

Added index to hostname column of cpu table

After 100 queries with 10 workers:

Interval query rate: 12.58 queries/sec Overall query rate: 12.58 queries/sec

QuestDB mean of 5 metrics, all hosts, random 12h@m@s by 1h:

min: 479.20ms, med: 722.01ms, mean: 770.89ms, max: 1816.00ms, stddev: 254.86ms, sum: 77.1sec, count: 100
all queries 3

min: 479.20ms, med: 722.01ms, mean: 770.89ms, max: 1816.00ms, stddev: 254.86ms, sum: 77.1sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 12.56 queries/sec):

QuestDB mean of 5 metrics, all hosts, random 12h@m@s by 1h:

min: 479.20ms, med: 722.01ms, mean: 770.89ms, max: 1816.00ms, stddev: 254.86ms, sum: 77.1sec, count: 100
all queries i

min: 479.20ms, med: 722.01ms, mean: 770.89ms, max: 1816.00ms, stddev: 254.86ms, sum: 77.1sec, count: 100
wall clock time: 7.978426sec

Total Time: 7.97sec

QuestDB: Query—cpu-max-all-8

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" —-timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="cpu
-max-all-8" —-format="questdb" > /Users/spartan/tmp/questdb_query2
panic: database (xquestdb.Devops) does not implement query

goroutine 1 [runningl:
github.com/timescale/tsbs/cmd/tsbs_generate_queries/uses/common.PanicUnimplementedQuery({0x104c931a0?, 0x140001dc010?})
/Users/spartan/go/src/github.com/gregorynoma/tsbs/cmd/tsbs_generate_queries/uses/common/common.go:38 +0x84
github.com/timescale/tsbs/cmd/tsbs_generate_queries/uses/devops.(*MaxAl11CPU).Fil1(0x1400006c000, {0x104c97c30, 0x1400012c420})
/Users/spartan/go/src/github.com/gregorynoma/tsbs/cmd/tsbs_generate_queries/uses/devops/max_all_cpu.go:33 +@x5c
github.com/timescale/tsbs/internal/inputs. (*QueryGenerator).runQueryGeneration(@x14000151ef8, {0x104c931a@, 0x140001dc@10}, {0Ox104c932e0, Ox1400086CcPO0}, 0x104T94920)
/Users/spartan/go/src/github.com/gregorynoma/tsbs/internal/inputs/generator_queries.go:232 +0x3e@
github.com/timescale/tsbs/internal/inputs. (¥QueryGenerator).Generate(0x14000151ef8, {0x104c95660?, 0x104f94920?})
/Users/spartan/go/src/github.com/gregorynoma/tsbs/internal/inputs/generator_queries.go:96 +@xcc
main.main()
/Users/spartan/go/src/github.com/gregorynoma/tsbs/cmd/tsbs_generate_queries/main.go:169 +0x70

No Output

QuestDB: Query—lastpoint

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" —-timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="las
tpoint" ——format="questdb" > /Users/spartan/tmp/questdb_query3

QuestDB last row per host: 100 points

spartan@IMS-889MBA cmd % tsbs_run_queries_questdb --file=/Users/spartan/tmp/questdb_query3 --workers=10
Added index to hostname column of cpu table

After 100 queries with 10 workers:

Interval query rate: 327.90 queries/sec Overall query rate: 327.99 queries/sec

QuestDB last row per host:

min: 6.67ms, med: 23.52ms, mean: 29.47ms, max: 108.92ms, stddev: 23.31ms, sum: 2.9sec, count: 100
all queries s
min: 6.67ms, med: 23.52ms, mean: 29.47ms, max: 108.92ms, stddev: 23.31ms, sum: 2.9sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 323.17 queries/sec):
QuestDB last row per host:

min: 6.67ms, med: 23.52ms, mean: 29.47ms, max: 108.92ms, stddev: 23.31ms, sum: 2.9sec, count: 100
all queries e
min: 6.67ms, med: 23.52ms, mean: 29.47ms, max: 108.92ms, stddev: 23.31ms, sum: 2.9sec, count: 100

wall clock time: ©.315438sec

Total Time: 0.31 sec

QuestDB: Query—groupby-orderby-limit

spartan@IMS-089MBA cmd % tsbs_generate_queries --use-case="cpu-only" --seed=123 --scale=1000 --timestamp-start="2023-04-01T00:00:00Z" --timestamp-end="2023-04-04T00:00:01Z" --queries=100 --query-type="gro
upby-orderby-limit" --format="questdb" > /Users/spartan/tmp/questdb_querys

QuestDB max cpu over last 5 min-intervals (random end): 100 points

spartan@IMS-089MBA cmd % tsbs_run_queries_questdb —-file=/Users/spartan/tmp/questdb_query4 --workers=10

Added index to hostname column of cpu table

After 100 queries with 10 workers:

Interval query rate: 622.00 queries/sec Overall query rate: 622.00 queries/sec

QuestDB max cpu over last 5 min-intervals (random end):

min: 1.80ms, med: 8.33ms, mean: 15.62ms, max: 89.98ms, stddev: 20.91ms, sum: 1.6sec, count: 100
all queries s
min: 1.80ms, med: 8.33ms, mean: 15.62ms, max: 89.98ms, stddev: 20.91ms, sum: 1.6sec, count: 100

Run complete after 100 queries with 10 workers (Overall query rate 607.73 queries/sec):
QuestDB max cpu over last 5 min-intervals (random end):

min: 1.80ms, med: 8.33ms, mean: 15.62ms, max: 89.98ms, stddev: 20.91ms, sum: 1.6sec, count: 100
all queries s
min: 1.80ms, med: 8.33ms, mean: 15.62ms, max: 89.98ms, stddev: 20.91ms, sum: 1.6sec, count: 100

wall clock time: ©.168779sec

Total Time: 0.16 sec

Result Summary

MongoDB: 23.72 GB
TimescaleDB : 5.62 GB
InfluxDB : 8.97 GB
QuestDB: 8.97 GB

ata Storage Size

influx_data
influxdb_query1
influxdb_query?2
influxdb_query3
influxdb_query4
mongo_data
mongo_query1
mongo_query2
mongo_query3
mongo_query4
questdb_data
questdb_query1
questdb_query?2
questdb_query3
questdb_query4
timescaledb_data
timescaledb_query1
timescaledb_query2
timescaledb_query3
timescaledb_query4

Yesterday at 3:12 PM
Yesterday at 3:25 PM
Yesterday at 3:27 PM
Yesterday at 3:28 PM
Yesterday at 4:59 PM
Yesterday at 1:36 PM
Yesterday at 1:59 PM
Yesterday at 2:04 PM
Yesterday at 2:05 PM
Yesterday at 2:07 PM
Yesterday at 11:18 PM
Yesterday at 11:19 PM
Yesterday at 11:19 PM
Yesterday at 11:19 PM
Yesterday at 11:20 PM
Yesterday at 2:34 PM
Yesterday at 2:47 PM
Yesterday at 3:26 PM
Yesterday at 2:48 PM
Yesterday at 2:49 PM

8.97 GB
64 KB
129 KB
22 KB
49 KB

23.72GB

128 KB
179 KB
142 KB
76 KB

8.97 GB
100 KB

Zero bytes
17 KB
49 KB

5.62 GB
84 KB
129 KB
26 KB

36 KB

Document
Document
Document
Document
Document
Document
Document
Document
Document
Document
Document
Document
Document
Document
Document
Document
Document
Document
Document
Document

Data Loading(Write Performance)

MongoDB(Naive): 246 sec
MongoDB(Recommended): 123 sec
TimescaleDB : 59 sec

InfluxDB : 2.33 sec

QuestDB: 20.68 sec

Query Execution (Read Performance)

MongoDB (Naive)

MongoDB(Recommende
d)

TimeScaleDB
InfluxDB

QuestDB

double-groupby-5

118
16.39

30.94
27.84
7.97

cpu-max-all-8

0.86
14.48

1.05
0.44
N/A

lastpoint

66.79
19.44

0.35
11.60
0.32

groupby-orderby-limit

239
13.47

0.24
83.66
0.16

Data Storage Comparison

e TimeScaleDB wins as it uses compression technique to compress the
generated data.

e InfluxDB and QuestDB has the same data size for two datasets. So the reason
might the similarity in their storage structure as both uses SQL tables for
storing data ,resulting in similar size.

e Both MongoDB methods resulted in 24 gb of data generated .Its prominent
that storing every data in a different document and also chunking will result
in the same size of data .But the data loading time will be affected as the
chunking the data means that data can be uploaded quickly.

Write Performance

InfluxDB uses storage engine called the Time-Structured Merge Tree (TSM), which is designed to
write data quickly and compactly. Also, InfluxDB works with very well with datasets having low
cardinality and so it wins in write performance as the data used in this benchmark is relatively small .

QuestDB is designed for high performance and offers a number of features to optimize write
performance, such as vectorization and zero-garbage collection.

TimescaleDB offers chunking and indexing thus grouping data helps in importing data quickly, but its
little slow than QuestDB.

MongoDB doesn’t provide any special feature for write performance and so Mongo-naive approach
takes minutes to insert the data . But changing ‘document-per-event’ to false, helps the data to be
grouped together and result in half time as MongoDb naive.

MongoDB Comparison

benchmark> db.point_data.find()
L

1 1 {
benchmark> db. pOInt—data -find() _id: ObjectId("644e2207998e4b6385feb23a"),
[doc_id: 7_20230401_00_cpu',
key_id: '202 _eo',
{ measurement: &
& tags: {
time: ISODate("2023-04—-01T00:00:00.000Z2"), Taghl o
e t : 'LON',
tags 5 { s:ir\'/‘ice_version: vge,
arch: %86 " ’ service_environment: 'test',
1 - ' hostname: 'host_7',
datacenter: eu—central-l1a‘', region: 'eu-west-1',
' 1 datacenter: ' -west—-1c',
hOStname: hos't,,,e ’ os: ‘_Ubuntplé,iﬁ‘,
0s: ‘Ubuntul5.10"',; g SOTMECEN S
rack. 16! ev?nts: L
- ’
- - i r 5 {
region: eu—central-1"', eager e Br

1 . 1191 : it: L
serv:!.ce 2 w_? ’ :2:3;_32?)
service_environment: 'test’', usage_softirqg: 2,

3 . s u§age_guest_nlce. i
service_version: o> T 5;:;9 llégze.zte("2923—94—61Tee:ee:ea.eeez"),
team: ' SF_ ’ usage:syst;m: 5 .

_idle: -
} ' 32:3:_2“:1: N
~ usage_guest:
usage_system: N
usage—uzer' ' e
- - e null,
usage_nice: 61, s
usage_irq: 63, L
ot - - null,
usage_guest_nice: 28, ::ﬂ:
_id: ObjectId("644ac3906ed849460a8720da"), nuLLy
Usage_idle: ’ usage_softirq: 2,
usage_steal: H
usage_steal: ’ usage_guest_nice: ¥
-~ usage_system: A
usage_guest: < 4 usage_iqle: y
- - usage_nilice: '
usage_lowa lt: L L, usage_irq: ¥
- usage_user: &
usage_softirq: &6, usage_iowait: 21,
- 1~] usage_guest: '
measurement: cpu time: ISODate("2023-04-01T00:00:10.000Z")

Naive vs Recommended

The default and straightforward method in storing data in MongoDB is to store them in document as MongoDB is a
document database . So, MongoDB naive is where each reading is stored in a document.

The results of data write and queries were very bad compared to other databases . I found a better approach to store
time series data in MongoDB.The better approach is to aggregate the time series data in a group based on a time.For
E.g. : for each device, a document is created for every hour. So, this contains is a matrix with 60*60 (minutes and
seconds) as the data is updated constantly. These data for an hour is stored as one document for a particular
device.The document is updated accordingly when a reading is done and so there is no need to make a new
document for every reading.

This allows the overall structure of data to be simple and efficient. We can see from the result that there is huge
difference in efficiency in the recommended method. The data loading took almost half a time (246 vs 123) as
because of aggregation, the data can be quickly inserted into the database .This grouped data can also be filtered
quickly as we don't have to go to every document for query execution. So lesser documents result in the
recommended method outperforming the naive method in most of the queries by a big margin.

TimeScaleDB

TimeScaleDB is built on PostgreSQL and 1s specifically designed for handling time
series data.

Timescale DB supports SQL and has a wide range of features like Group By
functions and JOINS.

This makes timescableDB a good choice for storing and querying time series data.
Timescale DB uses a unique hypertable concept to partition data across time, which
allows for efficient querying and analysis of time series data.

TimeScaleDB

In my benchmarking , I have used chunk size as 12 hours and total duration of data is
3 days . So there will be 6 hyper tables created of duration 12 hrs and all the data will
be divided and stored according to the tampstamp .

Because of this TimeScale DB performed better than MongoDb and influxDB for
queries like lastpoint and groupby as the grouping of data in chunks make it faster and
efficient to query .

But, the performance was worse for double-groupby query and comparatively bad for
cpu-max query. But overall it beats majority of the databases in the benchmarking.

> SELECT * FROM cpu LIMIT 10 OFFSET 10

name: cpu
time arch

datacenter

hostname

os

ice usage_softirq usage_steal usage_system usage_user

1680307200000000000 x64

40 84
1680307200000000000 x64
63 72
1680307200000000000 x64
2 47
1680307200000000000 x64
84 17

1680307200000000000 x64
90

1680307200000000000 x64

76 68
1680307200000000000 x64
87 89
1680307200000000000 x64
74 39
1680307200000000000 x64
9 28

1680307200000000000 x64
29 23

ap-northeast-1la
98

ap-northeast-la
17

ap-northeast-1la
27

ap-northeast-1la
69
ap-northeast-1la
97
ap-northeast-1a
3
ap-northeast-1la
47
ap-northeast-1a
90
ap-northeast-1la
74
ap-northeast-la
12

host_318
24
host_321
37
host_326
62
host_345
25
host_379
36
host_382
83
host_387
34
host_392
66
host_433
89
host_502
36

Ubuntulé.

Ubuntulé.

Ubuntulé.

Ubuntulé.

Ubuntuls.

Ubuntuls.

Ubuntulé.

Ubuntuls.

Ubuntuls.

Ubuntulé.

Q4LTS

Q4LTS

rack region

16

73

10

66

47

16

35

78

ap-northeast-1
ap-northeast-1
ap-northeast-1
ap-northeast-1
ap-northeast-1
ap—-northeast-1
ap-northeast-1
ap-northeast-1
ap-northeast-1

ap-northeast-1

InfluxDB

service service_environment service_version team usage_guest usage_guest_nice usage_idle usage_iowait usage_irq usage_n

5

13

17

19

11

staging
production
test

test
production
staging
test
staging
test

production

CHI

SF

SF

SF

NYC

SF

SF

CHI

SF

CHI

16

46

36

55

50

46

30

21

68

35

89

86

57

61

43

30

19

50

96

16

27

67

66

29

75

31

30

31

20

22

21

47

93

18

80

18

59

36

76

90

23

99

83

65

46

14

75

71

62

48

99

37

29

27

InfluxDB

InfluxDB is built around the concept of time-stamped data, which makes it easy to
store and query time series data.

InfluxDB includes features such as retention policies, which allow you to
automatically expire old data, and continuous queries, which allow you to
pre-aggregate data for faster queries.

The TSM Tree storage engine of InfluxDB helps in storing the data by data points in a
chronological order.

This data is organized in sorted key value pairs with each each pair corresponds to a
specific timestamp. Depending on the query, the data can be retrieved for the time
range by looping over the key-value points.

InfluxDB

But, InfluxDB does not allow joins, which makes queries using joins perform worse
as the code has to be made without Joins to get the desired result.

Also, InfluxDB works only with recent data (depending on the retention rate) and so
grouping can be done with recent time only,which makes it slow for groubpy queries.
I used InfluxDB version 1 for this benchmarking as that's the only supported one,
which may have impacted the results as the later version have optimizations.

While InfluxDB read performance is the best amongst the databases, its performance
is bad for query performance.

InfluxDB performs worse for the groupby-orderby queries and that is because of not
using joins, so it has to take a longer route to loop the data and get the results.

It also took InfluxDB more time to find the latest reading of the data as it performed
worse than TimeScaleDB and QuestDB.

QuestDB

Like TimeScaleDB, QuestDB also uses SQL and other operations that are specifically
designed for aggregation and querying time series data.

Questdb has special functions for time series data :

ASOF JOIN: Allows you to join two tables based on a specific timestamp.

SAMPLE BY: Allows you to aggregate data by time intervals.

LATEST ON: Allows you to get the most recent value for a given timestamp.
AGGREGATES: Supports aggregates like MIN, MAX, AVG, and SUM.

Another important advantage of QuestDB is that the data is stored in column and not
rows and fields like timestamp are accessed by column, so this makes querying fast.
Questdb partitions data by time, allowing efficient querying.

QuestDB

e QuestDB outperforms other Databases because of its special features. ‘Latest
On’ operator lets Quest DB win in the last point query .

e QuestDB wins by a big ratio in other group by queries ,showing how the
storage and partitioning system with other features designed specially for data
series data makes QuestDb a better choice for time series data.

Conclusion

All four databases have their own advantages and disadvantages and so choosing the right database for time series data
depends on factors like data size ,simplicity,time and resources.

While MongoDb is the worst performant ,it is a good choice if the developers have expertise in NoSQL database and
familiar with MongoDB.

InfluxDB is not open source ,so for multi node requirements it can be little costly. Also, it will take time to learn
InfluxDB as it's not a simple database.

TimeScaleDB is a optimal choice as its support for SQL and have better read and write performance as seen in this
benchmarking

Questdb also uses SQL and other special operators and is specially designed for time series data making it a optimal
choice based on the the results of this benchmark and other databases used in performance evaluation.

Comparing NoSQL database 1.e. MongoDB with specific time series databases, we can conclude that its a good choice
to use time series database depending on the ease of use and functionality than MongoDB.

But ,we the application is already using MongoDB for non-time series storage ,then it can be a good option to use
MongoDB for time-series data and so the developers don't have to spent time learning new database and storing data in
it .

Also , if the developers are proficient in SQI queries ,then its better to use time series data as they can run SQL series
as we can see from the database and this benchmarking .

