
NoSQL Database

ACID Properties

•Atomicity – All of the work in a transaction completes or none of it
completes
•Consistency– A transaction transforms the database from one consistent
state to another consistent state.
•Isolation – The results of any changes made during a transaction are not
visible until the transaction has committed.
•Durability – The results of a committed transaction survive failures

Why NoSQL?

RDBMS - Scalability Issues - Big Data

● Issues with scaling up when the dataset is just too big e.g. Big Data.
● Not designed to be distributed.

NoSQL provides a solution to the scalability issue as they can run on clusters or multi-
node database solution.
Different approaches include:

● Master-slave
● Sharding

Master-Slave:
•All writes are written to the master. All reads are performed against the replicated slave
databases
•Critical reads may be incorrect as writes may not have been propagated down
•Large data sets can pose problems as master needs to duplicate data
Sharding:
•Any DB distributed across multiple machines needs to know in what machine a piece of
data is stored or must be stored
•A sharding system makes this decision for each row, using its key

BASE Properties

● Basically Available – Prioritizing availability than consistency.NoSQL databases will
ensure availability of data by spreading and replicating it across the nodes of the
database cluster.

● Soft State – Due to the lack of immediate consistency, NoSQL databases enforces its
own consistency delegating that responsibility to developers and so the state of the
system could change over time.

● Eventually Consistent – The system will become consistent once it stops receiving
input.

CAP Theorem:

CAP theorem – At most two properties on three can be addressed

1. Consistency : Each client has the same view of the the data
2. Availability : Each client can always read and write
3. Partition tolerance : System works well across distributed physical networks

All NoSQL databases provide two of the three above properties but none guarantees all
three. We have to choose the database according to our requirements.

Distinguishing Characteristics

● Large data volumes (Google’s “big data”)
● Scalable replication and distribution (Thousands of machines-

worldwide)
● Queries need to return answers quickly
● Mostly query, few updates
● Asynchronous Inserts & Updates
● Schema-less
● ACID transaction properties are not needed – BASE
● Open source development

Types of NOSQL Databases:

● Column Based: Optimized for queries over large datasets, and store columns of data
together, instead of rows.Each row can have different columns. E.g. Cassandra , Amazon
DynamoDB

● Document Based: Pairs each key with a complex data structure known as a document like
tree data structure consisting of maps and scalar values . E.g.: MongoDB

● Key-Value Pair Based: Every single item in the database is stored as an attribute name
(or 'key'), together with its value. It is designed for processing dictionary,which is basically
a collection of records having fields containing data . E.g.: CouchDB

● Graph Based: Those databases are used when data can be represented as graph, for
example, social networks.E.g. : Neo4J, Infinite Graph

MongoDB:

● NoSQL database developed in C++. First public release in 2009
● It is a non-relational database, which features the richest and most like the relational

database
● Supports complex data types: bjson data structures to store complex data types
● Powerful query language: it allows most functions like query in a single table of

relational databases, and also supports index.

InfluxDB:

● An open-source schemaless time series database with optional closed-sourced
components developed by InfluxData.

● Written in Go programming language and it is optimized to handle time series data.
● SQL-like query language.
● Supports Sharding - Stores data in shard groups, which are organized and store data

with timestamps that fall within a specific time interval.
● Uses its in-house built data structure, the Time Structured Merge Tree (TSM Tree).

TimeScaleDB:

● An open-source time series database developed by Timescale Inc.
● Written in C and extends PostgreSQL.
● TimescaleDB supports standard SQL queries and is a relational database.
● SQL functions and table structures provide support for time series data

oriented towards storage, performance, and analysis facilities for data-at-
scale.

● Data partitioning provides for improved query execution and performance
when used for time-oriented applications.

Questdb

● An open-source time series database
● A relational database optimized for speed and low latency
● Supports SQL querying and indexing
● Provides full ACID compliance and transaction support
● Provides columnar storage format and has a built-in time series extension

that provides time-series functionality

Time Series Database Suite:

● A collection of GO programs
● Use cases : CPU-only, DevOps and IOT
● Benchmark read and write performance of various databases.
● Various Databases Supported
● Various Queries supported (depending on the use case)

Data Generation

● Data is generated randomly, but it’s deterministic if we supply the same PRNG value
for each database.

● The variables defining the generated data are :
1. Use case (CPU-only, devops, or iot)
2. PRNG seed for deterministic generation E.g:123
3. The number of devices E.g: 4000 (This will determine the size of the dataset)
4. A start time E.g: 2023-04-01T00:00:00Z
5. An end time E.g: 2023-04-02T00:00:00Z
6. Time between each reading E.g:10s
7. Target Database E.g: mongo (name determined for MongoDB)

Example:

tsbs_generate_data --use-case="cpu-only" --seed=123 --scale=100 --timestamp-start="2023-04-01T00:00:00Z" --timestamp-
end="2023-04-02T00:00:00Z" --log-interval="10s" --format="mongo" | gzip > /Users/spartan/tmp/mongo-data.gz

Output : mongo-data zip file . 780 mb of data (Zipped to save space)

Mongo DB vs MySQL time series data format comparison

MongoDB – JSON like format

MYSQL -- Table format

PostgreSQL Data Evaluation

Query Generation

● The variables used for generating the queries to be benchmarked against the
generated data:

As the parameters should match the generated data , use case ,prng ,number of devices and
the start date should be kept same. The end date should be kept one second more than the
date of the generated date.For my example ,

1. An end time E.g : 2023-04-02T00:00:01Z
2. The number of queries to generate. E.g : 1000
3. The type of query E.g : single-groupby-1-1-1

Example:

tsbs_generate_queries --use-case=“cpu-only” --seed=123 --scale=100 \
--timestamp-start="2023-04-01T00:00:00Z" \
--timestamp-end="2023-04-02T00:00:01Z" \
--queries=1000 --query-type="single-groupby-1-1-1" --format=“mongo” \ | gzip > /Users/spartan/tmp/mongo-queries-

breakdown-single-groupby-1-1-1.gz

Output : mongo-queries zip file . 4 kb of data (Zipped to save space)

Data Loading

The data file generated in the data_generate step can be used to load data as the data is generated in
the format supported by the database. For e.g. : MongoDB data file comes in BSON format.
The target database should be installed and configured properly and should be started before
performing any steps.

Step 1: Generate a config yaml file for a particular database with default properties

E.g.: tsbs_load config --target=mongo --data-source=FILE

Step 2: Run the tsbs_load with the generated config file

E.g.: tsbs_load load mongo --config=./config.yaml

Query Execution:

This is the last step. So assuming that the database is setup properly , data and query is
generated and the data is loaded in the target database , we can use the tsbs_run_queries
program to successfully run the target queries with the generated data for a particular
database.

If I have zip the generated query ,then i can gzip while running the load command

E.g. :

cat /tmp/queries/mongo-queries-breakdown-single-groupby-1-1-1.gz | \ gunzip |
tsbs_run_queries_mongo --workers=8

	NoSQL Database
	ACID Properties
	Why NoSQL?
	Slide Number 4
			BASE Properties
	CAP Theorem:
	Distinguishing Characteristics
	Types of NOSQL Databases:
	MongoDB:
	Slide Number 10
	InfluxDB:
	Slide Number 12
	TimeScaleDB:
	Slide Number 14
	Slide Number 15
	Questdb
	Slide Number 17
			Time Series Database Suite:
					Data Generation
					Example:
	Mongo DB vs MySQL time series data format comparison
	PostgreSQL Data Evaluation
					Query Generation
					Example:
						Data Loading
	Query Execution:

