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Netflix Recommendation 
System
How does Netflix recommend movies?



Netflix Recommendation System
Overview

• It uses the data related to user behaviours to profile each user’s taste in movies. 


• Among the inputs to this system is the data of ratings given by users to the movies. A data point 
consists of 4 fields - userID u, movie index i, ratings rui and the date when ratings where given. 


• The output is the prediction of ratings for each user u and movie i which is not watched by that user. It 
can be limited to few numbers of movies having highest prediction values which indicates that user is 
likely to watch these movies more.



The Netflix Prize
Competition

• In October 2006, Netflix organised international contest to create recommendation algorithm that can 
achieve 10% more accuracy than the in house “Cinematch” recommendation system.


• Around 5000 teams participated and 44000 submissions were made by those teams throughout the 
contest period of 3 years.


• Netflix made 2 dataset public - training set of 100M reviews and probe set of 1.4M reviews. Additionally 
it had 2 data sets of 1.4M reviews quiz and test set which were hidden and were used for testing.


• The Cinematch algorithm had RSME of 0.9563 and the final best 2 teams achieved RSME of 0.8567 on 
test dataset. 



Netflix Recommendation System
Key Ideas

• The dataset can viewed as very large and sparse matrix R,  having row for each user and column for 
each movie.


• The value in a cell represents the rating given by a user for a movie. Empty cell means either user has 
not yet watched the movie or not given the rating for it.



• Collaborative filtering finds the hidden structures in the pattern of data in R and leverages them to 
predict ratings. There are two methods for collaborative filtering


• Neighborhood Model - In this method the goal is to find similarity between either users or  between 
movies. The items having more similarity are considered as neighbors. 


• Latent-factor model - In this method the aim is to find hidden key factors(latent factors) that 
represent the user interaction with movie. This is done by factorizing R in two short vectors of latent 
factors.

Netflix Recommendation System
Collaborative filtering



Netflix Recommendation System
Baseline Predictor 

• The baseline predictor just uses global data knowledge to recommend movies . It considers average of all 
the ratings r and two biases bu - factor by which a particular user’s rating behaviour differs then the 
average rating and bi  - the quality of movie i as compared to the global average of ratings.


• The ratings can be predicted as 


• We could have used bu =  where Mu is number of movies rated by user u and bi =  where Mi 

is the number of users rated the movie i. But these averages might not decrease the RMSE of the model.


• To improve the accuracy, we choose {bu, bi} as model parameter so that RMSE can be reduced during 
training mode. The cost function then would be
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Netflix Recommendation System
Neighborhood Model

• The baseline model can be improved by using collaborative filtering. The aim is to find cosine similarity co-efficient 
among the movies and use it while predicting the ratings. 


• Each pair of movies i, j - the column data is considered as a vector in Euclidean space and find the angle between those 
vectors. Here the users which gave ratings to both the movies are taken into consideration. The cosine similarity co-
efficient can be calculated as under


 


• Then consider nearest(most similar) Li neighbors only while predicting a rating for movie i for a particular user u who has 
not rated it. Now we can include collaborative filtering into the baseline predictor as 
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Netflix Recommendation System
Incorporating temporal dynamics

• The main idea that helped to reduce the RMSE by 10% was about including the temporal dynamics in the 
model. The winning teams considered the fact that the popularity of a movie changes with the time and 
also the users taste in the movie and rating standards also changes. With this the biases bu and bi becomes 
time dependent.


• To incorporate this fact in the model, they divided the days in five years of dataset into 30 bins each about ten 
weeks long. So a change in movie trend will be represented as  and change in user’s taste in movie as 

 and rating standards as . After this above two biases are represented as








• This introduced 90 new parameters in the model one each for bin of time and particular time dependent 
variables.

bi,bin(t)
σu(t) bu,t

bi(t) = bi + bi,bin(t)

bu(t) = bu + σu(t) + bu,t


