
Database Benchmarking Suite for Survival Analysis Data

A Project

Presented to

The Faculty of the Department of Computer Science San

José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

 Aarsh Patel

Dec 2023

ii

©2023

Aarsh Patel

ALL RIGHTS RESERVED

iii

The Designated Project Committee Approves the Project Titled

Database Benchmarking Suite for Survival Analysis Data

by

 Aarsh Patel

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

 December 2023

 Dr. Chris Pollett Department of Computer Science

 Dr. Robert Chun Department of Computer Science

 Dr. William Andreopoulos Department of Computer Science

iv

ABSTRACT

 Database Benchmarking Suite for Survival Analysis Data

 by Aarsh Patel

Survival analysis data is crucial for predicting future events and making informed decisions.

Storing this data in databases enables researchers and analysts to easily access and analyze it, facilitating

more accurate predictions and better decision-making. There is a growing demand to store such data

utilizing databases. While benchmarking tools are available to aid in selecting the appropriate database,

there is currently no benchmarking suite designed explicitly for survival analysis data. In this report, I

present the development and analysis of a benchmarking suite for survival analysis data. The suite

encompasses performance metrics for both read and write operations and has been applied to several

popular databases, including QuestDB, TimescaleDB, Cassandra, and MongoDB. Specialized topics

related to survival analysis, such as Log-Rank, Cox Proportional Hazards, and Kaplan-Meier, were

given significant attention. Using the suite, I compared NoSQL databases with time-series databases for

storing and retrieving survival analysis data. The project's findings reveal differences as NoSQL

databases don’t perform as well as time series databases. Although NoSQL databases are generally

useful, certain survival analysis queries are unresponsive. TimescaleDB performs exceptionally well

across various queries, indicating its suitability for time-dependent data scenarios. The comparative

analysis highlights the importance of selecting databases tailored to the specific data needs of survival

analysis. It recognizes that specialized time-series databases have an advantage in this area.

Keywords: Survival analysis, Time-Series Data, Benchmarking Suite, Time-Series Databases, NoSQL

Databases

v

ACKNOWLEDGEMENT

I would like to thank Dr. Christopher Pollett, my project advisor, for his unwavering advice and

assistance over the last year as I worked on this master's research. I owe him a great deal for the abilities

and information I acquired from working with him. Additionally, I would like to thank the other faculty

members in the San José State University Department of Computer Science for their assistance and

efforts in teaching the advanced computer science courses. Finally, I want to express my gratitude to my

friends and family for their unwavering support and encouragement as I worked toward earning my

Master of Science in Computer Science.

vi

Contents

ABSTRACT .. 2

Introduction .. 8

I. Background.. 11

II. Design and Architecture .. 13

2.1 Design of Suite ... 13

2.2 Databases .. 14

2.2.1 Time Series Databases ... 14

2.2.2 NoSQL Databases .. 15

2.3 Metrics .. 16

2.3.1 Write Performance .. 16

2.3.2 Read Performance ... 16

III. Implementation ... 21

3.1 Basic Requirements.. 21

3.2 Database Setup ... 21

3.3 Data Generation: .. 22

3.4 Data Loading .. 23

3.5 Query Execution ... 26

IV. Experiments .. 33

Conclusion ... 46

vii

REFERENCES .. 48

8

Introduction

Survival analysis data is essential because it helps us understand the time it takes for an event of

interest, such as a system failure or a disease's occurrence. This type of data is commonly used in

medical research, engineering, and other fields to make predictions and to inform decision-making. By

storing survival analysis data in databases, researchers and analysts can easily access and analyze the

data, making more accurate predictions and ultimately making better decisions based on the data. To

store such essential data, having knowledge and understanding of databases is necessary, and choosing a

suitable database is crucial. However, selecting an appropriate database can be challenging, especially

regarding survival analysis data. Companies often use benchmarking suites to make informed decisions.

Although many benchmarking suites are available, none focus on evaluating survival analysis data. In

my previous project, I used TSBS (Time Series Benchmarking Suite) to compare various time-series

and NoSQL databases against time-series data. This research led to the idea of creating a benchmarking

suite for survival analysis data. The suite includes write and read workloads, with various statistical

queries useful for survival analysis in the read performance section. Another part of the project was to

compare NoSQL and time-series databases for survival analysis data, so I used two time-series and two

NoSQL databases for the project. This Introduction section provides background on time series and

survival analysis, benchmarking suites, and their importance. It also provides a summary of the various

sections of the report.

Time-series data refers to a sequence of information collected at fixed intervals. Such data

usually consists of one or more values associated with a specific timestamp [1]. Examples of time-series

data include temperature readings, sensor data, market prices, and medical records. While time-series

data can be used in forecasting and decision-making, a specific type known as survival analysis data is

widely employed in medical research. Survival analysis is a statistical method used to analyze time-to-

9

event data. Survival analysis points out how long it will take for an event to happen. It helps to evaluate

durations and forecast future events [2], taking censoring into account, especially in cases where the

event is yet to occur or is unknown.

Although the benefits and significance of time-series data are well known, storing such data in

large quantities is necessary for analyzing and carrying out calculations to support various use cases. As

a result, efficient data storage and management are crucial for making fact-based decisions. Traditional

relational databases may not be the best option for handling this type of time-based data, leading to the

development of customized databases and systems for specific use cases. Unique databases such as

TimescaleDB and QuestDB have been created to store time-series data, which can also be used to store

survival analysis data. Additionally, NoSQL databases like MongoDB offer more general-purpose

storage, which can also be used for storing survival analysis data.

Choosing the appropriate database for survival analysis data is crucial to ensure optimal

performance and scalability. The selection of the wrong database can significantly impact data analysis

and application performance. Benchmarking is an effective way to assess the performance of various

databases and help enterprises make informed decisions about their data architecture. To carry out

benchmarking, a benchmarking suite is used, which usually includes scripts to run and metrics like data

loading and query performance that can assess the performance of databases. My project focuses on

developing a benchmarking suite that generates synthetic survival analysis datasets, loads them into

databases, and performs various aggregation and survival analysis queries. The time it takes to load the

data and execute the queries will serve as a basis for assessing the performance of databases. In this

project, I will compare the performance of two time-series databases (TimescaleDB and QuestDB) and

two NoSQL databases (MongoDB and Cassandra) for storing and querying survival analysis data. This

will help me analyze how NoSQL databases perform against specialized time-series databases. By

10

exploring the write performance during data loading and analyzing the read performance with various

aggregation and statistical queries, I aim to understand the performance of databases better.

In the next section of my report, I will provide some background information on benchmarking

and share the results of the benchmarking study I did for my CS297. I will then move on to the Design

section, explaining how I designed the suite and presenting the dataset I used. In the Architecture

section, I will describe how I created scripts for various functions, programming languages, tools, and

the queries I employed for benchmarking. I will also focus on statistical queries typically used in

survival analysis to make informed decisions regarding the probability of survival. In my experiment

and results section, I will present my findings, including screenshots of the queries I performed and a

table showing the execution time of all my results. The final part of my report will be the conclusion,

including a general analysis of my findings and a comparison of the performance of time-series and

NoSQL databases when storing survival analysis data.

11

I. Background

This section introduces benchmarking and benchmarking suites and their importance. I

will discuss current benchmarking suites and the typical metrics used in database

benchmarking. This section will also include the results from my preliminary work for

CS297, where I used TSBS (Time Series Benchmarking Suite) to evaluate the performance of

various databases. These things together will explain my goal and idea of my project to

develop a benchmarking suite for survival analysis data and the metrics I used for my

benchmarking.

Measuring a system's or component's ability to complete a task under specific conditions

is called benchmarking. It involves evaluating the performance of a system and comparing it

with other systems to find areas for improvement. This information can then be used to make

decisions to enhance overall performance. A benchmarking suite consisting of tasks or tests is

developed and used to evaluate the system's performance. For database systems,

benchmarking includes a series of metrics and queries to evaluate the performance of different

databases. The results can help select the appropriate database for a specific use case and

workload. Response time, throughput, and resource management are some metrics that can be

used for benchmarking.

Several database benchmarking suites are available today, each designed for specific data

types or databases to meet particular needs. Some of the standard benchmarking suites include

HammerDB, YCSB (Yahoo Cloud Serving Benchmark), TPCC, and TSBS (Time Series

Benchmarking Suite). HammerDB is a popular benchmarking tool that supports both

relational and non-relational databases. YCSB is specifically designed for measuring the

performance of distributed key-value store databases. TPCC is a standard benchmark for

12

OLTP (Online Transaction Processing) systems and supports relational databases. Lastly,

TSBS is a benchmarking suite designed for time-series data and supports various time-series

and NoSQL databases.

Before developing this suite, I worked on benchmarking various databases for time-series

data using TSBS. I benchmarked three time-series databases (TimeScaleDB, InfluxDB, and

QuestDB) and MongoDB as a NoSQL database. My main research interest was time-series

data and different databases, so I used TSBS to evaluate the performance of these databases. I

benchmarked the write performance (data loading time) and four aggregation queries for read

performance. The results showed that specialized time-series databases performed better than

MongoDB, with InfluxDB being the best overall performer.

Through benchmarking various databases for time-series data, I realized the need for a

specialized suite designed for survival analysis data. As no such benchmarking suite existed, I

developed one focused on survival analysis use cases. I wanted to use similar metrics to those

used for time-series data and provide support for statistical queries to measure read

performance. To achieve this, I compared two time series and two NoSQL databases against

two survival analysis datasets of different sizes. I conducted write and read time

measurements for six queries and evaluated the results.

In this report, I will explain the design and implementation of my benchmarking suite. I

will cover the dataset, the databases, languages, frameworks, and tools used for the

implementation and include code snippets to help readers understand and use the suite. In the

experiments section, I will provide screenshots of my results and conclude my findings.

13

II. Design and Architecture

In this section, I will describe the architecture design of my suite, the databases I chose, and the metrics

my suite supports in detail. This section is divided into design, databases, and metrics.

2.1 Design of Suite

I have ensured that my suite implementation is user-friendly and easy to understand. The root folder of

my suite consists of several folders, including those for data generation, loading, query execution,

docker configuration, and readme files. The docker configuration file contains details about different

databases. The comprehensive readme file provides step-by-step instructions and example scripts to help

users carry out the benchmarking process from scratch.

 Fig.1: Root Folder of Benchmarking Suite

In the data generation folder, you'll find scripts for generating synthetic survival analysis data taken

from Kaggle. The link to the dataset is as follows:

https://www.kaggle.com/datasets/louise2001/survival-analysis-synthetic-data/

This dataset contains information about fictional clients of a life insurance company, including their

entry and departure dates, age at entry and exit, and the reason for their departure (either death or

withdrawal). Additionally, the dataset contains columns for the start and end date of the insurance. I

have changed the dataset's code to allow users to pass the number of rows required as a parameter in the

data generation script. This alteration makes it easier for users to generate datasets of different sizes as

https://www.kaggle.com/datasets/louise2001/survival-analysis-synthetic-data/

14

per their requirements. Once generated, the code produces a CSV file with the specified rows. In

addition to the data generation scripts, the folder contains "addColumn" and "tojson" files used for

Cassandra and MongoDB, respectively. A data load folder with data loading scripts for each database is

also included, making it easy to load the generated data. Finally, you'll find a query execution folder that

contains different subfolders with query scripts. Each subfolder has scripts to perform various queries,

and a readme file briefly explains each query so users can easily understand and modify them as needed.

2.2 Databases

My suite currently supports four databases that I used for this project. They can be classified as Time

Series and NoSQL databases.

2.2.1 Time Series Databases

The purpose of a time-series database is to handle and manage time-series data effectively. Data points

referenced in time order and usually collected regularly make up time-series data.[3] Time-series

databases are designed to execute queries and analyses on data with a temporal component. They

frequently offer functions including effective storage, rapid write throughput, and customized query

capabilities. The two time series databases I used for the project are TimescaleDB and QuestDB.

TimescaleDB:

An open-source time-series database called TimescaleDB was constructed as a PostgreSQL plugin, so it

supports SQL. It blends specific time-series functionality with the advantages of a relational database.

TimescaleDB has many features, making it favorable for storing time-series data.

As per TimescaleDB docs [4], the following are the key features of TimescaleDB:

• Hyper tables: Hyper tables are optimized for storing and querying large amounts of time-series

data. They can store trillions of rows of data and be queried quickly and efficiently.

• Chunking: TimescaleDB chunks data into small pieces, making it query faster.

• Compression: TimescaleDB compresses data, reducing the required storage space.

• Rollups: TimescaleDB can roll up data into aggregates, making summarizing and analyzing

large datasets easier.

15

QuestDB:

QuestDB is a lightweight, high-performance time-series database. It is designed to be easy to use and

scale large volumes of data. QuestDB is written in Java and can run on any platform that supports Java.

QuestDB docs [5] explain the primary features of QuestDB, which are as follows:

• High performance: QuestDB can process millions of events per second.

• Scalability: QuestDB can scale to handle large volumes of data.

• Durability: QuestDB is designed to be durable and reliable, even during a power failure.

• Ease of use: QuestDB is easy to use and manage.

2.2.2 NoSQL Databases

NoSQL databases, often known as "Not Only SQL" databases, are database systems that offer an

alternative to conventional relational databases [6] for storing and retrieving data. Large volumes of

unstructured or semi-structured data can be handled using NoSQL databases, providing greater

scalability and flexibility regarding data models. There are four types of NoSQL databases: document,

key-value, column, and graph, which are explained in [6][7]. First is the document type, which contains

information in semi-structured formats like JSON or BSON. CouchDB and MongoDB are two

examples. Second is a key-value store where data is kept as key-value pairs, where each key

corresponds to a distinct value. Redis and DynamoDB are two such examples. The third type is column-

based, which stores data in columns instead of rows. HBase and Apache Cassandra are two examples.

The last type is graph databases, which are beneficial for applications such as fraud detection and social

networks where data can be represented as graphs. Amazon Neptune and Neo4j are two examples. The

two NoSQL databases I implemented for this project are MongoDB and Cassandra.

MongoDB:

MongoDB is a document-oriented NoSQL database that stores documents as JSON objects. As per

MongoDB Docs. [8], key characteristics of MongoDB are:

• Flexible schema: Since MongoDB does not need a schema, adding and removing fields from

documents is simple.

• Horizontal scalability: Adding extra servers allows MongoDB to be expanded horizontally.

• High performance: The performance of MongoDB is well-known.

16

Cassandra:

Cassandra is a distributed NoSQL database. Large-scale data processing and storing applications

frequently employ Cassandra because of its scalable and dependable nature [9]. Among the main

characteristics of Cassandra are:

• High availability: Even in the case of a server failure, Cassandra is built to be highly available.

• Cassandra has linear scalability, meaning it can manage massive data.

2.3 Metrics

The metrics I chose for my benchmarking are read and write performance. A brief about writing and

reading performance, how it is achieved, and what queries are used for my implementation is described

in the following sub-sections.

2.3.1 Write Performance

Write is loading the data in the database, and that performance is measured in terms of time, such as

how much time it took to load the data. I calculated the time for the four databases. For write

performance, I use different Python drivers for each database to connect to their respective ports and

then load the data. The support for a new database can easily be added. We can write a script for

connecting to the database using a port number or authentication and then write a function that loads the

data in the appropriate data format.

2.3.2 Read Performance

Read performance is to retrieve the data from the database, perform queries like aggregation, and

measure the time it takes for the database to complete it. For read performance, I have created six

queries, three aggregation queries related to the data, and three statistical queries used explicitly for

survival analysis. For read performance, if there is a need to support a new query for the same database,

then the existing query code can be taken and modified accordingly. For adding the support of a new

database, the script can be written that connects to the database and the specific table, and then the query

can retrieve the results and print them out, and execution time can be measured.

I will briefly explain the different queries below.

17

Query 1:

Calculate the number of dead people whose start date is greater than '1991-09-10' and whose end date is

less than '2010-03-07'. Query in SQL:

SELECT COUNT (*) FROM data1 WHERE date_start_observed > '1991-09-10' AND

date_end_observed < '2010-03-07' AND is_dead = true

Query 2:

Calculate the percentage of censored data (individuals for whom the exact death time is unknown).

Query in SQL:

True count: SELECT COUNT (*) FROM data1 WHERE is_dead = TRUE;

Total count: SELECT COUNT (*) FROM data1;

Percentage = (true/total) * 100

Query 3:

Calculate the average duration of observations for uncensored individuals (i.e., those who completed the

observation period). Query in SQL:

SELECT AVG (age_end - age_start_observed) AS average_duration FROM data1 WHERE

is_censored = False

Kaplan-Meier Estimate:

The Kaplan-Meier estimator is a statistical method that calculates the probability of an event not

occurring by a particular time. It considers the times when events, such as death, occur to adjust the

survival odds. This estimator is handy when dealing with censored data, where the exact timing of an

event is unknown, but it is known to have happened after a specific time [10]. A survival curve can be

generated using the Kaplan-Meier estimator, predicting the likelihood of surviving past a particular

point. Two things are needed for estimating: time to the event and event status. For my dataset, the

18

columns I chose are described below.

Time-to-Event:

"time-to-event" is the difference between "age_end" and "age_start_observed."

Event Status:

If "is_dead" is True, it means an event occurred (death), so set the event status to 1.

If "is_censored" is True and "is_dead" is False, it means the observation was censored (the event did not

occur within the observation period), so set the event status to 0.

Log-Rank Test:

The log-rank test is a statistical method used to compare the survival curves of two or more groups and

determine if there are any statistically significant differences in the survival durations between them.

Being a non-parametric test, it does not make any assumptions about the distribution of survival times.

The test calculates the observed and expected values to determine if there are any significant differences

between the observed and expected number of events in each group [2]. For my benchmarking and

dataset, I selected the age at which the patient died and whether the patient is deceased as my two

groups.

Cox Proportional Hazard:

The Cox proportional hazards model is a semi-parametric regression model that examines the

relationship between predictor factors and an individual's survival time [2]. It assumes that the chance of

an event happening to each person is constantly multiplied by a baseline risk that changes over time.

Unlike parametric models, the Cox model is more adaptable because it makes no assumptions regarding

the shape of the baseline hazard [10]. The model estimates hazard ratios (HR) for each predictor

variable, which shows the relative probability of experiencing the event of interest. For my

implementation, I used age_end as the duration column and is_dead as the event column. I used the

19

summary () function that prints out a detailed model overview. Below, I am providing a screenshot of

the Cox Proportional Hazard implementation result and how we can interpret it.

 Fig. 2: Cox Implementation sample output

Interpretation of Cox Proportional Hazard:

The CoxPH model was fitted with a total of 890,155 observations. Among those, 390,678 events were

observed, and 499,477 observations were right-censored. The baseline estimation method used was

"breslow," one of the methods for baseline survival estimation.

Coefficient Table:

The coefficient table shows the estimated coefficients for each covariate in the model. "coef" is the

estimated coefficient for each covariate. "exp(coef)" is the estimated hazard ratio (HR) for each

covariate, which represents the multiplicative effect on the hazard. "se(coef)" is the standard error of the

coefficient estimate. "coef lower 95%" and "coef upper 95%" represent the lower and upper bounds of

the 95% confidence interval for the coefficient." exp(coef) lower 95%" and "exp(coef) upper 95%" are

the lower and upper bounds of the 95% confidence interval for the hazard ratio.

Comparisons and p-values:

The "cmp to" column indicates the reference level for categorical covariates (if applicable). In the above

20

output, all covariates are continuous or binary, so there is no comparison. "z" is the z-score for each

covariate's coefficient, indicating how many standard errors the coefficient estimate is from zero. "p" is

the p-value associated with each covariate, showing the statistical significance of the variable. In the

output above, all p-values are very close to zero, suggesting statistical significance. "log2(p)" represents

the negative logarithm base 2 of the p-value, which is often used to assess effectiveness. Large values of

-log2(p) indicate high significance.

Model Fit Statistics:

Concordance is a measure of predictive accuracy. The above case is 0.54, indicating the model's ability

to discriminate between subjects with different survival times. Partial AIC (Akaike Information

Criterion) is a measure of model goodness-of-fit. The log-likelihood ratio test and -log2(p) of the ll-ratio

test provides information about the model's overall fit.

Interpretation:

In the above case, "age_start_observed" has a negative coefficient, suggesting that as these variables

increase, the hazard decreases. This means that older ages may be associated with a lower risk of death.

"is_truncated" has a positive coefficient, indicating that individuals with truncated observations have a

higher risk of death than those without truncated observations.

21

III. Implementation

This section discusses in detail the various things I used to implement the suite, including different

languages and frameworks I used to build this suite. I will briefly discuss the basic requirements for

running my suite and the device configurations on which I developed my suite.

3.1 Basic Requirements

My Configuration:

OS: Windows 11 Home

Processor: Intel Core i7-8550U CPU

Ram: 16 GB

Basic Requirements:

The user must install Python on the device as the complete suite is in Python. If the user uses Docker

Compose or Docker for database setup, he should install Docker Desktop. I installed the different

drivers and frameworks using pip (python package manager). So, if a user needs to install the missing

frameworks, he can use pip. For example, to install pymongo (MongoDB driver), we can do 'pip install

pymongo' to install pymongo, and then the scripts will work.

3.2 Database Setup

I used a Docker container as a form of data storage. To create and start the Docker containers, I used

Docker Compose. My suite has a compose.yml file, which has configurations for my databases. I can

use the 'docker-compose -up' script in the terminal to start the containers. I have used docker for

QuestDB, MongoDB, and Cassandra. For TimescaleDB, I installed PostgreSQL from the official

website and added the TimescaleDB extension.

22

3.3 Data Generation:

To generate the data, I wrote scripts in Python and gave parameters to pass the number of rows and

database names. Depending on the number of rows I want, I can pass N and database as parameters; it

will generate the data file and print the time. For TimescaleDB, I am using data in CSV format. So, for

this project, I created 1 and 10 million rows in TimescaleDB format, and it took 10.94 and 109 seconds,

as shown in the picture below.

After creating the CSV data, I can use it for TimescaleDB and QuestDB. But for MongoDB and

Cassandra, I had to modify the above CSV file. For MongoDB, the data format is JSON, so I

 have another script that converts CSV to JSON. I loaded the CSV file using the 'read_csv' method,

converted it in Pandas framework, and used the 'to_json' method to convert the CSV file to JSON to

load in MongoDB.

NoSQL databases have a unique index as one of the columns in their data that helps simplify the

aggregation and querying process. While I loaded the MongoDB JSON file, the unique identifier was

automatically created by MongoDB. But, for Cassandra, I had to add the unique identifier column

manually. So, I wrote another script that loads the generated CSV file and adds the UIUD column as the

first column in the new CSV file, thus making it ready to load the data in Cassandra.

23

3.4 Data Loading

The data loading part involves loading the data file into the database. Each database has different

methods, so I wrote scripts for each database. I provided parameters like database name, table name, and

path to the data file, which the user can specify. I will briefly explain the methods I implemented for

each database and the Python drivers I used.

Starting with MongoDB, I used pymongo as my Python driver, which helped me connect to the database

using Mongo Client. After a successful connection, I used the 'json.load' method to load the data in the

database with a function to check if the data is in a list or dictionary, and the data will be loaded as per

that. So, the code to run the script will be like this, and we can change the parameters per the database's

design. Example script:

python mongo_load.py --database project1 --collection data --json_file data1.json

Fig. 3: MongoDB data loading code

For QuestDB, I used requests.post method to send a POST request to the QuestDB server with the

24

specified CSV file attached as part of the files parameter. A dictionary csv is created with a single key

'data' pointing to a tuple (table_name, data_file). So, my script for loading the data looks like this:

project1 is the table name,9000 is the port, and data1 is the CSV file. Example script:

python questdb_load.py http://localhost:9000 project1 data1.csv

 Fig. 4: QuestDB data loading code

For TimescaleDB, I used psycopg2 as my Python driver. At first, my script used the psycopg2 library to

connect to a PostgreSQL database and load data from a CSV file into a specified table. Then, it

establishes a connection to the PostgreSQL database using the psycopg2.connect method. The script

opens the CSV file specified in the argument and reads the header to get the column names. It

dynamically generates a CREATE TABLE query based on the column names obtained from the CSV

file. The script then loads the data from CSV using the COPY command. As PostgreSQL requires

authentication, I had to specify my PostgreSQL username and password to make the connection and

load the data. My script for TimescaleDB is as follows.

python timescale_load.py --database aarsh --table data1 --csv_file data1.csv --username postgres -

-password aarsh

25

 Fig. 5: TimescaleDB data loading code

Lastly, I had to create the table with column names and types for loading data in Cassandra, as

Cassandra cannot automatically parse the CSV file and generate the table. I used Cassandra cluster as

my Python driver, so after connecting to Cassandra, I had first to create a table with the names of the

columns, and after that, I could load data in the database. At first, I used the INSERT statement to insert

individual rows of data into a Cassandra table. However, it was inefficient for large datasets, so I used

the COPY command, as it allows bulk data to load into a table from a CSV file. Example script:

python cassandra_load.py --keyspace project1 --table data --csv_file cassandra_data1.csv

26

 Fig. 6: Cassandra data loading code

3.5 Query Execution

I have used six queries overall to evaluate the read performance of the databases. In this section, I will

discuss how I implemented the queries. The three aggregation queries have similar scripts, except for

changes in the actual queries. So, I will talk about how I implemented the first query. To execute other

queries, a user must change the query's logic in the script, and everything else should work out. For the

query execution, I used the same code and driver as the data loading part to connect the database. I will

discuss the part of the script after the connection to the database. There is no significant change in

TimescaleDB and MongoDB, I made notable changes in QuestDB and Cassandra to make the queries

work.

Below is the screenshot of MongoDB and TimescaleDB script of the query implementation and printing

out the data. MongoDB query language slightly differs from other databases, so I used keywords like

27

"match" and "group," which serve as WHERE and GROUP BY in SQL query language.

 Fig. 7: MongoDB code for aggregation queries

For TimescaleDB, I had to define the SQL query, use a cursor to make the connection, and then return

the result, as shown in the figure below.

28

 Fig. 8: TimescaleDB code for aggregation queries

I had to use a POST request to load the data in the data loading part for QuestDB. So now, I use GET

request to get results from queries. The 'urllib.parse.quote' function is used to encode the SQL query,

and the encoded query is then appended to the URL, creating the complete URL for the GET request.

The script uses 'requests.get' to send a GET request and get the response from the server.

29

 Fig. 9: QuestDB code for aggregation queries

Cassandra's code is similar, but I made two significant changes. By default, Cassandra's timeout setting

is of very few milliseconds. So, while executing the script, it gave an error that the query had timed out.

To solve this, I used ExecutionProfile and imported it from Cassandra.Cluster class and increased the

request_timeout before performing the query in my script. Also, I used an 'ALLOW FILTERING'

keyword to allow filtering on non-indexed columns.

30

 Fig. 10: Cassandra code for aggregation queries

I performed three statistical queries for survival analysis: Kaplan-Meier survival curve, Log-Rank test,

and Cox Proportional Hazard Regression. I used the lifelines library, a complete survival-analysis

library in Python, to implement these queries. So, for each query, I need to import the model I am

implementing from the lifelines library. For example, I used 'from lifelines import KaplanMeierFitter'

for Kaplan Meier. So, the connection to the database is made like the other queries, but to perform these

statistical queries, I had to retrieve the data, put it in a Pandas data frame, and then perform the function.

I have explained briefly about these statistical queries and what column names I chose from each model

in the Design section, so I will briefly explain TimeScaleDB's implementation of queries.

For Kaplan-Meier, after retrieving the data from the databases, I stored it in a Data Frame, calculated the

time-to-event and event status, plotted the curve, and returned the median survival rate. A snippet of my

31

implementation in TimeScaleDB is as follows.

 Fig. 11: Implementation of Kaplan-Meier for TimescaleDB

I selected the required column from the database for the log-rank test and stored it in a Data frame.

Then, I fitted the age_end and is_dead columns in the model and printed the results.

32

 Fig. 12: Implementation of Log-Rank for TimescaleDB

To implement the Cox Proportional Hazard, I used age_end as my duration column and is_dead as my

event_col fitted it in the model and printed a summary of results.

 Fig. 13: Implementation of Cox Proportional Hazard for TimescaleDB

33

IV. Experiments

This section is divided into two sub-sections; the first is Write Performance, where I performed the data

loading part of both databases in all databases as described in the Implementation section, and the

second section is Read Performance, where I ran the scripts of various queries and recorded the

execution time. After each section, I have provided a table with my execution times to make the

comparison more visible.

Write Performance:

Dataset 1: 1 million rows

Dataset 2: 10 million rows

34

Write Performance Result Table (Time in seconds):

QuestDB TimescaleDB Cassandra MongoDB

Dataset 1 1.61 3.65 55.08 14.59

Dataset 2 22.76 34.44 558.61 192.43

For both 1 million and 10 million rows, QuestDB continuously shows good write performance,

indicating scalability and appropriateness for bigger datasets. With a minor increase in write time for the

larger dataset, TimescaleDB works reasonably well. While both Cassandra and MongoDB perform well

for smaller datasets, their write times for datasets with 10 million rows increase noticeably, with

Cassandra exhibiting the longest write time.

Read Performance:

The queries for evaluating the read performance include three aggregations and three statistical queries

designed explicitly for survival analysis. The query names in the screenshots are simplified for ease of

use. So, I am explaining what different names in the Python files mean below.

query1: Calculate the number of people whose start date is greater than '1991-09-10' and whose end date

is less than '2010-03-07' and who are dead.

query2: Calculate the percentage of censored data (individuals for whom the exact death time is

unknown).

query3: Calculate the average duration of observations for uncensored individuals (i.e., those who

completed the observation period).

35

Kaplan: Kaplan-Meier Curve

logrank: Log Rank Estimation

cox: Cox Proportional Hazard

Below are the screenshots for all queries. I will start with Dataset 1 and provide a table and then follow

with Dataset 2

Dataset 1:

Query1:

Query2

36

Query3:

Kaplan Meier Curve:

37

Log Rank Test:

Cox Proportional Hazard.

38

39

Read Performance Result Table for Dataset 1 (Time in seconds):

 Dataset1 Query1 Query2 Query3 Kaplan Log Rank CoX

QuestDB 0.08 0.06 0.24 2.39 2.26 23.89

TimescaleDB 0.10 0.30 0.14 1.56 1.20 23.21

Cassandra 4.52 23.78 8.76 12.17 10.03 31.77

MongoDB 0.78 1.17 1.56 8.79 8.83 27.17

40

Dataset 2:

Query1:

Query2:

Query3:

41

Kaplan Meier Curve:

42

Log Rank Test:

Cox Proportional Hazard.

43

44

Read Performance Result Table for Dataset 2 (Time in seconds):

Dataset2

Query1 Query2 Query3 Kaplan Log Rank CoX

QuestDB 1.70 0.16 0.52 16.20 16.14 317.06

TimescaleDB 1.83 0.95 0.67 13.80 12.96 306.76

Cassandra 29.80 106.73 46.04 131.38 116.05 403.29

MongoDB 7.99 5.61 5.17 176.33 133.78 333.39

QuestDB consistently surpasses competing databases in terms of performance while executing a wide

range of queries, demonstrating its effectiveness in handling typical aggregate and specialized survival

analysis queries. TimescaleDB shows competitive performance but with marginally longer execution

times than QuestDB. MongoDB and Cassandra, although appropriate for common queries, exhibit

longer execution times, particularly when doing survival analysis queries. Cassandra demonstrates

45

exceptional proficiency in handling survival analysis queries in the domains of Kaplan-Meier and Cox

Proportional Hazards compared to MongoDB. QuestDB and TimescaleDB exhibit strong performance

in survival analysis, albeit perhaps with longer execution durations when compared to Cassandra.

46

Conclusion

This research has created and studied a new benchmarking suite to examine database systems

that manage survival analysis data thoroughly. The code of the suite is available in a GitHub repository

and as a Docker Image uploaded to the Docker Hub. The link to the GitHub repository for my project is

as follows :

https://github.com/patelaarsh/Survival-Analysis-Data-Benchmarking-Suite

It contains the folders and readme file with the scripts to perform the benchmarking. The link to the

Docker image of the suite is as follows:

https://hub.docker.com/repository/docker/asp10/survivalbenchmark/

The project can be pulled using docker pull. Example:

docker pull asp10/survivalbenchmark:latest

The suite consists of read and write performance measurements and has been tested with

prominent databases such as QuestDB, TimeScaleDB, Cassandra, and MongoDB. The suite focuses on

specialized questions related to survival analysis, including Kaplan-Meier, Cox Proportional Hazards,

and Log-Rank. The goal is to provide transparency and reproducibility by explaining the datasets,

custom metrics, and approach, making adding more databases and functionalities easy. This suite stands

out even more for integrating read and write performance indicators catering to real-world applications'

comprehensive needs, including survival analysis queries. The suite's dependability and utility are

enhanced through the implementation of a transparent methodology and open-source accessibility,

fostering collaboration and verification among professionals in the realm of database management.

The study findings show significant variations in different databases' read and write

performance. QuestDB offers excellent scalability for larger datasets and performs well across various

queries. TimeScaleDB performs competitively, particularly in write operations. On the other hand,

https://github.com/patelaarsh/Survival-Analysis-Data-Benchmarking-Suite
https://hub.docker.com/repository/docker/asp10/survivalbenchmark/

47

Cassandra performs well in survival analysis queries but struggles with write performance when

handling more massive datasets. MongoDB performs poorly, but it has limitations in specific survival

analysis queries. These outcomes demonstrate the trade-offs one must consider while selecting a

database for a particular application, providing valuable insights for informed decision-making.

When comparing a time series to NoSQL databases, it becomes apparent that there are subtle

differences. Although NoSQL databases can be helpful, they might not respond quickly to certain

survival analysis queries. This is where TimeScaleDB comes into play. It is well-suited for situations

where time-dependent data is present, as demonstrated by its competitive performance in various

queries. TimeScaleDB is specifically designed for time-series data. By analyzing and comparing the

benefits of specialized time-series databases, it becomes clear how crucial it is to select the appropriate

database to match the requirements of survival analysis data.

In conclusion, the benchmarking suite is valuable for evaluating database systems that manage

survival analysis data. It highlights the pros and cons of NoSQL and time-series databases and helps to

make informed decisions when choosing a database for survival analysis-focused applications.

Additionally, the findings pave the way for further research and optimization efforts within the database

community.

48

REFERENCES

[1] Time Series Database (TSDB) guide: Influxdb. InfluxData. (2023, October 23). Retrieved from

https://www.influxdata.com/time-series-database/

[2] Clark, T. G., Bradburn, M. J., Love, S. B., & Altman, D. G. (2003). Survival analysis part I: Basic

concepts and first analyses. British Journal of Cancer, 89(2), 232–238.

https://doi.org/10.1038/sj.bjc.6601118

[3] A. Struckov, S. Yufa, A. A. Visheratin, and D. Nasonov, "Evaluation of modern tools and

techniques for storing time-series data," Procedia Computer Science, vol. 156, pp. 19–28, 2019. doi:

10.1016/j.procs.2019.08.125

[4] TimescaleDB. (2023). TimescaleDB Documentation. Retrieved from https://docs.timescale.com/

[5] QuestDB. (2023). QuestDB Documentation. Retrieved from https://questdb.io/docs/

[6] J. Han, H. E, G. Le, and J. Du, "Survey on NoSQL database," 2011 6th International Conference on

Pervasive Computing and Applications, pp. 363–366, 2011.

[7] V. Abramova and J. Bernardino, "NoSQL databases: MongoDB vs Cassandra," Proceedings of the

International C* Conference on Computer Science and Software Engineering, pp. 14–22, 2013.

[8] MongoDB. (2023). MongoDB Documentation. Retrieved from https://www.mongodb.com/docs/

[9] Apache Software Foundation. (2023). Apache Cassandra Documentation. Retrieved from

https://cassandra.apache.org/doc/latest/

[10] Schober, P., & Vetter, T. R. (2018). Survival Analysis and Interpretation of Time-to-Event Data:

The Tortoise and the Hare. Anesthesia and analgesia, 127(3), 792–798.

https://doi.org/10.1213/ANE.0000000000003653

https://cassandra.apache.org/doc/latest/
https://doi.org/10.1213/ANE.0000000000003653

	©2023
	Aarsh Patel
	ALL RIGHTS RESERVED
	The Designated Project Committee Approves the Project Titled
	Database Benchmarking Suite for Survival Analysis Data
	by
	Aarsh Patel
	APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE
	SAN JOSÉ STATE UNIVERSITY
	December 2023
	Dr. Chris Pollett Department of Computer Science
	Dr. Robert Chun Department of Computer Science
	Dr. William Andreopoulos Department of Computer Science
	ABSTRACT
	Introduction
	I. Background
	II. Design and Architecture
	2.1 Design of Suite
	2.2 Databases
	2.2.1 Time Series Databases
	2.2.2 NoSQL Databases
	2.3 Metrics
	2.3.1 Write Performance
	2.3.2 Read Performance
	III. Implementation
	3.1 Basic Requirements
	3.2 Database Setup
	3.3 Data Generation:
	3.4 Data Loading
	3.5 Query Execution
	IV. Experiments
	Conclusion

	REFERENCES

