Benchmarking suite

Steps:

Data Generation

Data Loading

Query generation (Kaplan-Meier and COX regression) and aggregation queries

Performance analysis and review

DataBase Setup

Used Docker Compose:

Docker-compose.yml file contains the necessary configurations like container,ports and environment information. This is to set up manually depending on needs. When this file is called with all or particular database, the docker container is created or started with the specified configuration.

Example:

docker-compose up -d

or

docker-compose up -d mongodb

```
PS D:\Aarsh\SJSU\CS298\Project> docker-compose up -d
[+] Running 43/23
 0B/0B
                                          Pulled
 √ timescaledb 13 layers [
                                         0B/0B
                                                  Pulled
v questdb 7 layers ["""""]
                               0B/0B
                                         Pulled
                                             Pulled
0B/0B

√ Network project_default

                                  Created

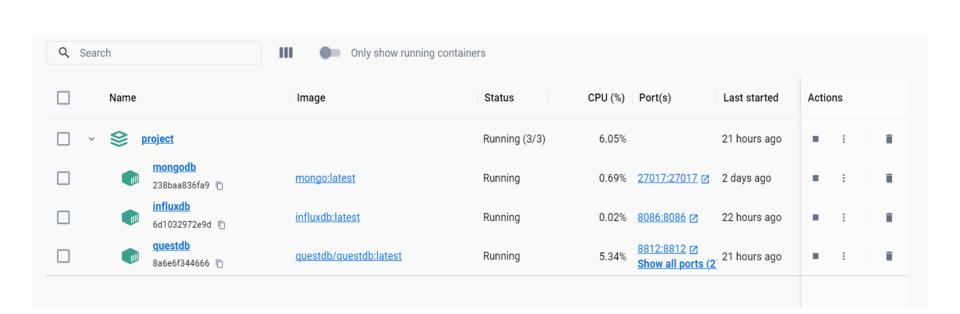
√ Volume "project_mongodb_data"

                                  Created

√ Volume "project_influxdb_data"

                                  Created
 Volume "project_timescaledb_data"
                                  Created

√ Container influxdb


                                  Started

√ Container timescaledb

                                  Started

√ Container mongodb

                                  Started
√ Container questdb
                                  Started
```


Data Generation

Creating synthetic data with parameters to be tune for size and target database Modified the Kaggle synthetic dataset to take parameters.

https://www.kaggle.com/datasets/louise2001/survival-analysis-synthetic-data

Modified to be able to pass parameters

No of columns and target database
For this project,
If target_database = MongoDB ,then output is JSON for else CSV

Example of data generation:

python generate_data.py --n 1000 --database mongodb

Example Output

PS D:\Aarsh\SJSU\CS298\Project\data_generation> python generate_data.py --n 10000000 --database timescaledb Dataset creation took 22.55 seconds.

Data saved in timescaledb format.

PS D:\Aarsh\SJSU\CS298\Project\data_generation> python generate_data.py --n 10000000 --database mongodb Dataset creation took 19.72 seconds.
Data saved in mongodb format.

Name	Date modified	Туре	Size
	9/9/2023 5:06 PM	Python Source File	3 KB
survival_data	9/12/2023 11:32 AM	Microsoft Excel Co	568,910 KB
survival_data	9/12/2023 11:39 AM	JSON Source File	1,759,851 KB

Kaplan-Meier Survival Analysis:

In Medical Research:

- The Kaplan-Meier method is used to measure the fraction of patients living for a certain amount of time after treatment.
- Calculate the Kaplan-Meier survival curves for data stored in each database. This involves calculating survival probabilities at different time points.
- Plot the Kaplan-Meier survival curves using a suitable visualization library (e.g., Matplotlib in Python). Each database performance can be evaluated by the quality of these plots.

Cox regression

In Medical Research:

- Cox regression is used to model the relationship between covariates
 (independent variables) and the hazard of an event occurring. This factors are
 basically affecting the survival like age, gender, treatment type.
- Construct Cox proportional hazards models using the data in each database.
- Compare the results of Cox regression models across databases. Estimated hazard ratios, confidence intervals can help in comparing the databases.