
Database Benchmarking Suite
For Survival Analysis Data

Presented by -
Aarsh Patel

Department of Computer Science

Committee:

Dr. Chris Pollett (Advisor)

Dr. Robert Chun
Dr. William Andreopoulos

Agenda
 Problem Statement

 Database and Benchmarking

 Time-Series Data & Background

 Survival Analysis Data

 Design & Metrics of Suite

 Implementation of Suite

 Experiments

 Results & Conclusion

 Future work

Problem Statement
• Survival analysis data is used for analyzing till the event occurs and is crucial for predicting future events and making

informed decisions.

• This type of data is stored in various databases, and it’s important to select the right database for each use case.

• Benchmarking is used for database selection. Many suites already exist developed for particular data or databases

TPCC – OLTP systems

TSBS – Time-series databases

• Development of a benchmarking suite specifically designed for survival analysis data.

• Encompasses performance metrics for both read and write operations and has been applied to various databases.

• Specialized topics related to survival analysis, such as Log-Rank, Cox Proportional Hazards, and Kaplan-Meier, were given

significant attention.

• Comparison of NoSQL databases with time-series databases for storing and retrieving survival analysis data.

Databases
• The word DATA is Latin for FACTS.

• A database is a place or thing that stores facts.

• Used for storing, managing, and retrieving information.

Types of Databases:

Relational Databases (RDBMS):

• Tables with predefined relationships (e.g., MySQL, PostgreSQL).

NoSQL Databases:

• Document-oriented, Key-Value, Column-family, Graph (e.g., MongoDB,

Redis, Cassandra, Neo4j).

Time-Series Databases:

• Specialized for time-stamped data (e.g., InfluxDB, Prometheus).

Benchmarking
What is Benchmarking?

• Evaluation of system performance against defined standards or criteria.

Importance of Benchmarking:

• Performance & Scalability Assessment

• Technology Selection & Cost-Efficiency

Database Benchmarking Process:

• Define Objectives: Clearly define benchmarking goals.

• Select Workloads: Choose representative workloads.

• Design Scenarios: Develop scenarios for write and read operations.

• Execute Benchmarks: Run workloads, collecting performance metrics.

• Analyze Results: Identify strengths, weaknesses, and areas for improvement.

Time-Series Data
• Time-series data refers to a series of data points collected or

recorded chronologically, typically at regular intervals.

• Each data point is associated with a specific timestamp

Example: Stock Prices, Weather Data

Benefits of Time-Series Data Analysis:

Trend Analysis: Long-term trends, such as increasing or
decreasing patterns over time.

Anomaly Detection: Unusual events or outliers can be detected
by analyzing deviations from the expected patterns.

Forecasting: Used to predict future values based on historical
data

Decision Making: Make informed decisions, especially in areas
like finance, marketing, and operations.

Background Work
Time Series Benchmarking Suite (TSBS)

A tool for benchmarking time-series databases.

Collection of Go programs that generate datasets and benchmark various databases' read and write performance.

Supports many Timeseries and NoSQL Databases

Link to the suite: https://github.com/timescale/tsbs

CS297 Work:

• Benchmarked three time-series databases (TimeScaleDB, InfluxDB, and QuestDB) and MongoDB as a NoSQL database.

• I benchmarked the write performance (data loading time) and four aggregation queries for read performance.

• The results showed that specialized time-series databases performed better than MongoDB, with InfluxDB being the best

overall performer.

https://github.com/timescale/tsbs

Survival Analysis

• A statistical method used to analyze the time until an event of interest occurs.

• Example: A machine's failure, a disease's occurrence, or a patient's death.

Benefits of Survival Analysis:

Time-to-Event Analysis: Survival analysis provides a comprehensive way to analyze

the time until an event, accounting for censored data where the event might not have

occurred for some individuals.

Understanding Risk Factors: It helps identify and quantify factors that may

influence the time until an event occurs.

Comparing Groups: Researchers can compare survival curves for different groups

to understand if significant differences exist in the time until the event.

Design & Metrics
• The design of the suite is kept simple. There are 3 folders: data generation, data load, and query execution.

• The data generation folder contains the scripts for generating data.

• The data loading folder contains scripts for each database for loading the data.

• The query execution folder includes many sub-folders specifying each query I used, and the query folder has a script for performing

the query on each database.

• docker compose yml file includes configuration of the databases I used for implementation.

• Readme file explains how to use docker compose and contains the example scripts for each part

• It’s very easy to modify the scripts of code for each part and add other databases by modifying the yml file.

• I used 4 databases which can be classified as Time-Series and NoSQL Databases.

Timeseries Databases
• Specialized databases designed for handling time-series data efficiently.

• Manages data points associated with specific timestamps, making them ideal for applications that track and analyze changes over

time.

• Provide optimized storage, indexing, and query capabilities for time-ordered data, allowing for high-performance retrieval and

analysis.

TimescaleDB & QuestDB
TimescaleDB:

An open-source time-series constructed as a PostgreSQL plugin, so it supports SQL.

Hyper tables: Optimized for storing and querying large amounts of time-series data.

Chunking: Chunks data into small pieces, making it query faster.

Compression: Compresses data, reducing the required storage space.

Rollups: Can roll up data into aggregates, making summarizing and analyzing large datasets easier

QuestDB:

A lightweight, high-performance time-series database written in Java, designed to be easy to use and scale large volumes of data.

High performance: Process millions of events per second.

Scalability: Scale to handle large volumes of data.

Durability: Designed to be durable and reliable, even during a power failure.

NoSQL Databases
• NoSQL databases do not adhere to the traditional relational database

management system (RDBMS) model.

• Designed to handle large volumes of unstructured or semi-structured data

and provide flexible data models.

CAP Theorem:

It is impossible to achieve all three of the following guarantees

simultaneously:

• Consistency (C): All nodes in the system see the same data simultaneously.

This implies that a read request will always return the most recent write.

• Availability (A): Every request made to a non-failing node in the system

receives a response

• Partition Tolerance (P): The system continues to operate despite network

partitions that may cause node communication failures.

Types of NoSQL Databases
Key-Value Stores:

• Data is stored as a collection of key-value pairs.

• Examples: Redis, Amazon DynamoDB

Column-Family Stores:

• Data is organized as columns rather than rows.

• Examples: Apache Cassandra, HBase

Graph Databases:

• Data is represented as nodes, edges, and properties.

• Examples:Neo4j.Amazon Neptune

Document Stores:

• Data is stored in flexible, schema-less documents

• Examples: MongoDB. CouchDB

MongoDB & Cassandra
MongoDB:

Data Model: Document-oriented NoSQL database that stores data in flexible, JSON-like BSON (Binary JSON) documents.

Query Language: MongoDB uses a rich query language that supports dynamic queries, indexing, and secondary indexes.

Scalability: MongoDB supports horizontal scalability through sharding. It can distribute data across multiple nodes to handle large datasets and

high write and read loads.

Consistency: MongoDB provides strong consistency by default.

Apache Cassandra:

Data Model: A wide-column store NoSQL database. It uses a table structure with rows and columns.

Query Language: CQL provides a SQL-like interface for querying data in Cassandra.

Scalability: Designed for horizontal scalability and high availability.

Consistency: Supports tunable consistency, allowing users to choose the level of consistency based on their requirements.

Dataset
• Kaggle: A subsidiary of Google and an online community of data scientists that allows users to find datasets they want to use.

• Found an example of a synthetic survival analysis dataset that is developed in Python.

• I reworked the code, allowing the users to specify the number of rows as parameters, allowing creating the dataset as per the
dataset.

• The link to the dataset: https://www.kaggle.com/datasets/louise2001/survival-analysis-synthetic-data/

• This dataset represents entry dates, departure dates and other information about fictional clients of a life insurance company.

• You have the age at which the insured entered the contract, the age at which he left, and the reason: either death or withdrawal

https://www.kaggle.com/datasets/louise2001/survival-analysis-synthetic-data/

Metrics
Write Performance (Data Loading Time)

• Metric: Elapsed time for loading a specified amount of data into the database.

• Calculation: Measure the time it takes to insert a dataset into the database.

Read Performance (Query Response Time)

• Metric: Elapsed time for executing a specific read query against the database.

• Calculation: Measure the time it takes to retrieve results for a representative read query.

• Considerations: Assess the efficiency of the database in handling complex read queries.

Aggregation Queries

Based on the column names and descriptions, these are the first three queries I used for evaluating the read performance.

Query 1:

Calculate the number of dead people whose start date is greater than '1991-09-10' and whose end date is less than '2010-03-07’

Query 2:

Calculate the percentage of censored data (individuals for whom the exact death time is unknown).

Query 3:

Calculate the average duration of observations for uncensored individuals (i.e., those who completed the observation period).

Kaplan Meier Estimator
• A non-parametric method used to estimate the survival function from

censored data.

• Censoring occurs when the event of interest is not observed for all

subjects in the study.

• The Kaplan-Meier estimator provides a step-function estimate of the

survival probability over time.

Steps:

1. Calculate the survival probability based on the number of subjects at

risk and the number experiencing the event.

2. Multiply the survival probabilities across time points to obtain the

overall survival function.

Output:

A curve representing the estimated survival probability over time.

Time-to-Event:

"time-to-event" is the difference between "age_end" and "age_start_observed."

Event Status:

If "is_dead" is True, it means an event occurred (death), so set the event status to 1.

If "is_censored" is True and "is_dead" is False, it means the observation was censored (the event did not

occur within the observation period), so set the event status to 0.

Log Rank Test
• A statistical test used to compare the survival curves of two or more

groups to determine if there are significant differences in survival

times.

Steps:

1. Calculate each group's observed and expected number of events

for each time point.

2. The test statistic is based on the difference between observed and

expected events, standardized by the variance.

3. To determine statistical significance, compare the test statistic to a

chi-squared distribution.

Output:

A p-value is obtained, indicating whether there are significant

differences in survival times between groups.

The two groups are age_end and is_dead. The p-value is less than 0.005,
so we can reject the null hypothesis.

CoX Proportional Hazard
• A semi-parametric model assesses the relationship between

survival time and one or more predictor variables.

• The hazard of an event is proportional across different levels of

the predictor variables.

Key Concepts:

The Cox model estimates a hazard ratio for each predictor variable,

indicating how the hazard changes relative to a reference level.

Output:

The Cox model estimates each predictor variable's hazard ratios,

confidence intervals, and p-values.

"age_start_observed" has a negative coefficient, suggesting that as these variables
increase, the hazard decreases.

"is_truncated" has a positive coefficient, indicating that individuals with
truncated observations have a higher risk of death than those without truncated
observations

Implementation
My Configuration:

• OS: Windows 11 Home

• Processor: Intel Core i7-8550U CPU

• Ram: 16 GB

Language/Tools:

• Used Docker for Database setup and installation.

• Docker is a software platform that allows you to build, test, and deploy

applications quickly using containers.

• Every script is in Python programming language.

• Used different Python drivers for each database to make a connection

• I used pip (Python package manager) to install and use any dependency.

• Used Pandas for data generation and statistical query parts

• Pandas is a Python library used for working with data sets. It has functions for

analyzing, cleaning, exploring, and manipulating data.

Database Setup
• To create and start the Docker containers, I used Docker Compose.

• My suite has a compose.yml file, which has configurations for my databases.

• I can start the containers using the terminal’s ‘docker-compose –up’ script.

• I have used docker for QuestDB, MongoDB, and Cassandra. For TimescaleDB, I installed PostgreSQL from the official

website and added the TimescaleDB extension.

Data Generation
• Updated the Python script for the Kaggle dataset with parameters for a number of rows and database name.

• Created a dataset of 1 and 10 million in CSV format to load in TimescaleDB and QuestDB.

• For MongoDB, I wrote another script to change the data format to JSON.

• The script that takes the CSV file using the 'read_csv' method, converts it in Pandas framework and uses the 'to_json' method to convert the CSV file to

JSON to load in MongoDB.

• NoSQL databases require a unique identifier column that helps in querying the data as it is filtered using the unique identifier.

• While MongoDB automatically includes a unique identifier column when the data is loaded, Cassandra doesn’t.

• I wrote another script that takes the CSV file, loads the data, adds a UIUD data column as the first column, and returns the updated CSV that can be

uploaded in Cassandra.

Data Loading - MongoDB
• Used pymongo as my Python driver, which helped me

connect to the database using Mongo Client.

• Used the 'json.load' method to load the data in the

database with a function to check if the data is in a list

or dictionary

Example script:

python mongo_load.py --database project1 --collection

data --json_file data1.json

Data Loading - Cassandra
• Used Cassandra cluster as my Python driver

• I had first to create a table with the names of the columns, and

after that, I could load data in the database.

• Used the INSERT statement to insert individual rows of data

into a Cassandra table. However, it was inefficient for large

datasets, so I used the COPY command, as it allows bulk data

to load into a table from a CSV file.

Example script:

python cassandra_load.py --keyspace project1 --table data --

csv_file cassandra_data1.csv

Data Loading - TimescaleDB
• Used psycopg2 as my Python driver.

• Dynamically generates a CREATE TABLE query based on

the column names obtained from the CSV file. The script then

loads the data from CSV using the COPY command.

• As PostgreSQL requires authentication, I had to specify my

PostgreSQL username and password to make the connection

and load the data.

Example script:

python timescale_load.py --database aarsh --table data1 --

csv_file data1.csv --username postgres --password aarsh

Data Loading - QuestDB
• Used HTTP REST API for database connection

• Used request as python library and requests.post method to send

a POST request to the QuestDB server with the specified CSV

file

• The POST response is then outputted as text

• So, my script for loading the data looks like this: project1 is the

table name,9000 is the port, and data1 is the CSV file.

Example script:

python questdb_load.py http://localhost:9000 project1 data1.csv

Query Execution : Aggregation Queries

Query Execution: Statistical Queries

Experiments: Write Performance

QuestDB performs best, while Cassandra is the
slowest for loading the data. Dataset 2 takes more
time for NoSQL databases, explaining the indexing
needed when inserting data as it is later used for
querying.

Experiments: Read Performance

Experiments: Read Performance

Experiments: Read Performance

Dataset 1: QuestDB performs better than TimescaleDB for the aggregation queries, but TimescaleDB wins for
statistical queries. MongoDB performs slowly overall but is faster than Cassandra.

Dataset 2: QuestDB wins overall, but TimescaleDB gives an edge in statistical queries. MongoDB performs better
than Cassandra for the aggregation queries but lags behind for some of the statistical queries.

GitHub Source Code and Docker Image

GitHub Repository:

The git hub repository for my project is as follows :

https://github.com/patelaarsh/Survival-Analysis-Data-Benchmarking-Suite

It contains the folders and readme with the scripts to perform the benchmarking.

Docker Image:

This is the docker image of my project

https://hub.docker.com/repository/docker/asp10/survivalbenchmark/

The project can be pulled using docker pull. Example:

docker pull asp10/survivalbenchmark:latest

https://github.com/patelaarsh/Survival-Analysis-Data-Benchmarking-Suite
https://hub.docker.com/repository/docker/asp10/survivalbenchmark/

Conclusion
 A new benchmarking suite for survival analysis data.

 The suite comprises read-and-write performance and databases such as QuestDB, TimeScaleDB, Cassandra, and
MongoDB.

 The suite focuses on specialized questions related to survival analysis, including Kaplan-Meier, Cox Proportional
Hazards, and Log-Rank.

 The design and implementation are kept simple. So, adding new databases and metrics is made easy.

 The experiments conclude that Time series databases are better than NoSQL databases overall.

 QuestDB and TimescaleDB are column-oriented databases, so they are generally faster for analytical queries than
row-oriented databases like MongoDB. Cassandra is a distributed database, which can be more scalable but also
slower.

 The findings pave the way for further research and optimization efforts within the database community, like more
databases and queries and looking into multi-node systems and scalability.

Future Work
 Use real data to incorporate real-world scenarios.
 Modify configurations of supported databases to enhance the performance.
 Use more resources (RAM and storage) and try out scalability with multi-node

architecture.
 Support and evaluate new databases like NewSQL/Distributed databases.
 Include more diverse and complex query scenarios to simulate real-world use

cases better.
 Extend benchmarking to real-world applications through collaborations with

industry partners for practical insights.

References
[1] Clark, T. G., Bradburn, M. J., Love, S. B., & Altman, D. G. (2003). Survival analysis part I: Basic concepts and first analyses.
British Journal of Cancer, 89(2), 232–238. https://doi.org/10.1038/sj.bjc.6601118

[2] A. Struckov, S. Yufa, A. A. Visheratin, and D. Nasonov, "Evaluation of modern tools and techniques for storing time-series data,"
Procedia Computer Science, vol. 156, pp. 19–28, 2019. doi: 10.1016/j.procs.2019.08.125

[3] TimescaleDB. (2023). TimescaleDB Documentation. Retrieved from https://docs.timescale.com/

[4] QuestDB. (2023). QuestDB Documentation. Retrieved from https://questdb.io/docs/

[5] J. Han, H. E, G. Le, and J. Du, "Survey on NoSQL database," 2011 6th International Conference on Pervasive Computing and
Applications, pp. 363–366, 2011.

[6] V. Abramova and J. Bernardino, "NoSQL databases: MongoDB vs Cassandra," Proceedings of the International C* Conference on
Computer Science and Software Engineering, pp. 14–22, 2013.

[7] MongoDB. (2023). MongoDB Documentation. Retrieved from https://www.mongodb.com/docs/

[8] Apache Software Foundation. (2023). Apache Cassandra Documentation. Retrieved from https://cassandra.apache.org/doc/latest/

Thank you!
Questions?

	Database Benchmarking Suite For Survival Analysis Data
	Agenda
	Problem Statement
	�Databases�
	�Benchmarking�
	�Time-Series Data�
	�Background Work�
	�Survival Analysis�
	�Design & Metrics�
	Timeseries Databases
	TimescaleDB & QuestDB
	NoSQL Databases
	Types of NoSQL Databases
	MongoDB & Cassandra
	Dataset
	Metrics
	Aggregation Queries
	Kaplan Meier Estimator
	Log Rank Test
	CoX Proportional Hazard
	Implementation
	Database Setup
	Data Generation
	Data Loading - MongoDB
	Data Loading - Cassandra
	Data Loading - TimescaleDB
	Data Loading - QuestDB
	Query Execution : Aggregation Queries
	Query Execution: Statistical Queries
	Experiments: Write Performance
	Experiments: Read Performance
	Experiments: Read Performance
	Experiments: Read Performance
	GitHub Source Code and Docker Image
	Conclusion
	Future Work
	References
	Thank you!

