NoSQL Database

ACID Properties

*Atomicity — All of the work 1n a transaction completes or none of it
completes

*Consistency— A transaction transforms the database from one consistent
state to another consistent state.

Isolation — The results of any changes made during a transaction are not
visible until the transaction has committed.

*Durability — The results of a committed transaction survive failures

Why NoSQL?

RDBMS - Scalability Issues - Big Data

e Issues with scaling up when the dataset is just too big e.g. Big Data.
e Not designed to be distributed.

NoSQL provides a solution to the scalability issue as they can run on clusters or multi-
node database solution.

Difterent approaches include:

e Master-slave
e Sharding

Master-Slave:

*All writes are written to the master. All reads are performed against the replicated slave
databases

*Critical reads may be incorrect as writes may not have been propagated down
Large data sets can pose problems as master needs to duplicate data
Sharding:

*Any DB distributed across multiple machines needs to know in what machine a piece of
data 1s stored or must be stored

*A sharding system makes this decision for each row, using its key

BASE Properties

e Basically Available — Prioritizing availability than consistency.NoSQL databases will
ensure availability of data by spreading and replicating it across the nodes of the
database cluster.

e Soft State — Due to the lack of immediate consistency, NoSQL databases enforces its
own consistency delegating that responsibility to developers and so the state of the
system could change over time.

e Eventually Consistent — The system will become consistent once it stops receiving
1nput.

CAP Theorem:

CAP theorem — At most two properties on three can be addressed

1. Consistency : Each client has the same view of the the data
2. Awvailability : Each client can always read and write
3. Partition tolerance : System works well across distributed physical networks

All NoSQL databases provide two of the three above properties but none guarantees all
three. We have to choose the database according to our requirements.

Distinguishing Characteristics

Large data volumes (Google’s “big data™)

Scalable replication and distribution (Thousands of machines-
worldwide)

Queries need to return answers quickly

Mostly query, few updates

Asynchronous Inserts & Updates

Schema-less

ACID transaction properties are not needed — BASE

Open source development

Types of NOSQL Databases:

Column Based: Optimized for queries over large datasets, and store columns of data
together, instead of rows.Each row can have different columns. E.g. Cassandra , Amazon
DynamoDB

Document Based: Pairs each key with a complex data structure known as a document like
tree data structure consisting of maps and scalar values . E.g.: MongoDB

Key-Value Pair Based: Every single item in the database is stored as an attribute name
(or 'key"), together with its value. It is designed for processing dictionary,which is basically
a collection of records having fields containing data . E.g.: CouchDB

Graph Based: Those databases are used when data can be represented as graph, for
example, social networks.E.g. : Neo4J, Infinite Graph

MongoDB:

e NoSQL database developed in C++. First public release in 2009

e |t is a non-relational database, which features the richest and most like the relational
database

e Supports complex data types: bjson data structures to store complex data types

e Powerful query language: it allows most functions like query in a single table of
relational databases, and also supports index.

[spartan@IMS-@89MBA ~ % mongosh
Current Mongosh Log ID: 6448c40b07393d5712931a2e

Connecting to: mongodb://127.0.0.1:27017/?directConnection=true&serverSelectionTimeoutMS=2000&appName=mongosh+1.8.@
Using MongoDB: 6.0.5
Using Mongosh: 1.8.90

For mongosh info see: https://docs.mongodb.com/mongodb-shell/

The server generated these startup warnings when booting
2023-04-24T715:31:46.013-07:00: Access control is not enabled for the database. Read and write access to data and configuration is unrestricted

2023-04-24T15:31:46.0813-07:00: Soft rlimits for open file descriptors too low

Enable MongoDB's free cloud-based monitoring service, which will then receive and display
metrics about your deployment (disk utilization, CPU, operation statistics, etc).

The monitoring data will be available on a MongoDB website with a unique URL accessible to you
and anyone you share the URL with. MongoDB may use this information to make product
improvements and to suggest MongoDB products and deployment options to you.

To enable free monitoring, run the following command: db.enableFreeMonitoring()
To permanently disable this reminder, run the following command: db.disableFreeMonitoring()

Warning: Found ~/.mongorc.js, but not ~/.mongoshrc.js. ~/.mongorc.js will not be loaded.
You may want to copy or rename ~/.mongorc.js to ~/.mongoshrc.js.
| test>]

InfluxDB:

e An open-source schemaless time series database with optional closed-sourced
components developed by InfluxData.

e Written in Go programming language and it is optimized to handle time series data.

e SQL-like query language.

e Supports Sharding - Stores data in shard groups, which are organized and store data
with timestamps that fall within a specific time interval.

e Uses its in-house built data structure, the Time Structured Merge Tree (TSM Tree).

spartan@IMS-089MBA ~ % influx
Connected to http://localhost:8086 version 1.11.0
InfluxDB shell version: 1.11.0

TimeScaleDB:

An open-source time series database developed by Timescale Inc.
Written in C and extends PostgreSQL.

TimescaleDB supports standard SQL queries and is a relational database.
SQL functions and table structures provide support for time series data
oriented towards storage, performance, and analysis facilities for data-at-
scale.

Data partitioning provides for improved query execution and performance
when used for time-oriented applications.

2023-83-18
2023-83-18
2023-83-18
2023-83-18
2023-83-18
2023-83-18
20823-83-18
2023-83-18
2023-83-18
2023-83-18
2023-83-18
2023-03-18
2023-03-18
2023-83-18
2023-03-18
2023-83-18

21:35:07.440
21:35:07.442
21:35:07.443
21:35:07.444
21:35:07.543
21:35:07.562
21:35:07.580
21:45:26.951
21:45:26.953
21:45:26.957
21:45:26.966
21:45:26.978
21:45:26.980
21:45:26.984
21:45:26.985
21:45:27.081

ute
uTc
ute
ute
ute
ute
ure
ute
urc
ute
ute
uTe
ute
ute
uTe
ute

[1) LOG:
[1] LoG:
[1] LoG:
[1] LoG:
[176]) LOG:
[1] LoG:
[186]) LOG:
[1] LOG:
[1] LOG:

starting PostgreSQL 12.14 on x86_64-pc=linux-musl, compiled by gcc (Alpine 12.2.1_git20220924-r4) 12.2.1 20220924, 64-bit
listening on IPv4 address "9.8.0.0", port 5432
listening on IPvé address "::%, port 5432
listening on Unix socket “/var/run/postgresql/.s.PGSQL.5432"
database system was shut down at 2023-83-18 21:35:87 UTC
database system is ready to accept connections
TimescaleDB background worker launcher connected to shared catalogs
received fast shutdown reguest
aborting any active transactions

[192) FATAL: terminating connection due to administrator command
[186]) FATAL: terminating connection due to administrator command

[1] LOG:
[1] LoG:
[1] LoG:
[178] LOG:
(1] LoG:

background worker "logical replication launcher" (PID 187) exited with exit code 1

background worker "TimescaleDB Background Worker Launcher" (PID 186) exited with exit code 1

background worker "TimescaleDB Background Worker Scheduler® (PID 192) exited with exit code 1
shutting down

database system is shut down

spartan@IMS-@89MBA ~ % docker container start baldc22lbcf656798f@6818¢787163achb23f0847¢3c9d41d51601225d5F425d8

baldc221bcf656798786818c787163ach23f8B47c3c9d41d51601225d5F425d8
spartan@IMS-@89MBA ~ ¥
spartan@IMS-089MBA ~ %
spartan@IMS-889MBA ~ % docker container start project_timescaledb

project_timescaledb
spartan@IMS-@89MBA ~ % psql -U postgres -h localhost
server 14.7 (Homebrew))

psql (16.2,

Type "help”

postgres=#

for help.

spartan@PIMS-089MBA ~ % brew services

Name Status
cassandra started
emacs none
hbase none
influxdb@l started
mongodb-community started
postgresql@l4 started
questdb started
unbound none

spartan@IMS-089MBA ~ % ||

User
spartan

spartan
spartan
spartan
spartan

File
~/Library/LaunchAgents/homebrew
~/Library/LaunchAgents/homebrew

~/Library/LaunchAgents/homebrew
~/Library/LaunchAgents/homebrew

.mxcl.

.mxcl.
~/Library/LaunchAgents/homebrew.
.mxcl.
.mxcl.

mxcl.

cassandra.plist

influxdb@l.plist
mongodb—-community.plist
postgresql@l4.plist
guestdb.plist

Questdb

An open-source time series database

A relational database optimized for speed and low latency
Supports SQL querying and indexing

Provides full ACID compliance and transaction support

Provides columnar storage format and has a built-in time series extension
that provides time-series functionality

spartan@IMS—989MBA ~ % queétdb start

/A I I N
NNV R
DT AT L D
AV VL N VU I W I DY A W R & AN

www.questdb.io

JAVA: /opt/homebrew/opt/openjdk@1l7/libexec/openjdk.jdk/Contents/Home/bin/java
spartan@IMS-889MBA ~ % Reading log configuration from /opt/homebrew/var/questdb/conf/log.conf
spartan@IMS-@89MBA ~ % brew services

Time Series Database Suite:

A collection of GO programs

Use cases : CPU-only, DevOps and IOT

Benchmark read and write performance of various databases.
Various Databases Supported

Various Queries supported (depending on the use case)

NN E WD = e

Data Generation

Data 1s generated randomly, but it’s deterministic if we supply the same PRNG value
for each database.

The variables defining the generated data are :

Use case (CPU-only, devops, or 1ot)

PRNG seed for deterministic generation E.g:123

The number of devices E.g: 4000 (This will determine the size of the dataset)
A start time E.g: 2023-04-01T00:00:00Z

An end time E.g: 2023-04-02T00:00:00Z

Time between each reading E.g:10s

Target Database E.g: mongo (name determined for MongoDB)

Example:

tsbs_generate data --use-case="cpu-only" --seed=123 --scale=100 --timestamp-start="2023-04-01T00:00:00Z" --timestamp-
end="2023-04-02T00:00:00Z" --log-interval="10s" --format="mongo" | gzip > /Users/spartan/tmp/mongo-data.gz

Output : mongo-data zip file . 780 mb of data (Zipped to save space)

= i

GZ GZ

go mongo-queries— mongo-data.g=
breakdo...1-1-1.g=

Mongo DB vs MySQL time series data format comparison

test> show dbs

admin 40.00
benchmark 11.21
config 72.00
local 72.00

KiB
MiB
KiB
KiB

test> use benchmark

switched to db benchmark
benchmark> show collections

point_data

[time-series]

benchmark> db.point_data.find()
L

: 'x86"
datacenter:

hostname: 'host

os: ‘'Ubuntu
rack: '6',

ISODate("2023-04-01T00:00:00.000Z"),
{

‘eu-central-ia’,

15.

o

1e',

region: 'eu-central-1',

service: 'L
service_environment:

o,

service_version:

team: 'SF'
3,
usage_irq:
usage_guest:
usage_idle:

usage_softirq:

usage_nice:
usage_system:

usage_guest_nice:

usage_use
usage_iowait:
measurement:
usage_steal:

_id: ObjectId("642f25ea78c@15e22abcf619")

: 'x64"
datacenter:

hostname: 'host
os: 'Ubuntuls.
rack: '41°',
region: 'us-west-1
service: '9°,

‘cpu

tus—

st',

ISODate("2023-04-01T00:00:00.000Z"),

est-la',

1e',

service_environment:
service_version:

team: 'NYC'
3,
usage_idle:
usage_
usage_nice:
usage_softirg

usage_guest_nice:

usage_system:
usage_irq:
usage_user:
usage_iowait:

aging',

MongoDB — JSON like format

time usage_irq usage_guest usage_idle usage_softirq usage_nice usage_system usage_quest_nice usage_user usage_fowait measurement usage_steal id:Objectld

2023-04-01T00:00:00.000Z 63 80 24 6 61 2 38 58 22 cpu
2023-04-01T00:00:00.000Z 20 53 53 54 87 1 74 84 29 cpu

44 642f25ea78c015622abcf619
77 642f25ea78c015e22abcf61a

MYSQL -- Table format

PostgreSQL Data Evaluation

\c benchmark henchmark=# SELECT * FROM tags;
T e o e enchmatk® ey user "postares™s id | hostnane | region | datacenter | rack | 0s | arch | team | service | service_version | service_environment
benchmark=# \dt
\kores] Tige T mez 1] host_ @ | eu-central-1 | eu-central-la | 6 | Ubuntul5.10 | x86 | SF | 19 |1 | test
“public | cpu | table | postares 2 | host_1 | us-west-1 | us-west-1a | 41 | Ubuntul5.10 | x64 | NYC | 9 |1 | stag%ng
iotiie | feagas] eakla | pascgras 3 | host_2 | sa-east-1 | sa-east-1a | 89 | Ubuntuls.@slTs | x8¢ | LON | 13 | o | staging
4| host.3 | us-west-2 | us-west-2b | 12 | Ubuntuls.10 | x¢4 | CHI | 18 |1 | production
e o1 " """\ Gog_id | usage_user | usage_systen | usage_idle | ussge_nice | usage_iowait | usege_ira | usage_softira | usege_stesl | usage_guest | usage_guest_nice | additional_tags 5| host4 | sa-east-l | sa-east-lc | 74 | Ubuntuls.1o | x@6 | SF |7 | e | staging
i o G 5 S| = o o T T S S 6 | host_5 | us-west-1 | us-west-1b | 18 | Ubuntuls.180 | x64 | CHI | 14 | 0 | staging
I 2| 8 | 1| 53 | 87 | 29 | 20 | 56 | 77| 53 | 7 | 7 | host_6 | ap-southeast-1 | ap-scutheast-1b | 49 | Ubuntuls.10 | x86 | CHI |7 | o | staging
! H 4] ol | o e) o 4 nl - | 8 | host_7 | eu-west-1 | eu-west-lc | 4 | Ubuntuls.10 | xé4 | LON | 7 |1 | test
! A sl ol o - al ol ol ol o bl 9 | host8 | eu-west-1 | eu-west-la | 17 | Ubuntuls.Q4LTS | xé4 | LON | 2 | e | test
I 7 | 70 | 20 | 67| 65 | 1| 71 92 | 6| 3| 10 | host_ 9 | ap-southeast-2 | ap-scutheast-2a | @ | Ubuntul5.94LTS | x86 | CHI | 18 | o | production
[bl N o] al o | 2 | ol il A 11| host_10 | sa-east-1 | sa-east-la | 95 | Ubuntuls.16 | xé4 | LON | 8 | o | staging
] ol ol i S ol I el %l = = = 12 | host_11 | us-west-2 | us-west-2b | 66 | Ubuntul5.18 | xé4 | NYC | & 12 | pmduct%an
I 21 = i i ;“ i g: ol =1 = } - I 13 | host_12 | eu-central-1 | eu-central-la | 79 | Ubuntuls.10 | x86 | CHI |6 |1 | production
R @l i ol ol o) o %l ! l o 16 | host_13 | eu-west-1 | eu-west-la |79 | Ubuntuls.le | x64 | CHI | 19 |1 | staging
16 | host_14 | us-west-1 | us-west-1b | 8 | Ubuntul5.10 | x64 | LON |3 | o | production
16 | host_16 | ap-southeast-2 | ap-scutheast-2a | 67 | Ubuntuls.10 | x86 | LON | 11 |1 | production
17 | host_16 | ap-southeast-2 | ap-scutheast-2a | 51 | Ubuntuls.10 | x64 | NYC | 6 le; | staging
[==] cpu 18 | host_17 | ap-southeast-1 | ap-scutheast-1b | 79 | Ubuntulf.1e | x86 | NYC | 6 | o | production
19 | host 18 | ap-southeast-1 | ap-scutheast-lb | @ | Ubuntuls.10 | x86 | LON | 19 |1 | test
EB tags - 20 | host_19 | sp-northeast-1 | ap-ncrtheast-la | 70 | Ubuntuls.BiLTS | x64 | CHI | 19 |0 | staging
) time
153 id 123 tags_id
ABC hostname 123 usage_user
ABC region 123 ysage_system
ABC datacenter 123 usage_idle
ABC rack 123 ysage_nice
ABC Os 123 usage_jiowait
ABC arch 123 ysage_irq
ABC team 123 usage_softirq
RABC service 123 ysage_steal
ABC gservice_version 123 usage_guest
ABC service_environment 123 usage_guest_nice
S additional_tags

Query Generation

e The variables used for generating the queries to be benchmarked against the
generated data:

As the parameters should match the generated data , use case ,prng ,number of devices and
the start date should be kept same. The end date should be kept one second more than the
date of the generated date.For my example ,

1. Anend time E.g : 2023-04-02T00:00:01Z
2. The number of queries to generate. E.g : 1000
3. The type of query E.g : single-groupby-1-1-1

Example:

tsbs_generate queries --use-case="‘cpu-only” --seed=123 --scale=100 \

--timestamp-start="2023-04-01T00:00:00Z" \

--timestamp-end="2023-04-02T00:00:01Z" \

--queries=1000 --query-type="single-groupby-1-1-1" --format="mongo” \ | gzip > /Users/spartan/tmp/mongo-queries-
breakdown-single-groupby-1-1-1.gz

Output : mongo-queries zip file . 4 kb of data (Zipped to save space)

= i

GZ G

N

go mongo-queries— mongo-data.g=
breakdo...1-1-1.g=

Data Loading

The data file generated in the data generate step can be used to load data as the data is generated in
the format supported by the database. For e.g. : MongoDB data file comes in BSON format.

The target database should be installed and configured properly and should be started before
performing any steps.

Step 1: Generate a config yaml file for a particular database with default properties

E.g.: tsbs load config --target=mongo --data-source=FILE

Step 2: Run the tsbs_load with the generated config file

E.g.: tsbs load load mongo --config=./config.yaml

Query Execution:

This is the last step. So assuming that the database is setup properly , data and query is
generated and the data is loaded in the target database , we can use the tsbs_run_queries
program to successfully run the target queries with the generated data for a particular
database.

If I have zip the generated query ,then 1 can gzip while running the load command
E.g.:

cat /tmp/queries/mongo-queries-breakdown-single-groupby-1-1-1.gz | \ gunzip |
tsbs run_queries mongo --workers==8

	NoSQL Database
	ACID Properties
	
Why NoSQL?
	Slide Number 4
			BASE Properties
	CAP Theorem:
	Distinguishing Characteristics
	Types of NOSQL Databases:
	MongoDB:
	Slide Number 10
	InfluxDB:
	Slide Number 12
	TimeScaleDB:
	Slide Number 14
	Slide Number 15
	Questdb
	Slide Number 17
			Time Series Database Suite:
					Data Generation
					Example:
	Mongo DB vs MySQL time series data format comparison
	PostgreSQL Data Evaluation
					Query Generation
					Example:
						Data Loading
	Query Execution:

