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34:2 ODED REGEV

1. Introduction

Main Theorem. For an integer n ≥ 1 and a real number ε ≥ 0, consider the ‘learning
from parity with error’ problem, defined as follows: the goal is to find an unknown
s ∈ Zn

2 given a list of ‘equations with errors’
〈s, a1〉 ≈ε b1 (mod 2)
〈s, a2〉 ≈ε b2 (mod 2)

...

where the ai ’s are chosen independently from the uniform distribution on Zn
2,

〈s, ai 〉 = ∑
j s j (ai ) j is the inner product modulo 2 of s and ai , and each equation is

correct independently with probability 1 − ε. More precisely, the input to the prob-
lem consists of pairs (ai , bi ) where each ai is chosen independently and uniformly
from Zn

2 and each bi is independently chosen to be equal to 〈s, ai 〉 with probability
1 − ε. The goal is to find s. Notice that the case ε = 0 can be solved efficiently by,
say, Gaussian elimination. This requires O(n) equations and poly(n) time.

The problem seems to become significantly harder when we take any positive
ε > 0. For example, let us consider again the Gaussian elimination process and
assume that we are interested in recovering only the first bit of s. Using Gaussian
elimination, we can find a set S of O(n) equations such that

∑
S ai is (1, 0, . . . , 0).

Summing the corresponding values bi gives us a guess for the first bit of s. However,
a standard calculation shows that this guess is correct with probability 1

2 + 2−�(n).
Hence, in order to obtain the first bit with good confidence, we have to repeat the
whole procedure 2�(n) times. This yields an algorithm that uses 2O(n) equations and
2O(n) time. In fact, it can be shown that given only O(n) equations, the s′ ∈ Zn

2
that maximizes the number of satisfied equations is with high probability s. This
yields a simple maximum likelihood algorithm that requires only O(n) equations
and runs in time 2O(n).

Blum et al. [2003] provided the first subexponential algorithm for this problem.
Their algorithm requires only 2O(n/ log n) equations/time and is currently the best
known algorithm for the problem. It is based on a clever idea that allows to find a
small set S of equations (say, O(

√
n)) among 2O(n/ log n) equations, such that

∑
S ai

is, say, (1, 0, . . . , 0). This gives us a guess for the first bit of s that is correct with
probability 1

2 + 2−�(
√

n). We can obtain the correct value with high probability by
repeating the whole procedure only 2O(

√
n) times. Their idea was later shown to

have other important applications, such as the first 2O(n)-time algorithm for solving
the shortest vector problem [Kumar and Sivakumar 2001; Ajtai et al. 2001].

An important open question is to explain the apparent difficulty in finding efficient
algorithms for this learning problem. Our main theorem explains this difficulty for
a natural extension of this problem to higher moduli, defined next.

Let p = p(n) ≤ poly(n) be some prime integer and consider a list of “equations
with error”

〈s, a1〉 ≈χ b1 (mod p)
〈s, a2〉 ≈χ b2 (mod p)

...
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FIG. 1. �̄α for p = 127 with α = 0.05 (left) and α = 0.1 (right). The elements of Zp are arranged
on a circle.

where this time s ∈ Zn
p, ai are chosen independently and uniformly from Zn

p, and
bi ∈ Zp. The error in the equations is now specified by a probability distribution
χ : Zp → R+ on Zp. Namely, for each equation i , bi = 〈s, ai 〉 + ei where each
ei ∈ Zp is chosen independently according to χ . We denote the problem of re-
covering s from such equations by LWEp,χ (learning with error). For example,
the learning from parity problem with error ε is the special case where p = 2,
χ (0) = 1 − ε, and χ (1) = ε. Under a reasonable assumption on χ (namely, that
χ (0) > 1/p + 1/poly(n)), the maximum likelihood algorithm described above
solves LWEp,χ for p ≤ poly(n) using poly(n) equations and 2O(n log n) time. Un-
der a similar assumption, an algorithm resembling the one by Blum et al. [2003]
requires only 2O(n) equations/time. This is the best known algorithm for the LWE
problem.

Our main theorem shows that for certain choices of p and χ , a solution to LWEp,χ

implies a quantum solution to worst-case lattice problems.

THEOREM 1.1. (Informal) Let n, p be integers and α ∈ (0, 1) be such that
αp > 2

√
n. If there exists an efficient algorithm that solves LWEp,�̄α

then there
exists an efficient quantum algorithm that approximates the decision version of the
shortest vector problem (GAPSVP) and the shortest independent vectors problem
(SIVP) to within Õ(n/α) in the worst case.

The exact definition of �̄α will be given later. For now, it is enough to know that
it is a distribution on Zp that has the shape of a discrete Gaussian centered around
0 with standard deviation αp, as in Figure 1. Also, the probability of 0 (i.e., no
error) is roughly 1/(αp). A possible setting for the parameters is p = O(n2) and
α = 1/(

√
n log2 n) (in fact, these are the parameters that we use in our cryptographic

application).
GAPSVP and SIVP are two of the main computational problems on lattices. In

GAPSVP, for instance, the input is a lattice, and the goal is to approximate the length
of the shortest nonzero lattice vector. The best known polynomial time algorithms
for them yield only mildly subexponential approximation factors [Lenstra et al.
1982; Schnorr 1987; Ajtai et al. 2001]. It is conjectured that there is no classical
(i.e., nonquantum) polynomial time algorithm that approximates them to within
any polynomial factor. Lattice-based constructions of one-way functions, such as
the one by Ajtai [2004], are based on this conjecture.
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34:4 ODED REGEV

One might even conjecture that there is no quantum polynomial time algorithm
that approximates GAPSVP (or SIVP) to within any polynomial factor. One can then
interpret the main theorem as saying that based on this conjecture, the LWE problem
is hard. The only evidence supporting this conjecture is that there are no known
quantum algorithms for lattice problems that outperform classical algorithms, even
though this is probably one of the most important open questions in the field of
quantum computing.1

In fact, one could also interpret our main theorem as a way to disprove this
conjecture: if one finds an efficient algorithm for LWE, then one also obtains a
quantum algorithm for approximating worst-case lattice problems. Such a result
would be of tremendous importance on its own. Finally, we note that it is possible
that our main theorem will one day be made classical. This would make all our
results stronger and the above discussion unnecessary.

The LWE problem can be equivalently presented as the problem of decoding
random linear codes. More specifically, let m = poly(n) be arbitrary and let s ∈ Zn

p
be some vector. Then, consider the following problem: given a random matrix
Q ∈ Zm×n

p and the vector t = Qs+e ∈ Zm
p where each coordinate of the error vector

e ∈ Zm
p is chosen independently from �̄α, recover s. The Hamming weight of e is

roughly m(1−1/(αp)) (since a value chosen from �̄α is 0 with probability roughly
1/(αp)). Hence, the Hamming distance of t from Qs is roughly m(1 − 1/(αp)).
Moreover, it can be seen that for large enough m, for any other word s′, the Hamming
distance of t from Qs′ is roughly m(1−1/p). Hence, we obtain that approximating
the nearest codeword problem to within factors smaller than (1−1/p)/(1−1/(αp))
on random codes is as hard as quantumly approximating worst-case lattice prob-
lems. This gives a partial answer to the important open question of understanding
the hardness of decoding from random linear codes.

It turns out that certain problems, which are seemingly easier than the LWE
problem, are in fact equivalent to the LWE problem. We establish these equivalences
in Section 4 using elementary reductions. For example, being able to distinguish
a set of equations as above from a set of equations in which the bi ’s are chosen
uniformly from Zp is equivalent to solving LWE. Moreover, it is enough to correctly
distinguish these two distributions for some non-negligible fraction of all s. The
latter formulation is the one we use in our cryptographic applications.

Cryptosystem. In Section 5, we present a public key cryptosystem and prove
that it is secure based on the hardness of the LWE problem. We use the standard
security notion of semantic, or IND-CPA, security (see, e.g., Katz and Lindell
[2008, Chap. 10]). The cryptosystem and its security proof are entirely classical. In
fact, the cryptosystem itself is quite simple; the reader is encouraged to glimpse at
the beginning of Section 5. Essentially, the idea is to provide a list of equations as
above as the public key; encryption is performed by summing some of the equations
(forming another equation with error) and modifying the right hand side depending
on the message to be transmitted. Security follows from the fact that a list of
equations with error is computationally indistinguishable from a list of equations
in which the bi ’s are chosen uniformly.

1 If forced to make a guess, the author would say that the conjecture is true.
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By using our main theorem, we obtain that the security of the system is based
also on the worst-case quantum hardness of approximating SIVP and GAPSVP
to within Õ(n1.5). In other words, breaking our cryptosystem implies an efficient
quantum algorithm for approximating SIVP and GAPSVP to within Õ(n1.5). Previ-
ous cryptosystems, such as the Ajtai-Dwork cryptosystem [Ajtai and Dwork 1997]
and the one by Regev [2004], are based on the worst-case (classical) hardness of
the unique-SVP problem, which can be related to GAPSVP (but not SIVP) through
the recent result of Lyubashevsky and Micciancio [2009].

Another important feature of our cryptosystem is its improved efficiency. In
previous cryptosystems, the public key size is Õ(n4) and the encryption increases
the size of messages by a factor of Õ(n2). In our cryptosystem, the public key size is
only Õ(n2) and encryption increases the size of messages by a factor of only Õ(n).
This possibly makes our cryptosystem practical. Moreover, using an idea of Ajtai
[2005], we can reduce the size of the public key to Õ(n). This requires all users of
the cryptosystem to share some (trusted) random bit string of length Õ(n2). This
can be achieved by, say, distributing such a bit string as part of the encryption and
decryption software.

We mention that learning problems similar to ours were already suggested as
possible sources of cryptographic hardness in, for example, Blum et al. [1994] and
Alekhnovich [2003], although this was done without establishing any connection
to lattice problems. In another related work, Ajtai [2005] suggested a cryptosystem
that has several properties in common with ours (including its efficiency), although
its security is not based on worst-case lattice problems.

Why quantum? This article is almost entirely classical. In fact, quantum is needed
only in one step in the proof of the main theorem. Making this step classical would
make the entire reduction classical. To demonstrate the difficulty, consider the
following situation. Let L be some lattice and let d = λ1(L)/n10 where λ1(L) is
the length of the shortest nonzero vector in L . We are given an oracle that for any
point x ∈ Rn within distance d of L finds the closest lattice vector to x. If x is not
within distance d of L , the output of the oracle is undefined. Intuitively, such an
oracle seems quite powerful; the best known algorithms for performing such a task
require exponential time. Nevertheless, we do not see any way to use this oracle
classically. Indeed, it seems to us that the only way to generate inputs to the oracle
is the following: somehow choose a lattice point y ∈ L and let x = y + z for some
perturbation vector z of length at most d. Clearly, on input x the oracle outputs y.
But this is useless since we already know y!

It turns out that quantumly, such an oracle is quite useful. Indeed, being able
to compute y from x allows us to uncompute y. More precisely, it allows us to
transform the quantum state |x, y〉 to the state |x, 0〉 in a reversible (i.e., unitary)
way. This ability to erase the contents of a memory cell in a reversible way seems
useful only in the quantum setting.

Techniques. Unlike previous constructions of lattice-based public-key cryptosys-
tems, the proof of our main theorem uses an “iterative construction”. Essentially,
this means that instead of ‘immediately’ finding very short vectors in a lattice, the
reduction proceeds in steps where in each step shorter lattice vectors are found. So
far, such iterative techniques have been used only in the construction of lattice-based
one-way functions [Ajtai 2004; Cai and Nerurkar 1997; Micciancio 2004; Miccian-
cio and Regev 2007]. Another novel aspect of our main theorem is its crucial use of
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quantum computation. Our cryptosystem is the first classical cryptosystem whose
security is based on a quantum hardness assumption (see Moore et al. [2007] for a
somewhat related recent work).

Our proof is based on the Fourier transform of Gaussian measures, a technique
that was developed in previous papers [Regev 2004; Micciancio and Regev 2007;
Aharonov and Regev 2005]. More specifically, we use a parameter known as the
smoothing parameter, as introduced in Micciancio and Regev [2007]. We also use
the discrete Gaussian distribution and approximations to its Fourier transform, ideas
that were developed in Aharonov and Regev [2005].

Open questions. The main open question raised by this work is whether The-
orem 1.1 can be dequantized: can the hardness of LWE be established based on
the classical hardness of SIVP and GAPSVP? We see no reason why this should
be impossible. However, despite our efforts over the last few years, we were not
able to show this. As mentioned above, the difficulty is that there seems to be no
classical way to use an oracle that solves the closest vector problem within small
distances. Quantumly, however, such an oracle turns out to be quite useful.

Another important open question is to determine the hardness of the learning
from parity with errors problem (i.e., the case p = 2). Our theorem only works for
p > 2

√
n. It seems that in order to prove similar results for smaller values of p,

substantially new ideas are required. Alternatively, one can interpret our inability
to prove hardness for small p as an indication that the problem might be easier than
believed.

Finally, it would be interesting to relate the LWE problem to other average-case
problems in the literature, and especially to those considered by Feige [2002]. See
Alekhnovich [2003] for some related work.

Followup work. We now describe some of the followup work that has appeared
since the original publication of our results in Regev [2005].

One line of work focussed on improvements to our cryptosystem. First, Kawachi
et al. [2007] proposed a modification to our cryptosystem that slightly improves
the encryption blowup to O(n), essentially getting rid of a log factor. A much
more significant improvement is described by Peikert et al. [2008]. By a relatively
simple modification to the cryptosystem, they managed to bring the encryption
blowup down to only O(1), in addition to several equally significant improvements
in running time. Finally, Akavia et al. [2009] show that our cryptosystem remains
secure even if almost the entire secret key is leaked.

Another line of work focussed on the design of other cryptographic protocols
whose security is based on the hardness of the LWE problem. First, Peikert and
Waters [2008] constructed, among other things, CCA-secure cryptosystems (see
also Peikert [2009] for a simpler construction). These are cryptosystems that are
secure even if the adversary is allowed access to a decryption oracle (see, e.g., Katz
and Lindell [2008, Chap. 10]). All previous lattice-based cryptosystems (including
the one in this article) are not CCA-secure. Second, Peikert et al. [2008] showed
how to construct oblivious transfer protocols, which are useful, for example, for per-
forming secure multiparty computation. Third, Gentry et al. [2008] constructed an
identity-based encryption (IBE) scheme. This is a public-key encryption scheme in
which the public key can be any unique identifier of the user; very few constructions
of such schemes are known. Finally, Cash et al. [2009] constructed a public-key
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cryptosystem that remains secure even when the encrypted messages may depend
upon the secret key. The security of all the above constructions is based on the LWE
problem and hence, by our main theorem, also on the worst-case quantum hardness
of lattice problems.

The LWE problem has also been used by Klivans and Sherstov [2009] to show
hardness results related to learning halfspaces. As before, due to our main theo-
rem, this implies hardness of learning halfspaces based on the worst-case quantum
hardness of lattice problems.

Finally, we mention two results giving further evidence for the hardness of the
LWE problem. In the first, Peikert [2008] somewhat strengthens our main theorem
by replacing our worst-case lattice problems with their analogues for the �q norm,
where 2 ≤ q ≤ ∞ is arbitrary. Our main theorem only deals with the standard �2
versions.

In another recent result, Peikert [2009] shows that the quantum part of our proof
can be removed, leading to a classical reduction from GAPSVP to the LWE problem.
As a result, Peikert is able to show that public-key cryptosystems (including many of
the above LWE-based schemes) can be based on the classical hardness of GAPSVP,
resolving a long-standing open question (see also Lyubashevsky and Micciancio
[2009]). Roughly speaking, the way Peikert circumvents the difficulty we described
earlier is by noticing that the existence of an oracle that is able to recover y from
y + z, where y is a random lattice point and z is a random perturbation of length
at most d, is by itself a useful piece of information as it provides a lower bound
on the length of the shortest nonzero vector. By trying to construct such oracles
for several different values of d and checking which ones work, Peikert is able to
obtain a good approximation of the length of the shortest nonzero vector.

Removing the quantum part, however, comes at a cost: the construction can no
longer be iterative, the hardness can no longer be based on SIVP, and even for hard-
ness based on GAPSVP, the modulus p in the LWE problem must be exponentially
big unless we assume the hardness of a nonstandard variant of GAPSVP. Because
of this, we believe that dequantizing our main theorem remains an important open
problem.

1.1. OVERVIEW. In this section, we give a brief informal overview of the proof
of our main theorem, Theorem 1.1. The complete proof appears in Section 3. We
do not discuss here the reductions in Section 4 and the cryptosystem in Section 5
as these parts of the article are more similar to previous work.

In addition to some very basic definitions related to lattices, we will make heavy
use here of the discrete Gaussian distribution on L of width r , denoted DL ,r . This
is the distribution whose support is L (which is typically a lattice), and in which
the probability of each x ∈ L is proportional to exp

(−π‖x/r‖2
)

(see Eq. (6) and
Figure 2). We also mention here the smoothing parameter ηε(L). This is a real
positive number associated with any lattice L (ε is an accuracy parameter which
we can safely ignore here). Roughly speaking, it gives the smallest r starting from
which DL ,r “behaves like” a continuous Gaussian distribution. For instance, for
r ≥ ηε(L), vectors chosen from DL ,r have norm roughly r

√
n with high probability.

In contrast, for sufficiently small r , DL ,r gives almost all its mass to the origin 0.
Although not required for this section, a complete list of definitions can be found
in Section 2.
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FIG. 2. DL ,2 (left) and DL ,1 (right) for a two-dimensional lattice L . The z-axis represents probability.

Let α, p, n be such that αp > 2
√

n, as required in Theorem 1.1, and assume we
have an oracle that solves LWEp,�̄α

. For concreteness, we can think of p = n2 and
α = 1/n. Our goal is to show how to solve the two lattice problems mentioned in
Theorem 1.1. As we prove in Subsection 3.3 using standard reductions, it suffices
to solve the following discrete Gaussian sampling problem (DGS): Given an n-
dimensional lattice L and a number r ≥ √

2n ·ηε(L)/α, output a sample from DL ,r .
Intuitively, the connection to GAPSVP and SIVP comes from the fact that by taking
r close to its lower limit

√
2n · ηε(L)/α, we can obtain short lattice vectors (of

length roughly
√

nr ). In the rest of this section, we describe our algorithm for
sampling from DL ,r . We note that the exact lower bound on r is not that important
for purposes of this overview, as it only affects the approximation factor we obtain
for GAPSVP and SIVP. It suffices to keep in mind that our goal is to sample from
DL ,r for r that is rather small, say within a polynomial factor of ηε(L).

The core of the algorithm is the following procedure, which we call the “iterative
step”. Its input consists of a number r (which is guaranteed to be not too small,
namely, greater than

√
2pηε(L)), and nc samples from DL ,r where c is some con-

stant. Its output is a sample from the distribution DL ,r ′ for r ′ = r
√

n/(αp). Notice
that since αp > 2

√
n, r ′ < r/2. In order to perform this “magic” of converting

vectors of norm
√

nr into shorter vectors of norm
√

nr ′, the procedure of course
needs to use the LWE oracle.

Given the iterative step, the algorithm for solving DGS works as follows. Let ri
denote r · (αp/

√
n)i . The algorithm starts by producing nc samples from DL ,r3n .

Because r3n is so large, such samples can be computed efficiently by a simple
procedure described in Lemma 3.2. Next comes the core of the algorithm: for
i = 3n, 3n − 1, . . . , 1 the algorithm uses its nc samples from DL ,ri to produce nc

samples from DL ,ri−1 by calling the iterative step nc times. Eventually, we end
up with nc samples from DL ,r0 = DL ,r and we complete the algorithm by simply
outputting the first of those. Note the following crucial fact: using nc samples from
DL ,ri , we are able to generate the same number of samples nc from DL ,ri−1 (in fact,
we could even generate more than nc samples). The algorithm would not work if
we could only generate, say, nc/2 samples, as this would require us to start with an
exponential number of samples.

We now finally get to describe the iterative step. Recall that as input we have nc

samples from DL ,r and we are supposed to generate a sample from DL ,r ′ where
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FIG. 3. Two iterations of the algorithm.

r ′ = r
√

n/(αp). Moreover, r is known and guaranteed to be at least
√

2pηε(L),
which can be shown to imply that p/r < λ1(L∗)/2. As mentioned above, the exact
lower bound on r does not matter much for this overview; it suffices to keep in
mind that r is sufficiently larger than ηε(L), and that 1/r is sufficiently smaller than
λ1(L∗).

The iterative step is obtained by combining two parts (see Figure 3). In the
first part, we construct a classical algorithm that uses the given samples and the
LWE oracle to solve the following closest vector problem, which we denote by
CVPL∗,αp/r : given any point x ∈ Rn within distance αp/r of the dual lattice L∗,
output the closest vector in L∗ to x.2 By our assumption on r , the distance between
any two points in L∗ is greater than 2αp/r and hence the closest vector is unique.
In the second part, we use this algorithm to generate samples from DL ,r ′ . This part
is quantum (and in fact, the only quantum part of our proof). The idea here is to use
the CVPL∗,αp/r algorithm to generate a certain quantum superposition which, after
applying the quantum Fourier transform and performing a measurement, provides
us with a sample from DL ,r

√
n/(αp). In the following, we describe each of the two

parts in more detail.

Part 1. We start by recalling the main idea in Aharonov and Regev [2005].
Consider some probability distribution D on some lattice L and consider its Fourier
transform f : Rn → C, defined as

f (x) =
∑
y∈L

D(y)exp (2π i〈x, y〉) = Exp
y∼D

[exp (2π i〈x, y〉)]

where in the second equality we simply rewrite the sum as an expectation. By
definition, f is L∗-periodic, that is, f (x) = f (x + y) for any x ∈ Rn and y ∈ L∗.
In Aharonov and Regev [2005] it was shown that given a polynomial number of
samples from D, one can compute an approximation of f to within ±1/poly(n). To
see this, note that by the Chernoff–Hoeffding bound, if y1, . . . , yN are N = poly(n)

2 In fact, we only solve CVPL∗,αp/(
√

2r ) but for simplicity we ignore the factor
√

2 here.
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FIG. 4. f1/r for a two-dimensional lattice.

independent samples from D, then

f (x) ≈ 1

N

N∑
j=1

exp
(
2π i〈x, y j 〉

)
where the approximation is to within ±1/poly(n) and holds with probability expo-
nentially close to 1, assuming that N is a large enough polynomial.

By applying this idea to the samples from DL ,r given to us as input, we obtain a
good approximation of the Fourier transform of DL ,r , which we denote by f1/r . It
can be shown that since 1/r � λ1(L∗) one has the approximation

f1/r (x) ≈ exp
(−π (r · dist(L∗, x))2) (1)

(see Figure 4). Hence, f1/r (x) ≈ 1 for any x ∈ L∗ (in fact an equality holds) and
as one gets away from L∗, its value decreases. For points within distance, say, 1/r
from the lattice, its value is still some positive constant (roughly exp (−π )). As
the distance from L∗ increases, the value of the function soon becomes negligible.
Since the distance between any two vectors in L∗ is at least λ1(L∗) � 1/r , the
Gaussians around each point of L∗ are well separated.

Although not needed in this article, let us briefly outline how one can solve
CVPL∗,1/r using samples from DL ,r . Assume that we are given some point x within
distance 1/r of L∗. Intuitively, this x is located on one of the Gaussians of f1/r .
By repeatedly computing an approximation of f1/r using the samples from DL ,r as
described above, we “walk uphill” on f1/r in an attempt to find its “peak”. This peak
corresponds to the closest lattice point to x. Actually, the procedure as described
here does not quite work: due to the error in our approximation of f1/r , we cannot
find the closest lattice point exactly. It is possible to overcome this difficulty; see Liu
et al. [2006] for the details. The same procedure actually works for slightly longer
distances, namely O(

√
log n/r ), but beyond that distance the value of f1/r becomes

negligible and no useful information can be extracted from our approximation of it.
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FIG. 5. The Fourier transform of DL+La/p,r/p with n = 2, p = 2, a = (0, 0) (left), a = (1, 1) (right).

Unfortunately, solving CVPL∗,1/r is not useful for the iterative step as it would
lead to samples from DL ,r

√
n , which is a wider rather than a narrower distribution

than the one we started with. This is not surprising, since our solution to CVPL∗,1/r
did not use the LWE oracle. Using the LWE oracle, we will now show that we can
gain an extra αp factor in the radius, and obtain the desired CVPL∗,αp/r algorithm.

Notice that if we could somehow obtain samples from DL ,r/p we would be done:
using the procedure described above, we could solve CVPL∗,p/r , which is better
than what we need. Unfortunately, it is not clear how to obtain such samples, even
with the help of the LWE oracle. Nevertheless, here is an obvious way to obtain
something similar to samples from DL ,r/p: just take the given samples from DL ,r
and divide them by p. This provides us with samples from DL/p,r/p where L/p is
the lattice L scaled down by a factor of p. In the following, we will show how to
use these samples to solve CVPL∗,αp/r .

Let us first try to understand what the distribution DL/p,r/p looks like. Notice
that the lattice L/p consists of pn translates of the original lattice L . Namely, for
each a ∈ Zn

p, consider the set

L + La/p = {Lb/p | b ∈ Zn, b mod p = a}.
Then, {L + La/p | a ∈ Zn

p} forms a partition of L/p. Moreover, it can be shown
that since r/p is larger than the smoothing parameter ηε(L), the probability given
to each L + La/p under DL/p,r/p is essentially the same, that is, p−n . Intuitively,
beyond the smoothing parameter, the Gaussian measure no longer “sees” the dis-
crete structure of L , so in particular it is not affected by translations (this will be
shown in Claim 3.8).

This leads us to consider the following distribution, call it D̃. A sample from D̃ is
a pair (a, y) where y is sampled from DL/p,r/p, and a ∈ Zn

p is such that y ∈ L+La/p.
Notice that we can easily obtain samples from D̃ using the given samples from DL ,r .
From the above discussion we have that the marginal distribution of a is essentially
uniform. Moreover, by definition we have that the distribution of y conditioned on
any a is DL+La/p,r/p. Hence, D̃ is essentially identical to the distribution on pairs
(a, y) in which a ∈ Zn

p is chosen uniformly at random, and then y is sampled from
DL+La/p,r/p. From now on, we think of D̃ as being this distribution.

We now examine the Fourier transform of DL+La/p,r/p (see Figure 5). When a is
zero, we already know that the Fourier transform is f p/r . For general a, a standard
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calculation shows that the Fourier transform of DL+La/p,r/p is given by

exp (2π i〈a, τ (x)〉/p) · f p/r (x) (2)

where τ (x) ∈ Zn
p is defined as

τ (x) := (L∗)−1κL∗(x) mod p,

and κL∗(x) denotes the (unique) closest vector in L∗ to x. In other words, τ (x) is
the vector of coefficients of the vector in L∗ closest to x when represented in the
basis of L∗, reduced modulo p. So we see that the Fourier transform DL+La/p,r/p is
essentially f p/r , except that each “hill” gets its own phase depending on the vector
of coefficients of the lattice point in its center. The appearance of these phases is as
a result of a well-known property of the Fourier transform, saying that translation
is transformed to multiplication by phase.

Equipped with this understanding of the Fourier transform of DL+La/p,r/p, we can
get back to our task of solving CVPL∗,αp/r . By the definition of the Fourier transform,
we know that the average of exp (2π i〈x, y〉) over y ∼ DL+La/p,r/p is given by (2).
Assume for simplicity that x ∈ L∗ (even though in this case finding the closest vector
is trivial; it is simply x itself). In this case, (2) is equal to exp (2π i〈a, τ (x)〉/p).
Since the absolute value of this expression is 1, we see that for such x, the random
variable 〈x, y〉 mod 1 (where y ∼ DL+La/p,r/p) must be deterministically equal to
〈a, τ (x)〉/p mod 1 (this fact can also be seen directly). In other words, when x ∈ L∗,
each sample (a, y) from D̃, provides us with a linear equation

〈a, τ (x)〉 = p〈x, y〉 mod p

with a distributed essentially uniformly in Zn
p. After collecting about n such equa-

tions, we can use Gaussian elimination to recover τ (x) ∈ Zn
p. And as we shall show

in Lemma 3.5 using a simple reduction, the ability to compute τ (x) easily leads to
the ability to compute the closest vector to x.

We now turn to the more interesting case in which x is not in L∗, but only
within distance αp/r of L∗. In this case, the phase of (2) is still equal to
exp (2π i〈a, τ (x)〉/p). Its absolute value, however, is no longer 1, but still quite
close to 1 (depending on the distance of x from L∗). Therefore, the random
variable 〈x, y〉 mod 1, where y ∼ DL+La/p,r/p, must be typically quite close to
〈a, τ (x)〉/p mod 1 (since, as before, the average of exp (2π i〈x, y〉) is given by (2)).
Hence, each sample (a, y) from D̃, provides us with a linear equation with error,

〈a, τ (x)〉 ≈ �p〈x, y〉� mod p.

Notice that p〈x, y〉 is typically not an integer and hence we round it to the nearest
integer. After collecting a polynomial number of such equations, we call the LWE
oracle in order to recover τ (x). Notice that a is distributed essentially uniformly,
as required by the LWE oracle. Finally, as mentioned above, once we are able to
compute τ (x), computing x is easy (this will be shown in Lemma 3.5).

The above outline ignores one important detail: what is the error distribution in
the equations we produce? Recall that the LWE oracle is only guaranteed to work
with error distribution �̄α. Luckily, as we will show in Claim 3.9 and Corollary 3.10
(using a rather technical proof), if x is at distance βp/r from L∗ for some 0 ≤ β ≤ α,
then the error distribution in the equations is essentially �̄β . (In fact, in order to get
this error distribution, we will have to modify the procedure a bit and add a small
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amount of normal error to each equation.) We then complete the proof by noting
(in Lemma 3.7) that an oracle for solving LWEp,�̄α

can be used to solve LWEp,�̄β

for any 0 ≤ β ≤ α (even if β is unknown).

Part 2. In this part, we describe a quantum algorithm that, using a CVPL∗,αp/r
oracle, generates one sample from DL ,r

√
n/(αp). Equivalently, we show how to pro-

duce a sample from DL ,r given a CVPL∗,
√

n/r oracle. The procedure is essentially
the following: first, by using the CVP oracle, create a quantum state corresponding
to f1/r . Then, apply the quantum Fourier transform and obtain a quantum state
corresponding to DL ,r . By measuring this state, we obtain a sample from DL ,r .

In the following, we describe this procedure in more detail. Our first goal is to
create a quantum state corresponding to f1/r . Informally, this can be written as∑

x∈Rn

f1/r |x〉. (3)

This state is clearly not well defined. In the actual procedure, Rn is replaced with
some finite set (namely, all points inside the basic parallelepiped of L∗ that belong
to some fine grid). This introduces several technical complications and makes the
computations rather tedious. Therefore, in the present discussion, we opt to continue
with informal expressions as in (3).

Let us now continue our description of the procedure. In order to prepare the
state in (3), we first create the uniform superposition on L∗,∑

x∈L∗
|x〉.

(This step is actually unnecessary in the real procedure, since there we work in the
basic parallelepiped of L∗; but for the present discussion, it is helpful to imagine
that we start with this state.) On a separate register, we create a “Gaussian state” of
width 1/r , ∑

z∈Rn

exp
(−π‖rz‖2)|z〉.

This can be done using known techniques. The combined state of the system can
be written as ∑

x∈L∗,z∈Rn

exp
(−π‖rz‖2)|x, z〉.

We now add the first register to the second (a reversible operation), and obtain∑
x∈L∗,z∈Rn

exp
(−π‖rz‖2)|x, x + z〉.

Finally, we would like to erase, or uncompute, the first register to obtain∑
x∈L∗,z∈Rn

exp
(−π‖rz‖2)|x + z〉 ≈

∑
z∈Rn

f1/r (z)|z〉.

However, “erasing” a register is in general not a reversible operation. In order for
it to be reversible, we need to be able to compute x from the remaining register
x + z. This is precisely why we need the CVPL∗,

√
n/r oracle. It can be shown that

almost all the mass of exp
(−π‖rz‖2

)
is on z such that ‖z‖ ≤ √

n/r . Hence, x + z
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is within distance
√

n/r of the lattice and the oracle finds the closest lattice point,
namely, x. This allows us to erase the first register in a reversible way.

In the final part of the procedure, we apply the quantum Fourier transform. This
yields the quantum state corresponding to DL ,r , namely,∑

y∈L

DL ,r (y)|y〉.

By measuring this state, we obtain a sample from the distribution DL ,r (or in fact
from D2

L ,r = DL ,r/
√

2 but this is a minor issue).

2. Preliminaries

In this section, we include some notation that will be used throughout the article.
Most of the notation is standard. Some of the less standard notation is: the Gaussian
function ρ (Eq. (4)), the Gaussian distribution ν (Eq. (5)), the periodic normal
distribution � (Eq. (7)), the discretization of a distribution on T (Eq. (8)), the
discrete Gaussian distribution D (Eq. (6)), the unique closest lattice vector κ (above
Lemma 2.3), and the smoothing parameter η (Definition 2.10).

General. For two real numbers x and y > 0, we define x mod y as x − �x/y�y.
For x ∈ R, we define �x� as the integer closest to x or, in case two such integers
exist, the smaller of the two. For any integer p ≥ 2, we write Zp for the cyclic group
{0, 1, . . . , p − 1} with addition modulo p. We also write T for R/Z, that is, the
segment [0, 1) with addition modulo 1.

We define a negligible amount in n as an amount that is asymptotically smaller
than n−c for any constant c > 0. More precisely, f (n) is a negligible function in
n if limn→∞ nc f (n) = 0 for any c > 0. Similarly, a non-negligible amount is one
which is at least n−c for some c > 0. Also, when we say that an expression is
exponentially small in n we mean that it is at most 2−�(n). Finally, when we say
that an expression (most often, some probability) is exponentially close to 1, we
mean that it is 1 − 2−�(n).

We say that an algorithm A with oracle access is a distinguisher between two
distributions if its acceptance probability when the oracle outputs samples of the
first distribution and its acceptance probability when the oracle outputs samples of
the second distribution differ by a nonnegligible amount.

Essentially all algorithms and reductions in this article have an exponentially
small error probability, and we sometimes do not state this explicitly.

For clarity, we present some of our reductions in a model that allows operations
on real numbers. It is possible to modify them in a straightforward way so that
they operate in a model that approximates real numbers up to an error of 2−nc

for
arbitrary large constant c in time polynomial in n.

Given two probability density functions φ1, φ2 on Rn , we define the statistical
distance between them as

�(φ1, φ2) :=
∫

Rn
|φ1(x) − φ2(x)|dx

(notice that with this definition, the statistical distance ranges in [0, 2]). A simi-
lar definition can be given for discrete random variables. The statistical distance
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satisfies the triangle inequality, that is, for any φ1, φ2, φ3,

�(φ1, φ3) ≤ �(φ1, φ2) + �(φ2, φ3).

Another important fact that we often use is that the statistical distance cannot
increase by applying a (possibly randomized) function f , that is,

�( f (X ), f (Y )) ≤ �(X, Y ),

see, for example, Micciancio and Goldwasser [2002]. In particular, this implies
that the acceptance probability of any algorithm on inputs from X differs from
its acceptance probability on inputs from Y by at most 1

2�(X, Y ) (the factor half
coming from the choice of normalization in our definition of �).

Gaussians and other distributions. Recall that the normal distribution with
mean 0 and variance σ 2 is the distribution on R given by the density function

1√
2π ·σ exp

(− 1
2 ( x

σ
)2

)
where exp (y) denotes ey . Also recall that the sum of two inde-

pendent normal variables with mean 0 and variances σ 2
1 and σ 2

2 is a normal variable
with mean 0 and variance σ 2

1 + σ 2
2 . For a vector x and any s > 0, let

ρs(x) := exp
(−π‖x/s‖2) (4)

be a Gaussian function scaled by a factor of s. We denote ρ1 by ρ. Note that∫
x∈Rn ρs(x)dx = sn . Hence,

νs := ρs/sn (5)

is an n-dimensional probability density function and as before, we use ν to denote ν1.
The dimension n is implicit. Notice that a sample from the Gaussian distribution νs
can be obtained by taking n independent samples from the 1-dimensional Gaussian
distribution. Hence, sampling from νs to within arbitrarily good accuracy can be
performed efficiently by using standard techniques. For simplicity, in this article
we assume that we can sample from νs exactly.3 Functions are extended to sets in
the usual way; that is, ρs(A) = ∑

x∈A ρs(x) for any countable set A. For any vector
c ∈ Rn , we define ρs,c(x) := ρs(x − c) to be a shifted version of ρs . The following
simple claim bounds the amount by which ρs(x) can shrink by a small change
in x.

CLAIM 2.1. For all s, t, l > 0 and x, y ∈ Rn with ‖x‖ ≤ t and ‖x − y‖ ≤ l,

ρs(y) ≥ (1 − π (2lt + l2)/s2)ρs(x).

PROOF. Using the inequality e−z ≥ 1 − z,

ρs(y) = e−π‖y/s‖2 ≥ e−π (‖x‖/s+l/s)2 = e−π (2l‖x‖/s2+(l/s)2)ρs(x)

≥ (1 − π (2lt + l2)/s2)ρs(x).

3 In practice, when only finite precision is available, νs can be approximated by picking a fine grid,
and picking points from the grid with probability approximately proportional to νs . All our arguments
can be made rigorous by selecting a sufficiently fine grid.
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For any countable set A and a parameter s > 0, we define the discrete Gaussian
probability distribution DA,s as

∀x ∈ A, DA,s(x) := ρs(x)

ρs(A)
. (6)

See Figure 2 for an illustration.
For β ∈ R+ the distribution �β is the distribution on T obtained by sampling

from a normal variable with mean 0 and standard deviation β√
2π

and reducing the
result modulo 1 (i.e., a periodization of the normal distribution),

∀r ∈ [0, 1), �β(r ) :=
∞∑

k=−∞

1

β
· exp

(
−π

(r − k
β

)2
)

. (7)

Clearly, one can efficiently sample from �β . The following technical claim shows
that a small change in the parameter β does not change the distribution �β by
much.

CLAIM 2.2. For any 0 < α < β ≤ 2α,

�(�α, �β) ≤ 9
(β

α
− 1

)
.

PROOF. We will show that the statistical distance between a normal variable
with standard deviation α/

√
2π and one with standard deviation β/

√
2π is at most

9(β

α
− 1). This implies the claim since applying a function (modulo 1 in this case)

cannot increase the statistical distance. By scaling, we can assume without loss of
generality that α = 1 and β = 1+ε for some 0 < ε ≤ 1. Then, the statistical distance
that we wish to bound is given by∫

R

∣∣∣∣e−πx2 − 1

1 + ε
e−πx2/(1+ε)2

∣∣∣∣dx

≤
∫

R

∣∣e−πx2 − e−πx2/(1+ε)2∣∣dx +
∫

R

∣∣∣∣(1 − 1

1 + ε

)
e−πx2/(1+ε)2

∣∣∣∣dx

=
∫

R

∣∣e−πx2 − e−πx2/(1+ε)2∣∣dx + ε

=
∫

R

∣∣e−π (1−1/(1+ε)2)x2 − 1
∣∣ e−πx2/(1+ε)2

dx + ε.

Now, since 1 − z ≤ e−z ≤ 1 for all z ≥ 0,∣∣e−π (1−1/(1+ε)2)x2 − 1
∣∣ ≤ π (1 − 1/(1 + ε)2)x2 ≤ 2πεx2.

Hence we can bound the statistical distance above by

ε + 2πε

∫
R

x2e−πx2/(1+ε)2
dx = ε + ε(1 + ε)3 ≤ 9ε.

For an arbitrary probability distribution with density function φ : T → R+ and
some integer p ≥ 1 we define its discretization φ̄ : Zp → R+ as the discrete prob-
ability distribution obtained by sampling from φ, multiplying by p, and rounding
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to the closest integer modulo p. More formally,

φ̄(i) :=
∫ (i+1/2)/p

(i−1/2)/p
φ(x)dx . (8)

As an example, �̄β is shown in Figure 1.
Let p ≥ 2 be some integer, and let χ : Zp → R+ be some probability distribu-

tion on Zp. Let n be an integer and let s ∈ Zn
p be a vector. We define As,χ as the

distribution on Zn
p ×Zp obtained by choosing a vector a ∈ Zn

p uniformly at random,
choosing e ∈ Zp according to χ , and outputting (a, 〈a, s〉+ e), where additions are
performed in Zp, that is, modulo p. We also define U as the uniform distribution on
Zn

p × Zp.
For a probability density function φ on T, we define As,φ as the distribution on

Zn
p ×T obtained by choosing a vector a ∈ Zn

p uniformly at random, choosing e ∈ T

according to φ, and outputting (a, 〈a, s〉/p + e), where the addition is performed
in T, that is, modulo 1.

Learning with Errors. For an integer p = p(n) and a distribution χ on Zp, we
say that an algorithm solves LWEp,χ if, for any s ∈ Zn

p, given samples from As,χ

it outputs s with probability exponentially close to 1. Similarly, for a probability
density function φ on T, we say that an algorithm solves LWEp,φ if, for any s ∈ Zn

p,
given samples from As,φ it outputs s with probability exponentially close to 1. In
both cases, we say that the algorithm is efficient if it runs in polynomial time in n.
Finally, we note that p is assumed to be prime only in Lemma 4.2; In the rest of
the article, including the main theorem, p can be an arbitrary integer.

Lattices. We briefly review some basic definitions; for a good introduction to
lattices, see Micciancio and Goldwasser [2002]. A lattice in Rn is defined as the set
of all integer combinations of n linearly independent vectors. This set of vectors
is known as a basis of the lattice and is not unique. Given a basis (v1, . . . , vn)
of a lattice L , the fundamental parallelepiped generated by this basis is defined
as

P(v1, . . . , vn) =
{

n∑
i=1

xi vi

∣∣∣∣∣ xi ∈ [0, 1)

}
.

When the choice of basis is clear, we write P(L) instead of P(v1, . . . , vn). For
a point x ∈ Rn we define x mod P(L) as the unique point y ∈P(L) such that
y − x ∈ L . We denote by det(L) the volume of the fundamental parallelepiped
of L or equivalently, the absolute value of the determinant of the matrix whose
columns are the basis vectors of the lattice (det(L) is a lattice invariant, that is,
it is independent of the choice of basis). The dual of a lattice L in Rn , denoted
L∗, is the lattice given by the set of all vectors y ∈ Rn such that 〈x, y〉 ∈ Z for all
vectors x ∈ L . Similarly, given a basis (v1, . . . , vn) of a lattice, we define the dual
basis as the set of vectors (v∗

1, . . . , v∗
n) such that 〈vi , v∗

j 〉 = δi j for all i, j ∈ [n] where
δi j denotes the Kronecker delta, that is, 1 if i = j and 0 otherwise. With a slight
abuse of notation, we sometimes write L for the n × n matrix whose columns are
v1, . . . , vn . With this notation, we notice that L∗ = (LT )−1. From this, it follows
that det(L∗) = 1/ det(L). As another example of this notation, for a point v ∈ L
we write L−1v to indicate the integer coefficient vector of v.
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Let λ1(L) denote the length of the shortest nonzero vector in the lattice L . We
denote by λn(L) the minimum length of a set of n linearly independent vectors from
L , where the length of a set is defined as the length of longest vector in it. For a
lattice L and a point v whose distance from L is less than λ1(L)/2 we define κL (v)
as the (unique) closest point to v in L . The following useful fact, due to Banaszczyk,
is known as a “transference theorem”. We remark that the lower bound is easy to
prove.

LEMMA 2.3 (BANASZCZYK 1993,THEOREM 2.1). For any n-dimensional lat-
tice L, 1 ≤ λ1(L) · λn(L∗) ≤ n.

Two other useful facts by Banaszczyk are the following. The first bounds the
amount by which the Gaussian measure of a lattice changes by scaling; the second
shows that for any lattice L , the mass given by the discrete Gaussian measure DL ,r
to points of norm greater than

√
nr is at most exponentially small (the analogous

statement for the continuous Gaussian νr is easy to establish).

LEMMA 2.4 (BANASZCZYK 1993, LEMMA 1.4(I)). For any lattice L and a ≥ 1,
ρa(L) ≤ anρ(L).

LEMMA 2.5 (BANASZCZYK 1993, LEMMA 1.5(I)). Let Bn denote the Euclidean
unit ball. Then, for any lattice L and any r > 0, ρr (L\√

nr Bn) < 2−2n ·ρr (L), where
L \ √

nr Bn is the set of lattice points of norm greater than
√

nr.

In this article, we consider the following lattice problems. The first two, the deci-
sion version of the shortest vector problem (GAPSVP) and the shortest independent
vectors problem (SIVP), are among the most well-known lattice problems and are
concerned with λ1 and λn , respectively. In the definitions below, γ = γ (n) ≥ 1 is
the approximation factor, and the input lattice is given in the form of some arbitrary
basis.

Definition 2.6. An instance of GAPSVPγ is given by an n-dimensional lattice
L and a number d > 0. In YES instances, λ1(L) ≤ d whereas in NO instances
λ1(L) > γ (n) · d.

Definition 2.7. An instance of SIVPγ is given by an n-dimensional lattice L .
The goal is to output a set of n linearly independent lattice vectors of length at most
γ (n) · λn(L).

A useful generalization of SIVP is the following somewhat less standard lattice
problem, known as the generalized independent vectors problem (GIVP). Here, ϕ
denotes an arbitrary real-valued function on lattices. Choosing ϕ = λn results in
SIVP.

Definition 2.8. An instance of GIVPϕ
γ is given by an n-dimensional lattice L .

The goal is to output a set of n linearly independent lattice vectors of length at most
γ (n) · ϕ(L).

Another useful (and even less standard) lattice problem is the following. We call
it the discrete Gaussian sampling problem (DGS). As before, ϕ denotes an arbitrary
real-valued function on lattices.

Definition 2.9. An instance of DGSϕ is given by an n-dimensional lattice L
and a number r > ϕ(L). The goal is to output a sample from DL ,r .
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We also consider a variant of the closest vector problem (which is essentially
what is known as the bounded distance decoding problem [Liu et al. 2006]): For an
n-dimensional lattice L , and some d > 0, we say that an algorithm solves CVPL ,d
if, given a point x ∈ Rn whose distance to L is at most d, the algorithm finds the
closest lattice point to x. In this article d will always be smaller than λ1(L)/2 and
hence the closest vector is unique.

The Smoothing Parameter. We make heavy use of a lattice parameter known as
the smoothing parameter [Micciancio and Regev 2007]. Intuitively, this parameter
provides the width beyond which the discrete Gaussian measure on a lattice behaves
like a continuous one. The precise definition is the following.

Definition 2.10. For an n-dimensional lattice L and positive real ε > 0, we
define the smoothing parameter ηε(L) to be the smallest s such that ρ1/s(L∗ \ {0})
≤ ε.

In other words, ηε(L) is the smallest s such that a Gaussian measure scaled by
1/s on the dual lattice L∗ gives all but ε/(1 + ε) of its weight to the origin. We
usually take ε to be some negligible function of the lattice dimension n. Notice that
ρ1/s(L∗ \ {0}) is a continuous and strictly decreasing function of s. Moreover, it
can be shown that lims→0 ρ1/s(L∗ \ {0}) = ∞ and lims→∞ ρ1/s(L∗ \ {0}) = 0. So,
the parameter ηε(L) is well defined for any ε > 0, and ε �→ ηε(L) is the inverse
function of s �→ ρ1/s(L∗ \ {0}). In particular, ηε(L) is also a continuous and strictly
decreasing function of ε.

The motivation for this definition (and the name ‘smoothing parameter’) comes
from the following result, shown in Micciancio and Regev [2007] (and included here
as Claim 3.8). Informally, it says that if we choose a ‘random’ lattice point from an n-
dimensional lattice L and add continuous Gaussian noise νs for some s > ηε(L) then
the resulting distribution is within statistical distance ε of the ‘uniform distribution
on Rn’. In this article, we show (in Claim 3.9) another important property of this
parameter: for s >

√
2ηε(L), if we sample a point from DL ,s and add Gaussian noise

νs , we obtain a distribution whose statistical distance to a continuous Gaussian ν√
2s

is at most 4ε. Notice that ν√
2s is the distribution one obtains when summing two

independent samples from νs . Hence, intuitively, the noise νs is enough to hide the
discrete structure of DL ,s .

The following two upper bounds on the smoothing parameter appear in Miccian-
cio and Regev [2007].

LEMMA 2.11. For any n-dimensional lattice L, ηε(L) ≤ √
n/λ1(L∗) where

ε = 2−n.

LEMMA 2.12. For any n-dimensional lattice L and ε > 0,

ηε(L) ≤
√

ln(2n(1 + 1/ε))

π
· λn(L).

In particular, for any superlogarithmic function ω(log n), ηε(n)(L) ≤ √
ω(log n) ·

λn(L) for some negligible function ε(n).

We also need the following simple lower bound on the smoothing parameter.
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CLAIM 2.13. For any lattice L and any ε > 0,

ηε(L) ≥
√

ln 1/ε

π
· 1

λ1(L∗)
≥

√
ln 1/ε

π
· λn(L)

n
.

In particular, for any ε(n) = o(1) and any constant c > 0, ηε(n)(L) > c/λ1(L∗) ≥
cλn(L)/n for large enough n.

PROOF. Let v ∈ L∗ be a vector of length λ1(L∗) and let s = ηε(L). Then,

ε = ρ1/s(L∗ \ {0}) ≥ ρ1/s(v) = exp
(−π (sλ1(L∗))2).

The first inequality follows by solving for s. The second inequality is by
Lemma 2.3.

The Fourier Transform. We briefly review some of the important properties of
the Fourier transform. In the following, we omit certain technical conditions as
these will always be satisfied in our applications. For a more precise and in-depth
treatment, see, for example, Ebeling [2002]. The Fourier transform of a function
h : Rn → C is defined to be

ĥ(w) =
∫

Rn
h(x)e−2π i〈x,w〉dx.

From the definition, we can obtain two useful formulas; first, if h is defined by
h(x) = g(x + v) for some function g and vector v then

ĥ(w) = e2π i〈v,w〉ĝ(w). (9)

Similarly, if h is defined by h(x) = e2π i〈x,v〉g(x) for some function g and vector v
then

ĥ(w) = ĝ(w − v). (10)

Another important fact is that the Gaussian is its own Fourier transform, that is,
ρ̂ = ρ. More generally, for any s > 0 it holds that ρ̂s = snρ1/s . Finally, we will use
the following formulation of the Poisson summation formula.

LEMMA 2.14. (POISSON SUMMATION FORMULA). For any lattice L and any
function f : Rn → C,

f (L) = det(L∗) f̂ (L∗).

3. Main Theorem

Our main theorem is the following. The connection to the standard lattice problems
GAPSVP and SIVP will be established in Section 3.3 by polynomial time reductions
to DGS.

THEOREM 3.1 (MAIN THEOREM). Let ε = ε(n) be some negligible function of
n. Also, let p = p(n) be some integer and α = α(n) ∈ (0, 1) be such that αp > 2

√
n.

Assume that we have access to an oracle W that solves LWEp,�α
given a poly-

nomial number of samples. Then, there exists an efficient quantum algorithm for
DGS√

2n·ηε (L)/α.
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PROOF. The input to our algorithm is an n-dimensional lattice L and a number
r >

√
2n · ηε(L)/α. Our goal is to output a sample from DL ,r . Let ri denote r ·

(αp/
√

n)i . The algorithm starts by producing nc samples from DL ,r3n where c is the
constant from the iterative step lemma, Lemma 3.3. By Claim 2.13, r3n > 23nr >
22nλn(L), and hence we can produce these samples efficiently by the procedure
described in the bootstrapping lemma, Lemma 3.2. Next, for i = 3n, 3n −1, . . . , 1
we use our nc samples from DL ,ri to produce nc samples from DL ,ri−1 . The procedure
that does this, called the iterative step, is the core of the algorithm and is described
in Lemma 3.3. Notice that the condition in Lemma 3.3 is satisfied since for all
i ≥ 1, ri ≥ r1 = rαp/

√
n >

√
2pηε(L). At the end of the loop, we end up with nc

samples from DL ,r0 = DL ,r and we complete the algorithm by simply outputting
the first of those.

3.1. BOOTSTRAPPING.

LEMMA 3.2 (BOOTSTRAPPING). There exists an efficient algorithm that, given
any n-dimensional lattice L and r > 22nλn(L), outputs a sample from a distribution
that is within statistical distance 2−�(n) of DL ,r .

PROOF. By using the LLL basis reduction algorithm [Lenstra et al. 1982], we
obtain a basis for L of length at most 2nλn(L) and let P(L) be the parallelepiped
generated by this basis. The sampling procedure samples a vector y from νr and
then outputs y − (y mod P(L)) ∈ L . Notice that ‖y mod P(L)‖ ≤ diam(P(L)) ≤
n2nλn(L).

Our goal is to show that the resulting distribution is exponentially close to DL ,r .
By Lemma 2.5, all but an exponentially small part of DL ,r is concentrated on points
of norm at most

√
nr . So consider any x ∈ L with ‖x‖ ≤ √

nr . By definition, the
probability given to it by DL ,r is ρr (x)/ρr (L). By Lemma 2.14, the denominator
is ρr (L) = det(L∗) · rnρ1/r (L∗) ≥ det(L∗) · rn and hence the probability is at most
ρr (x)/(det(L∗) ·rn) = det(L)νr (x). On the other hand, by Claim 2.1, the probability
given to x ∈ L by our procedure is∫

x+P(L)
νr (y)dy ≥ (1 − 2−�(n)) det(L)νr (x).

Together, these facts imply that our output distribution is within statistical distance
2−�(n) of DL ,r .

3.2. THE ITERATIVE STEP

LEMMA 3.3 (THE ITERATIVE STEP). Let ε = ε(n) be a negligible function, α =
α(n) ∈ (0, 1) be a real number, and p = p(n) ≥ 2 be an integer. Assume that we have
access to an oracle W that solves LWEp,�α

given a polynomial number of samples.
Then, there exists a constant c > 0 and an efficient quantum algorithm that, given
any n-dimensional lattice L, a number r >

√
2pηε(L), and nc samples from DL ,r ,

produces a sample from DL ,r
√

n/(αp).

Note that the output distribution is taken with respect to the randomness (and
quantum measurements) used in the algorithm, and not with respect to the input
samples. In particular, this means that from the same set of nc samples from DL ,r
we can produce any polynomial number of samples from DL ,r

√
n/(αp).
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PROOF. The algorithm consists of two main parts. The first part is shown in
Lemma 3.4. There, we describe a (classical) algorithm that using W and the samples
from DL ,r , solves CVPL∗,αp/(

√
2r ). The second part is shown in Lemma 3.14. There,

we describe a quantum algorithm that, given an oracle that solves CVPL∗,αp/(
√

2r ),
outputs a sample from DL ,r

√
n/(αp). This is the only quantum component in this

article. We note that the condition in Lemma 3.14 is satisfied since by Claim 2.13,
αp/(

√
2r ) ≤ 1/ηε(L) ≤ λ1(L∗)/2.

3.2.1. From Samples to CVP. Our goal in this section is to prove the
following.

LEMMA 3.4 (FIRST PART OF ITERATIVE STEP). Let ε = ε(n) be a negligible
function, p = p(n) ≥ 2 be an integer, and α = α(n) ∈ (0, 1) be a real number. As-
sume that we have access to an oracle W that solves LWEp,�α

given a polynomial
number of samples. Then, there exist a constant c > 0 and an efficient algorithm
that, given any n-dimensional lattice L, a number r >

√
2pηε(L), and nc samples

from DL ,r , solves CVPL∗,αp/(
√

2r ).

For an n-dimensional lattice L , some 0 < d < λ1(L)/2, and an integer p ≥ 2, we
say that an algorithm solves CVP(p)

L ,d if, given any point x ∈ Rn within distance d of
L , it outputs L−1κL (x) mod p ∈ Zn

p, the coefficient vector of the closest vector to
x reduced modulo p. We start with the following lemma, which shows a reduction
from CVPL ,d to CVP(p)

L ,d .

LEMMA 3.5 (FINDING COEFFICIENTS MODULO p IS SUFFICIENT). There exists
an efficient algorithm that given a lattice L, a number d < λ1(L)/2 and an integer
p ≥ 2, solves CVPL ,d given access to an oracle for CVP(p)

L ,d .

PROOF. Our input is a point x within distance d of L . We define a sequence of
points x1 = x, x2, x3, . . . as follows. Let ai = L−1κL (xi ) ∈ Zn be the coefficient
vector of the closest lattice point to xi . We define xi+1 = (xi − L(ai mod p))/p.
Notice that the closest lattice point to xi+1 is L(ai − (ai mod p))/p ∈ L and hence
ai+1 = (ai − (ai mod p))/p. Moreover, the distance of xi+1 from L is at most d/pi .
Also note that this sequence can be computed by using the oracle.

After n steps, we have a point xn+1 whose distance to the lattice is at most d/pn .
We now apply an algorithm for approximately solving the closest vector problem,
such as Babai’s nearest plane algorithm [Babai 1986]. This yields a lattice point
La within distance 2n · d/pn ≤ d < λ1(L)/2 of xn+1. Hence, La is the lattice point
closest to xn+1 and we managed to recover an+1 = a. Knowing an+1 and an mod p
(by using the oracle), we can now recover an = pan+1 + (an mod p). Continuing
this process, we can recover an−1, an−2, . . . , a1. This completes the algorithm since
La1 is the closest point to x1 = x.

As we noted in the proof of Lemma 3.3, for our choice of r , αp/(
√

2r )≤λ1(L∗)/2.
Hence, in order to prove Lemma 3.4, it suffices to present an efficient algorithm
for CVP(p)

L∗,αp/(
√

2r )
. We do this by combining two lemmas. The first, Lemma 3.7,

shows an algorithm W ′ that, given samples from As,�β
for some (unknown) β ≤ α,

outputs s with probability exponentially close to 1 by using W as an oracle. Its
proof is based on Lemma 3.6. The second, Lemma 3.11, is the main lemma of this
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subsection, and shows how to use W ′ and the given samples from DL ,r in order to
solve CVP(p)

L∗,αp/(
√

2r )
.

LEMMA 3.6 (VERIFYING SOLUTIONS OF LWE). Let p = p(n) ≥ 1 be some inte-
ger. There exists an efficient algorithm that, given s′ and samples from As,�α

for some
(unknown) s ∈ Zn

p and α < 1, outputs whether s = s′ and is correct with probability
exponentially close to 1.

We remark that the lemma holds also for all α ≤ O(
√

log n) with essentially the
same proof.

PROOF. The idea is to perform a statistical test on samples from As,�α
that

checks whether s = s′. Let ξ be the distribution on T obtained by sampling (a, x)
from As,�α

and outputting x − 〈a, s′〉/p ∈ T. The algorithm takes n samples
y1, . . . , yn from ξ . It then computes z := 1

n

∑n
i=1 cos(2πyi ). If z > 0.02, it de-

cides that s = s′, otherwise it decides that s �= s′.
We now analyze this algorithm. Consider the distribution ξ . Notice that it be

obtained by sampling e from �α, sampling a uniformly from Zn
p and outputting

e + 〈a, s − s′〉/p ∈ T. From this, it easily follows that if s = s′, ξ is exactly �α.
Otherwise, if s �= s′, we claim that ξ has a period of 1/k for some integer k ≥ 2.
Indeed, let j be an index on which s j �= s ′

j . Then, the distribution of a j (s j−s ′
j ) mod p

is periodic with period gcd(p, s j −s ′
j ) < p. This clearly implies that the distribution

of a j (s j − s ′
j )/p mod 1 is periodic with period 1/k for some k ≥ 2. Since a sample

from ξ can be obtained by adding a sample from a j (s j − s ′
j )/p mod 1 and an

independent sample from some other distribution, we obtain that ξ also has the
same period of 1/k.

Consider the expectation4

z̃ := Exp
y∼ξ

[cos(2πy)] =
∫ 1

0
cos(2πy)ξ (y)dy = Re

[ ∫ 1

0
exp (2πiy)ξ (y)dy

]
.

First, a routine calculation shows that for ξ = �α, z̃ = exp
(−πα2

)
, which is at

least 0.04 for α < 1. Moreover, if ξ has a period of 1/k, then∫ 1

0
exp (2πiy)ξ (y)dy =

∫ 1

0
exp

(
2πi(y + 1

k )
)
ξ (y)dy

= exp (2πi/k)
∫ 1

0
exp (2π iy)ξ (y)dy

which implies that if k ≥ 2 then z̃ = 0. We complete the proof by noting that by
the Chernoff bound, |z − z̃| ≤ 0.01 with probability exponentially close to 1.

LEMMA 3.7 (HANDLING ERROR �β FOR β ≤ α). Let p = p(n) ≥2 be some
integer and α = α(n) ∈ (0, 1). Assume that we have access to an oracle W that
solves LWEp,�α

by using a polynomial number of samples. Then, there exists an

4 We remark that this expectation is essentially the Fourier series of ξ at point 1 and that the following
arguments can be explained in terms of properties of the Fourier series.
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efficient algorithm W ′ that, given samples from As,�β
for some (unknown) β ≤ α,

outputs s with probability exponentially close to 1.

PROOF. The proof is based on the following idea: by adding the right amount of
noise, we can transform samples from As,�β

to samples from As,�α
(or something

sufficiently close to it). Assume that the number of samples required by W is
at most nc for some c > 0. Let Z be the set of all integer multiplies of n−2cα2

between 0 and α2. For each γ ∈ Z , Algorithm W ′ does the following n times. It
takes nc samples from As,�β

and adds to the second element of each sample a
noise sampled independently from �√

γ . This creates nc samples taken from the
distribution As,�√

β2+γ
. It then applies W and obtains some candidate s′. Using

Lemma 3.6, it checks whether s′ = s. If the answer is yes, it outputs s′; otherwise,
it continues.

We now show that W ′ finds s with probability exponentially close to 1. By
Lemma 3.6, if W ′ outputs some value, then this value is correct with probability
exponentially close to 1. Hence, it is enough to show that in one of the iterations, W ′
outputs some value. Consider the smallest γ ∈ Z such that γ ≥ α2 − β2. Clearly,
γ ≤ α2 − β2 + n−2cα2. Define α′ =

√
β2 + γ . Then,

α ≤ α′ ≤
√

α2 + n−2cα2 ≤ (1 + n−2c)α.

By Claim 2.2, the statistical distance between �α and �α′ is at most 9n−2c. Hence,
the statistical distance between nc samples from �α and nc samples from �α′ is at
most 9n−c. Therefore, for our choice of γ , W outputs s with probability at least
1 − 9n−c/2 − 2−�(n) ≥ 1

2 . The probability that s is not found in any of the n calls
to W is at most 2−n .

For the analysis of our main procedure in Lemma 3.11, we will need to following
claims regarding Gaussian measures on lattices. On first reading, the reader can just
read the statements of Claim 3.8 and Corollary 3.10 and skip directly to Lemma 3.11.
All claims show that in some sense, when working above the smoothing parameter,
the discrete Gaussian measure behaves like the continuous Gaussian measure. We
start with the following claim, showing that above the smoothing parameter, the
discrete Gaussian measure is essentially invariant under shifts.

CLAIM 3.8. For any lattice L, c ∈ Rn, ε > 0, and r ≥ ηε(L),

ρr (L + c) ∈ rn det(L∗)(1 ± ε).

PROOF. Using the Poisson summation formula (Lemma 2.14) and the assump-
tion that ρ1/r (L∗ \ {0}) ≤ ε,

ρr (L + c) =
∑
x∈L

ρr (x + c) =
∑
x∈L

ρr,−c(x)

= det(L∗)
∑
y∈L∗

ρ̂r,−c(y)

= rn det(L∗)
∑
y∈L∗

exp (2π i〈c, y〉)ρ1/r (y)

= rn det(L∗)(1 ± ε).
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The following claim (which is only used to establish the corollary following it)
says that when adding a continuous Gaussian of width s to a discrete Gaussian
of width r , with both r and s sufficiently greater than the smoothing parameter,
the resulting distribution is very close to a continuous Gaussian of the width we
would expect, namely

√
r2 + s2. To get some intuition on why we need to assume

that both Gaussians are sufficiently wide, notice for instance that if the discrete
Gaussian is very narrow, then it is concentrated on the origin, making the sum have
width s. Also, if the continuous Gaussian is too narrow, then the discrete structure
is still visible in the sum.

CLAIM 3.9. Let L be a lattice, let u ∈ Rn be any vector, let r, s > 0 be two reals,
and let t denote

√
r2 + s2. Assume that rs/t = 1/

√
1/r2 + 1/s2 ≥ ηε(L) for some

ε < 1
2 . Consider the continuous distribution Y on Rn obtained by sampling from

DL+u,r and then adding a noise vector taken from νs . Then, the statistical distance
between Y and νt is at most 4ε.

PROOF. The probability density function of Y can be written as

Y (x) = 1

snρr (L + u)

∑
y∈L+u

ρr (y)ρs(x − y)

= 1

snρr (L + u)

∑
y∈L+u

exp
(−π

(‖y/r‖2 + ‖(x − y)/s‖2))
= 1

snρr (L + u)

∑
y∈L+u

exp

(
−π

(r2 + s2

r2 · s2
·
∥∥∥y − r2

r2 + s2
x

∥∥∥2
+ 1

r2 + s2
‖x‖2

))

= exp

(
− π

r2 + s2
‖x‖2

)
1

snρr (L + u)

∑
y∈L+u

exp

(
−π

(r2 + s2

r2 · s2
·
∥∥∥y − r2

r2 + s2
x

∥∥∥2))
= 1

sn
ρt (x) · ρrs/t,(r/t)2x−u(L)

ρr,−u(L)

= 1

sn
ρt (x) · ̂ρrs/t,(r/t)2x−u(L∗)

ρ̂r,−u(L∗)

= ρt (x)/tn · (t/rs)n ̂ρrs/t,(r/t)2x−u(L∗)

(1/r )nρ̂r,−u(L∗)
, (11)

where in the next-to-last equality we used Lemma 2.14. Using Eq. (9),

̂ρrs/t,(r/t)2x−u(w) = exp
(−2π i〈(r/t)2x − u, w〉) · (rs/t)nρt/rs(w),

ρ̂r,−u(w) = exp (2π i〈u, w〉) · rnρ1/r (w).

Hence, ∣∣∣1 − (t/rs)n ̂ρrs/t,(r/t)2x−u(L∗)
∣∣∣ ≤ ρt/rs(L∗ \ {0}) ≤ ε∣∣∣1 − (1/r )nρ̂r,−u(L∗)
∣∣∣ ≤ ρ1/r (L∗ \ {0}) ≤ ε
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where the last inequality follows from 1/r ≤ t/rs. Hence, the quotient in (11) is
between (1 − ε)/(1 + ε) ≥ 1 − 2ε and (1 + ε)/(1 − ε) ≤ 1 + 4ε. This implies that,

|Y (x) − ρt (x)/tn| ≤ ρt (x)/tn · 4ε.

We complete the proof by integrating over Rn .

COROLLARY 3.10. Let L be a lattice, let z, u ∈ Rn be vectors, and let r, α > 0
be two reals. Assume that 1/

√
1/r2 + (‖z‖/α)2 ≥ ηε(L) for some ε < 1

2 . Then, the
distribution of 〈z, v〉+e where v is distributed according to DL+u,r and e is a normal
variable with mean 0 and standard deviation α/

√
2π , is within statistical distance

4ε of a normal variable with mean 0 and standard deviation
√

(r‖z‖)2 + α2/
√

2π .
In particular, since statistical distance cannot increase by applying a function, the
distribution of 〈z, v〉 + e mod 1 is within statistical distance 4ε of �√

(r‖z‖)2+α2 .

PROOF. We first observe that the distribution of 〈z, v〉 + e is exactly the same
as that of 〈z, v + h〉 where h is distributed as the continuous Gaussian να/‖z‖. Next,
by Claim 3.9, we know that the distribution of v + h is within statistical distance
4ε of the continuous Gaussian ν√

r2+(α/‖z‖)2 . Taking the inner product of this con-

tinuous Gaussian with z leads to a normal distribution with mean 0 and standard
deviation

√
(r‖z‖)2 + α2/

√
2π , and we complete the proof by using the fact that

statistical distance cannot increase by applying a function (inner product with z in
this case).

LEMMA 3.11 (MAIN PROCEDURE OF THE FIRST PART). Let ε = ε(n) be a neg-
ligible function, p = p(n) ≥ 2 be an integer, and α = α(n) ∈ (0, 1) be a real number.
Assume that we have access to an oracle W that for all β ≤ α, finds s given a poly-
nomial number of samples from As,�β

(without knowing β). Then, there exists an
efficient algorithm that given an n-dimensional lattice L, a number r >

√
2pηε(L),

and a polynomial number of samples from DL ,r , solves CVP(p)

L∗,αp/(
√

2r )
.

PROOF. We describe a procedure that given x within distance αp/(
√

2r )
of L∗, outputs samples from the distribution As,�β

for some β ≤ α where
s = (L∗)−1κL∗(x) mod p. By running this procedure a polynomial number of times
and then using W , we can find s.

The procedure works as follows. We sample a vector v ∈ L from DL ,r , and let
a = L−1v mod p. We then output

(a, 〈x, v〉/p + e mod 1) (12)

where e ∈ R is chosen according to a normal distribution with standard deviation
α/(2

√
π ). We claim that the distribution given by this procedure is within negligible

statistical distance of As,�β
for some β ≤ α.

We first notice that the distribution of a is very close to uniform. Indeed,
the probability of obtaining each a ∈ Zn

p is proportional to ρr (pL + La). Using
ηε(pL) = pηε(L) < r and Claim 3.8, the latter is (r/p)n det(L∗)(1 ± ε), which im-
plies that the statistical distance between the distribution of a and the uniform
distribution is negligible.

Next, we condition on any fixed value of a and consider the distribution of the
second element in (12). Define x′ = x − κL∗(x) and note that ‖x′‖ ≤ αp/(

√
2r ).
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Then,

〈x, v〉/p + e mod 1 = 〈x′/p, v〉 + e + 〈κL∗(x), v〉/p mod 1.

Now,

〈κL∗(x), v〉 = 〈(L∗)−1κL∗(x), L−1v〉
since L−1 = (L∗)T . In words, this says that the inner product between κL∗(x) and
v (and in fact, between any vector in L∗ and any vector in L) is the same as the
inner product between the corresponding coefficient vectors. Since the coefficient
vectors are integer,

〈κL∗(x), v〉 mod p = 〈s, a〉 mod p

from which it follows that 〈κL∗(x), v〉/p mod 1 is exactly 〈s, a〉/p mod 1.
We complete the proof by applying Corollary 3.10, which shows that the distri-

bution of the remaining part 〈x′/p, v〉 + e is within negligible statistical distance
of �β for β =

√
(r‖x′‖/p)2 + α2/2 ≤ α, as required. Here we used that the dis-

tribution of v is DpL+La,r (since we are conditioning on a), the distribution of e is
normal with mean 0 and standard deviation (α/

√
2)/

√
2π , and that

1/

√
1/r2 + (

√
2‖x′‖/pα)2 ≥ r/

√
2 > ηε(pL).

3.2.2. FROM CVP TO SAMPLES. In this section, we describe a quantum proce-
dure that uses a CVP oracle in order to create samples from the discrete Gaussian
distribution. We assume familiarity with some basic notions of quantum computa-
tion, such as (pure) states, measurements, and the quantum Fourier transform. See,
for example, Nielsen and Chuang [2000] for a good introduction. For clarity, we
often omit the normalization factors from quantum states.

The following lemma shows that we can efficiently create a “discrete quantum
Gaussian state” of width r as long as r is large enough compared with λn(L). It
can be seen as the quantum analogue of Lemma 3.2. The assumption that L ⊆ Zn

is essentially without loss of generality since a lattice with rational coordinates can
always be rescaled so that L ⊆ Zn .

LEMMA 3.12. There exists an efficient quantum algorithm that, given an n-
dimensional lattice L ⊆ Zn and r > 22nλn(L), outputs a state that is within �2
distance 2−�(n) of the normalized state corresponding to∑

x∈L

√
ρr (x)|x〉 =

∑
x∈L

ρ√
2r (x)|x〉. (13)

PROOF. We start by creating the “one-dimensional Gaussian state”
√

nr∑
x=−√

nr

e−π (x/(
√

2r ))2 |x〉. (14)

This state can be created efficiently using a technique by Grover and Rudolph [2002]
who show that in order to create such a state, it suffices to be able to compute for
any a, b ∈ {−√

nr, . . . ,
√

nr} the sum
∑b

x=a e−π (x/r )2
to within good precision.

This can be done using the same standard techniques used in sampling from the
normal distribution.
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Repeating the procedure described above n times, creates a system whose state
is the n-fold tensor product of the state in Eq. (14), which can be written as∑

x∈{−√
nr,... ,

√
nr}n

ρ√
2r (x)|x〉.

Since Zn ∩ √
nr Bn ⊆ {−√

nr, . . . ,
√

nr}n , Lemma 2.5 implies that this state is
within �2 distance 2−�(n) of ∑

x∈Zn

ρ√
2r (x)|x〉 (15)

and hence for our purposes we can assume that we have generated the state in
Eq. (15).

Next, using the LLL basis reduction algorithm [Lenstra et al. 1982], we obtain a
basis for L of length at most 2nλn(L) and let P(L) be the parallelepiped generated
by this basis. We now compute in a new register x mod P(L) and measure it. Let
y ∈ P(L) denote the result and note that ‖y‖ ≤ diam(P(L)) ≤ n2nλn(L). The state
we obtain after the measurement is∑

x∈L+y

ρ√
2r (x)|x〉.

Finally, we subtract y from our register, and obtain∑
x∈L

ρ√
2r (x + y)|x〉.

Our goal is to show that this state is within �2 distance 2−�(n) of the one in Eq. (13).
First, by Lemma 2.5, all but an exponentially small part of the �2 norm of the state
in Eq. (13) is concentrated on points of norm at most

√
n · r . So consider any x ∈ L

with ‖x‖ ≤ √
n · r . The amplitude squared given to it in Eq. (13) is ρr (x)/ρr (L).

By Lemma 2.14, the denominator is ρr (L) = det(L∗) · rnρ1/r (L∗) ≥ det(L∗) · rn

and hence the amplitude squared is at most ρr (x)/(det(L∗) · rn) = det(L)νr (x).
On the other hand, the amplitude squared given to x by our procedure is ρr (x +

y)/ρr (L + y). By Lemma 2.14, the denominator is

ρr (L + y) = det(L∗) · rn
∑
z∈L∗

e2π i〈z,y〉ρ1/r (z) ≤ (1 + 2−�(n)) det(L∗) · rn.

To obtain this inequality, first note that by the easy part of Lemma 2.3,
λ1(L∗) ≥ 1/λn(L) >

√
n/r , and then apply Lemma 2.5. Moreover, by Claim 2.1,

the numerator is at least (1 − 2−�(n))ρr (x). Hence, the amplitude squared given to
x is at least (1 − 2−�(n)) det(L)νr (x), as required.

For a lattice L and a positive integer R, we denote by L/R the lattice obtained
by scaling down L by a factor of R. The following technical claim follows from
the fact that almost all the mass of ρ is on points of norm at most

√
n.

CLAIM 3.13. Let R ≥ 1 be an integer and L be an n-dimensional lattice
satisfying λ1(L) > 2

√
n. Let P(L) be some basic parallelepiped of L. Then, the �2
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distance between the normalized quantum states corresponding to

|ϑ1〉 =
∑

x∈L/R,‖x‖<√
n

ρ(x)|x mod P(L)〉, and

|ϑ2〉 =
∑

x∈L/R

ρ(x)|x mod P(L)〉 =
∑

x∈L/R∩P(L)

∑
y∈L

ρ(x − y)|x〉

is 2−�(n).

PROOF. We think of |ϑ1〉 and |ϑ2〉 as vectors in Rn-dimensional space. Let Z be
the �2 norm of |ϑ1〉. In the following we show that the �2 distance between |ϑ1〉 and
|ϑ2〉 is at most 2−�(n) Z . This is enough to establish that the �2 distance between the
normalized quantum states corresponding to |ϑ1〉 and |ϑ2〉 is exponentially small.

We first obtain a good estimate of Z . Since λ1(L) > 2
√

n, each “ket” in the
definition of |ϑ1〉 appears in the sum only once, and so

Z =
∑

x∈L/R,‖x‖<√
n

ρ(x)2 = ρ(
√

2L/R ∩
√

2nBn).

By applying Lemma 2.5 to the lattice
√

2L/R, we obtain that

(1 − 2−2n)ρ(
√

2L/R) ≤ Z ≤ ρ(
√

2L/R).

We complete the proof with an upper bound on the �2 distance between the two
vectors. Using the monotonicity of norms,

‖|ϑ1〉 − |ϑ2〉‖2 ≤ ‖|ϑ1〉 − |ϑ2〉‖1

=
∑

x∈L/R,‖x‖≥√
n

ρ(x)

≤ 2−2nρ(L/R) (by Lemma 2.5)

≤ 2−2n2n/2ρ(
√

2L/R) (by Lemma 2.4)

≤ 2−nρ(
√

2L/R).

We now prove the main lemma of this subsection.

LEMMA 3.14 (SECOND PART OF ITERATIVE STEP). There exists an efficient
quantum algorithm that, given any n-dimensional lattice L, a number d < λ1(L∗)/2,
and an oracle that solves CVPL∗,d , outputs a sample from DL ,

√
n/(

√
2d).

PROOF. By scaling, we can assume without loss of generality that d = √
n. Let

R ≥ 23nλn(L∗) be a large enough integer. We can assume that log R is polynomial
in the input size (since such an R can be computed in polynomial time given the
lattice L). Our first step is to create a state exponentially close to∑

x∈L∗/R∩P(L∗)

∑
y∈L∗

ρ(x − y)|x〉. (16)

This is a state on n log R qubits, a number that is polynomial in the input size. To
do so, we first use Lemma 3.12 with r = 1/

√
2 and the lattice L∗/R to create the
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state ∑
x∈L∗/R

ρ(x)|x〉.

By Lemma 2.5, this is exponentially close to∑
x∈L∗/R,‖x‖<√

n

ρ(x)|x〉.

Next, we compute x mod P(L∗) in a new register and obtain∑
x∈L∗/R,‖x‖<√

n

ρ(x)|x, x mod P(L∗)〉.

Using the CVP oracle, we can recover x from x mod P(L∗). This allows us to
uncompute the first register and obtain∑

x∈L∗/R,‖x‖<√
n

ρ(x)|x mod P(L∗)〉.

Using Claim 3.13, this state is exponentially close to the required state (16).
In the second step, we apply the quantum Fourier transform. First, using the

natural mapping between L∗/R ∩ P(L∗) and Zn
R , we can rewrite (16) as∑

s∈Z
n
R

∑
r∈Zn

ρ(L∗s/R − L∗r)|s〉.

We now apply the quantum Fourier transform on Zn
R . We obtain a state in which

the amplitude of |t〉 for t ∈ Zn
R is proportional to∑

s∈Z
n
R

∑
r∈Zn

ρ(L∗s/R − L∗r) exp(2π i〈s, t〉/R)

=
∑
s∈Zn

ρ(L∗s/R) exp(2π i〈s, t〉/R)

=
∑

x∈L∗/R

ρ(x) exp(2π i〈(L∗)−1x, t〉)

=
∑

x∈L∗/R

ρ(x) exp(2π i〈x, Lt〉)

= det(RL)
∑

y∈RL

ρ(y − Lt)

where the last equality follows from Lemma 2.14 and Eq. (10). Hence, the resulting
state can be equivalently written as∑

x∈P(RL)∩L

∑
y∈RL

ρ(y − x)|x〉.

Notice that λ1(RL) = Rλ1(L) ≥ R/λn(L∗) ≥ 23n . Hence, we can apply Claim 3.13
to the lattice RL , and obtain that this state is exponentially close to∑

x∈L ,‖x‖<√
n

ρ(x)|x mod P(RL)〉.
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We measure this state and obtain x mod P(RL) for some vector x with ‖x‖ <
√

n.
Since x mod P(RL) is within

√
n of the lattice RL , and λ1(RL) ≥ 23n , we can

recover x by using, say, Babai’s nearest plane algorithm [Babai 1986]. The output
of the algorithm is x.

We claim that the distribution of x is exponentially close to DL ,1/
√

2. Indeed, the
probability of obtaining any x ∈ L , ‖x‖ <

√
n is proportional to ρ(x)2 = ρ1/

√
2(x).

It remains to notice that by Lemma 2.5, all but an exponentially small fraction of
the probability distribution DL ,1/

√
2 is on points of norm less than

√
n.

3.3. STANDARD LATTICE PROBLEMS. We now complete the proof of the main
theorem by reducing the standard lattice problems GAPSVP and SIVP to DGS. We
start with SIVP. The basic idea of the reduction is simple: we call the DGS oracle
enough times. We show that with high probability, there are n short linearly inde-
pendent vectors among the returned vectors. We prove this by using the following
lemma, which appeared in the preliminary version of [Micciancio and Regev 2007].
We include the proof since only a proof sketch was given there.

LEMMA 3.15. Let L be an n-dimensional lattice and let r be such that
r ≥ √

2ηε(L) where ε ≤ 1
10 . Then, for any subspace H of dimension at most n − 1

the probability that x /∈ H where x is chosen from DL ,r is at least 1
10 .

PROOF. Assume without loss of generality that the vector (1, 0, . . . , 0) is or-
thogonal to H . Using Lemma 2.14,

Exp
x∼DL ,r

[exp
(−π (x1/r )2)]

= 1

ρr (L)

∑
x∈L

exp
(
−π (

√
2x1/r )2

)
exp

(−π (x2/r )2) · · · exp
(−π (xn/r )2)

= det(L∗) rn

√
2ρr (L)

∑
y∈L∗

exp
(
−π (r y1/

√
2)2

)
exp

(−π (r y2)2) · · · exp
(−π (r yn)2)

≤ det(L∗) rn

√
2ρr (L)

ρ√
2/r (L∗)

≤ det(L∗) rn

√
2ρr (L)

(1 + ε).

By using Lemma 2.14 again, we see that ρr (L) = det(L∗) rnρ1/r (L∗) ≥ det(L∗) rn .
Therefore, the expectation above is at most 1√

2
(1 + ε) < 0.9 and the lemma fol-

lows.

COROLLARY 3.16. Let L be an n-dimensional lattice and let r be such that
r ≥ √

2ηε(L) where ε ≤ 1
10 . Then, the probability that a set of n2 vectors chosen

independently from DL ,r contains no n linearly independent vectors is exponentially
small.

PROOF. Let x1, . . . , xn2 be n2 vectors chosen independently from DL ,r . For
i = 1, . . . , n, let Bi be the event that

dim span(x1, . . . , x(i−1)n) = dim span(x1, . . . , xin) < n.
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Clearly, if none of the Bi ’s happens, then dim span(x1, . . . , xn2 ) = n. Hence, in
order to complete the proof it suffices to show that for all i , Pr[Bi ] ≤ 2−�(n). So
fix some i , and let us condition on some fixed choice of x1, . . . , x(i−1)n such that
dim span(x1, . . . , x(i−1)n) < n. By Lemma 3.15, the probability that

x(i−1)n+1, . . . , xin ∈ dim span(x1, . . . , x(i−1)n)

is at most (9/10)n = 2−�(n). This implies that Pr[Bi ] ≤ 2−�(n), as required.

In the following lemma we give the reduction from SIVP (in fact, GIVP) to
DGS. It shows that under the assumptions of Theorem 3.1, there exists an efficient
quantum algorithm for GIVP2

√
2nηε (L)/α. By Lemma 2.12, this algorithm also solves

SIVPÕ(n/α).

LEMMA 3.17. For any ε = ε(n) ≤ 1
10 and any ϕ(L) ≥ √

2ηε(L), there is a poly-
nomial time reduction from GIVP2

√
nϕ to DGSϕ .

PROOF. As mentioned above, the idea of the reduction is to simply call the
DGS oracle in an attempt to find n short linearly independent vectors. One technical
complication is that the function ϕ is not necessarily efficiently computable, and
hence we do not know which parameter r to give the DGS oracle. The solution is
easy: we just try many values of r and take the shortest set of n linearly independent
vectors found.

We now present the reduction in detail. The input to the reduction is a lattice L . We
first apply the LLL algorithm [Lenstra et al. 1982] to obtain n linearly independent
vectors of length at most 2nλn(L). Let S denote the resulting set, and let λ̃n be the
length of the longest vector in S. By construction we have λn(L) ≤ λ̃n ≤ 2nλn(L).
For each i ∈ {0, . . . , 2n} call the DGS oracle n2 times with the pair (L , ri ) where
ri = λ̃n2−i , and let Si be the resulting set of vectors. At the end, look for a set of n
linearly independent vectors in each of S, S0, S1, . . . , S2n , and output the shortest
set found.

We now prove correctness. If ϕ(L) ≥ λ̃n then S is already shorter than 2
√

nϕ(L)
and so we are done. Otherwise, let i ∈ {0, . . . , 2n} be such that ϕ(L) </, ri ≤ 2ϕ(L).
Such an i must exist by Claim 2.13. By Corollary 3.16, Si contains n linearly inde-
pendent vectors with probability exponentially close to 1. Moreover, by Lemma 2.5,
all vectors in Si are of length at most ri

√
n ≤ 2

√
nϕ(L) with probability exponen-

tially close to 1. Hence, our reduction outputs a set of n linearly independent vectors
of length at most 2

√
nϕ(L), as required.

We now present the reduction from GAPSVP to DGS. We first define the decision
version of the closest vector problem (GAPCVP) and a slight variant of it.

Definition 3.18. An instance of GAPCVPγ is given by an n-dimensional lattice
L , a vector t, and a number d > 0. In YES instances, dist(t, L) ≤ d, whereas in NO
instances, dist(t, L) > γ (n) · d.

Definition 3.19. An instance of GAPCVP′
γ is given by an n-dimensional lattice

L , a vector t, and a number d > 0. In YES instances, dist(t, L) ≤ d. In NO instances,
λ1(L) > γ (n) · d and dist(t, L) > γ (n) · d.

In Goldreich et al. [1999], it is shown that for any γ = γ (n) ≥ 1, there is a
polynomial time reduction from GAPSVPγ to GAPCVP′

γ (see also Lemma 5.22 in
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Micciancio and Regev [2007]). Hence, it suffices to show a reduction from GAPCVP′
to DGS. This reduction is given in the following lemma. By using Lemma 2.11, we
obtain that under the assumptions of Theorem 3.1 there exists an efficient quantum
algorithm for GAPCVP′

O(n/α) (and hence also for GAPSVPO(n/α)).

LEMMA 3.20. For any γ = γ (n) ≥ 1, there is a polynomial time reduction from
GAPCVP′

100
√

n·γ (n) to DGS√
nγ (n)/λ1(L∗).

PROOF. The main component in our reduction is the NP verifier for COGAPCVP
shown in Aharonov and Regev [2005]. In more detail, Aharonov and Regev [2005]
present an efficient algorithm, call it V , whose input consists of an n-dimensional
lattice L , a vector t, a number d > 0, and a sequence of vectors w1, . . . , wN in L∗ for
some N = poly(n). When dist(t, L) ≤ d, the algorithm is guaranteed to reject. When
dist(t, L) > 100

√
nd , and w1, . . . , wN are chosen from the distribution DL∗,1/(100d),

then the algorithm accepts with probability exponentially close to 1.
The input to the reduction is an n-dimensional lattice L , a vector t, and a number

d > 0. We call the DGS oracle N times with the lattice L∗ and the value 1
100d to

obtain vectors w1, . . . , wN ∈ L∗. We then apply V with L , t, d, and the vectors
w1, . . . , wN . We accept if and only if V rejects.

To prove correctness, notice first that in the case of a YES instance, dist(t, L) ≤ d,
and hence V must reject (irrespective of the w’s). In the case of a NO instance
we have that 1

100d >
√

nγ (n)/λ1(L), and hence w1, . . . , wN are guaranteed to be
valid samples from DL∗,1/(100d). Moreover, dist(t, L) > 100

√
nγ (n)d ≥ 100

√
nd,

and hence V accepts with probability exponentially close to 1.

4. Variants of the LWE problem

In this section, we consider several variants of the LWE problem. Through a se-
quence of elementary reductions, we prove that all problems are as hard as LWE.
The results of this section are summarized in Lemma 4.4.

LEMMA 4.1 (AVERAGE-CASE TO WORST-CASE). Let n, p ≥ 1 be some integers
and χ be some distribution on Zp. Assume that we have access to a distinguisher W
that distinguishes As,χ from U for a nonnegligible fraction of all possible s. Then
there exists an efficient algorithm W ′ that for all s accepts with probability expo-
nentially close to 1 on inputs from As,χ and rejects with probability exponentially
close to 1 on inputs from U.

PROOF. The proof is based on the following transformation. For any t ∈ Zn
p

consider the function ft : Zn
p × Zp → Zn

p × Zp defined by

ft(a, b) = (a, b + 〈a, t〉).
It is easy to see that this function transforms the distribution As,χ into As+t,χ .
Moreover, it transforms the uniform distribution U into itself.

Assume that for n−c1 of all possible s, the acceptance probability of W on in-
puts from As,χ and on inputs from U differ by at least n−c2 . We construct W ′ as
follows. Let R denote the unknown input distribution. Repeat the following nc1+1

times. Choose a vector t ∈ Zn
p uniformly at random. Then, estimate the acceptance

probability of W on U and on ft(R) by calling W O(n2c2+1) times on each of the
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input distributions. By the Chernoff bound, this allows us to obtain an estimate that
with probability exponentially close to 1 is within ±n−c2/8 of the true acceptance
probabilities. If the two estimates differ by more than n−c2/2, then we stop and
decide to accept. Otherwise, we continue. If the procedure ends without accepting,
we reject.

We now prove that W ′ distinguishes As,χ from U for all s. First, we claim
that when R is U , the acceptance probability of W ′ is exponentially close to 0.
Indeed, in this case, ft(U ) = U and therefore the two estimates that W ′ performs
are of the same distribution. The probability that the estimates differ by more than
n−c2/2 > 2 · n−c2/8 is exponentially small. Next, consider the case that R is As,χ

for some s. In each of the nc1+1 iterations, we are considering the distribution
ft(As,χ ) = As+t,χ for some uniformly chosen t. Notice that the distribution of
s + t is uniform on Zn

p. Hence, with probability exponentially close to 1, in one of
the nc1+1 iterations, t is such that the acceptance probability of W on inputs from
As+t,χ and on inputs from U differ by at least n−c2 . Since our estimates are within
±n−c2/8, W ′ accepts with probability exponentially to 1.

LEMMA 4.2 (DECISION TO SEARCH). Let n ≥ 1 be some integer, 2 ≤
p ≤ poly(n) be a prime, and χ be some distribution on Zp. Assume that we have
access to procedure W that for all s accepts with probability exponentially close
to 1 on inputs from As,χ and rejects with probability exponentially close to 1 on
inputs from U. Then, there exists an efficient algorithm W ′ that, given samples
from As,χ for some s, outputs s with probability exponentially close to 1.

PROOF. Let us show how W ′ finds s1 ∈ Zp, the first coordinate of s. Finding the
other coordinates is similar. For any k ∈ Zp, consider the following transformation.
Given a pair (a, b) we output the pair (a + (l, 0, . . . , 0), b + l · k) where l ∈ Zp
is chosen uniformly at random. It is easy to see that this transformation takes the
uniform distribution into itself. Moreover, if k = s1 then this transformation also
takes As,χ to itself. Finally, if k �= s1 then it takes As,χ to the uniform distribution
(note that this requires p to be prime). Hence, using W , we can test whether k = s1.
Since there are only p < poly(n) possibilities for s1 we can try all of them.

LEMMA 4.3 (DISCRETE TO CONTINUOUS). Let n, p ≥ 1 be some integers, let
φ be some probability density function on T, and let φ̄ be its discretization to Zp.
Assume that we have access to an algorithm W that solves LWEp,φ̄ . Then, there
exists an efficient algorithm W ′ that solves LWEp,φ .

PROOF. Algorithm W ′ simply takes samples from As,φ and discretizes the sec-
ond element to obtain samples from As,φ̄ . It then applies W with these samples in
order to find s.

By combining the three lemmas above, we obtain

LEMMA 4.4. Let n ≥ 1 be an integer and 2 ≤ p ≤ poly(n) be a prime. Let
φ be some probability density function on T and let φ̄ be its discretization to Zp.
Assume that we have access to a distinguisher that distinguishes As,φ̄ from U for
a non-negligible fraction of all possible s. Then, there exists an efficient algorithm
that solves LWEp,φ .
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5. Public Key Cryptosystem

We let n be the security parameter of the cryptosystem. Our cryptosystem is parame-
terized by two integers m, p and a probability distribution χ on Zp. A setting of these
parameters that guarantees both security and correctness is the following. Choose
p ≥ 2 to be some prime number between n2 and 2n2 and let m = (1+ε)(n+1) log p
for some arbitrary constant ε > 0. The probability distribution χ is taken to be �̄α(n)

for α(n) = o(1/(
√

n log n)), that is, α(n) is such that limn→∞ α(n) · √n log n = 0.
For example, we can choose α(n) = 1/(

√
n log2 n). In the following description,

all additions are performed in Zp, i.e., modulo p.

—Private key: Choose s ∈ Zn
p uniformly at random. The private key is s.

—Public Key: For i = 1, . . . , m, choose m vectors a1, . . . , am ∈ Zn
p indepen-

dently from the uniform distribution. Also choose elements e1, . . . , em ∈ Zp
independently according to χ . The public key is given by (ai , bi )m

i=1 where
bi = 〈ai , s〉 + ei .

—Encryption: In order to encrypt a bit, we choose a random set S uniformly
among all 2m subsets of [m]. The encryption is (

∑
i∈S ai ,

∑
i∈S bi ) if the bit is 0

and (
∑

i∈S ai , � p
2 � + ∑

i∈S bi ) if the bit is 1.
—Decryption: The decryption of a pair (a, b) is 0 if b − 〈a, s〉 is closer to 0 than

to � p
2 � modulo p. Otherwise, the decryption is 1.

Notice that with our choice of parameters, the public key size is O(mn log p) =
Õ(n2) and the encryption process increases the size of a message by a factor of
O(n log p) = Õ(n). In fact, it is possible to reduce the size of the public key to
O(m log p) = Õ(n) by the following idea of Ajtai [2005]. Assume all users of the
cryptosystem share some fixed (and trusted) random choice of a1, . . . , am . This
can be achieved by, say, distributing these vectors as part of the encryption and
decryption software. Then, the public key need only consist of b1, . . . , bm . This
modification does not affect the security of the cryptosystem.

We next prove that under a certain condition on χ , m, and p, the probability of
decryption error is small. We later show that our choice of parameters satisfies this
condition. For the following two lemmas, we need to introduce some additional
notation. For a distribution χ on Zp and an integer k ≥ 0, we define χ�k as the
distribution obtained by summing together k independent samples from χ , where
addition is performed in Zp (for k = 0 we define χ�0 as the distribution that is
constantly 0). For a probability distribution φ on T we define φ�k similarly. For
an element a ∈ Zp we define |a| as the integer a if a ∈ {0, 1, . . . , � p

2 �} and as the
integer p − a otherwise. In other words, |a| represents the distance of a from 0.
Similarly, for x ∈ T, we define |x | as x for x ∈ [0, 1

2 ] and as 1 − x otherwise.

LEMMA 5.1 (CORRECTNESS). Let δ > 0. Assume that for any k ∈ {0, 1, . . . , m},
χ�k satisfies that

Pr
e∼χ�k

[
|e| <

⌊ p
2

⌋
/2

]
> 1 − δ.

Then, the probability of decryption error is at most δ. That is, for any bit c ∈ {0, 1},
if we use the protocol above to choose private and public keys, encrypt c, and then
decrypt the result, then the outcome is c with probability at least 1 − δ.
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PROOF. Consider first an encryption of 0. It is given by (a, b) for a = ∑
i∈S ai

and

b =
∑
i∈S

bi =
∑
i∈S

〈ai , s〉 + ei = 〈a, s〉 +
∑
i∈S

ei .

Hence, b−〈a, s〉 is exactly
∑

i∈S ei . The distribution of the latter is χ�|S|. According
to our assumption, | ∑i∈S ei | is less than � p

2 �/2 with probability at least 1 − δ. In
this case, it is closer to 0 than to � p

2 � and therefore the decryption is correct. The
proof for an encryption of 1 is similar.

CLAIM 5.2. For our choice of parameters it holds that for any k ∈
{0, 1, . . . , m},

Pr
e∼�̄�k

α

[
|e| <

⌊ p
2

⌋
/2

]
> 1 − δ(n)

for some negligible function δ(n).

PROOF. A sample from �̄�k
α can be obtained by sampling x1, . . . , xk from

�α and outputting
∑k

i=1 �pxi� mod p. Notice that this value is at most k ≤
m < p/32 away from

∑k
i=1 pxi mod p. Hence, it is enough to show that

| ∑k
i=1 pxi mod p| < p/16 with high probability. This condition is equivalent to

the condition that | ∑k
i=1 xi mod 1| < 1/16. Since

∑k
i=1 xi mod 1 is distributed as

�√
k·α, and

√
k · α = o(1/

√
log n), the probability that | ∑k

i=1 xi mod 1| < 1/16 is
1 − δ(n) for some negligible function δ(n).

In order to prove the security of the system, we need the following special case
of the leftover hash lemma that appears in Impagliazzo and Zuckerman [1989]. We
include a proof for completeness.

CLAIM 5.3. Let G be some finite Abelian group and let l be some integer. For
any l elements g1, . . . , gl ∈ G consider the statistical distance between the uniform
distribution on G and the distribution given by the sum of a random subset of
g1, . . . , gl . Then, the expectation of this statistical distance over a uniform choice of
g1, . . . , gl ∈ G is at most

√
|G|/2l . In particular, the probability that this statistical

distance is more than 4
√

|G|/2l is at most 4
√

|G|/2l .

PROOF. For a choice g = (g1, . . . , gl) of l elements from G, let Pg be the dis-
tribution of the sum of a random subsets of g1, . . . , gl , i.e.,

Pg(h) = 1

2l

∣∣{b ∈ {0, 1}l
∣∣ ∑

i bi gi = h
}∣∣ .

In order to show that this distribution is close to uniform, we compute its �2 norm,
and note that it is very close to 1/|G|. From this it will follow that the distribution
must be close to the uniform distribution. The �2 norm of Pg is given by∑

h∈G

Pg(h)2 = Pr
b,b′

[∑
bi gi =

∑
b′

i gi

]
≤ 1

2l
+ Pr

b,b′

[∑
bi gi =

∑
b′

i gi

∣∣∣ b �= b′
]
.
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Taking expectation over g, and using the fact that for any b �= b′, Prg[
∑

bi gi =∑
b′

i gi ] = 1/|G|, we obtain that

Exp
g

[∑
h Pg(h)2

] ≤ 1

2l
+ 1

|G| .

Finally, the expected distance from the uniform distribution is

Exp
g

[∑
h

∣∣Pg(h) − 1/|G|∣∣] ≤ Exp
g

[
|G|1/2 (∑

h(Pg(h) − 1/|G|)2
)1/2

]
=

√
|G| Exp

g

[(∑
h Pg(h)2 − 1/|G|)1/2

]
≤

√
|G|

(
Exp

g

[∑
h Pg(h)2

] − 1/|G|
)1/2

≤
√

|G|
2l

.

We now prove that our cryptosystem is semantically secure, that is, that it is
hard to distinguish between encryptions of 0 and encryptions of 1. More precisely,
we show that if such a distinguisher exists, then there exists a distinguisher that
distinguishes between As,χ and U for a non-negligible fraction of all s. Ifχ = �̄α and
p ≤ poly(n) is a prime, then by Lemma 4.4, this also implies an efficient (classical)
algorithm that solves LWEp,�α

. This, in turn, implies, by Theorem 3.1, an efficient
quantum algorithm for DGS√

2n·ηε (L)/α. Finally, by Lemma 3.17, we also obtain
an efficient quantum algorithm for SIVPÕ(n/α) and by Lemma 3.20, we obtain an
efficient quantum algorithm for GAPSVPO(n/α).

LEMMA 5.4 (SECURITY). For any ε > 0 and m ≥ (1 + ε)(n + 1) log p, if there
exists a polynomial time algorithm W that distinguishes between encryptions of 0
and 1 then there exists a distinguisher Z that distinguishes between As,χ and U for
a non-negligible fraction of all possible s.

PROOF. Let p0(W ) be the acceptance probability of W on input
((ai , bi )m

i=1, (a, b)) where (a, b) is an encryption of 0 with the public key (ai , bi )m
i=1

and the probability is taken over the randomness in the choice of the private and
public keys and over the randomness in the encryption algorithm. We define p1(W )
similarly for encryptions of 1 and let pu(W ) be the acceptance probability of W
on inputs ((ai , bi )m

i=1, (a, b)) where (ai , bi )m
i=1 are again chosen according to the

private and public keys distribution but (a, b) is chosen uniformly from Zn
p × Zp.

With this notation, our hypothesis says that |p0(W ) − p1(W )| ≥ 1
nc for some c > 0.

We now construct a W ′ for which
∣∣p0(W ′) − pu(W ′)

∣∣ ≥ 1
2nc . By our hypothesis,

either |p0(W ) − pu(W )| ≥ 1
2nc or |p1(W ) − pu(W )| ≥ 1

2nc . In the former case, we
take W ′ to be the same as W . In the latter case, we construct W ′ as follows. On
input ((ai , bi )m

i=1, (a, b)), W ′ calls W with ((ai , bi )m
i=1, (a,

p−1
2 + b)). Notice that

this maps the distribution on encryptions of 0 to the distribution on encryptions of
1 and the uniform distribution to itself. Therefore, W ′ is the required distinguisher.

For s ∈ Zn
p, let p0(s) be the probability that W ′ accepts on input ((ai , bi )m

i=1, (a, b))
where (ai , bi )m

i=1 are chosen from As,χ , and (a, b) is an encryption of 0 with the
public key (ai , bi )m

i=1. Similarly, define pu(s) to be the acceptance probability of W ′
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where (ai , bi )m
i=1 are chosen from As,χ , and (a, b) is now chosen uniformly at random

from Zn
p ×Zp. Our assumption on W ′ says that | Exps[p0(s)]−Exps[pu(s)]| ≥ 1

2nc .
Define

Y =
{

s

∣∣∣∣ |p0(s) − pu(s)| ≥ 1

4nc

}
.

By an averaging argument we get that a fraction of at least 1
4nc of the s are in Y .

Hence, it is enough to show a distinguisher Z that distinguishes between U and
As,χ for any s ∈ Y .

In the following, we describe the distinguisher Z . We are given a distribution R
that is either U or As,χ for some s ∈ Y . We take m samples (ai , bi )m

i=1 from R. Let
p0((ai , bi )m

i=1) be the probability that W ′ accepts on input ((ai , bi )m
i=1, (a, b)) where

the probability is taken on the choice of (a, b) as an encryption of the bit 0 with
the public key (ai , bi )m

i=1. Similarly, let pu((ai , bi )m
i=1) be the probability that W ′

accepts on input ((ai , bi )m
i=1, (a, b)) where the probability is taken over the choice

of (a, b) as a uniform element of Zn
p × Zp. By applying W ′ a polynomial number

of times, the distinguisher Z estimates both p0((ai , bi )m
i=1) and pu((ai , bi )m

i=1) up to
an additive error of 1

64nc . If the two estimates differ by more than 1
16nc , Z accepts.

Otherwise, Z rejects.
We first claim that when R is the uniform distribution, Z rejects with high proba-

bility. In this case, (ai , bi )m
i=1 are chosen uniformly from Zn

p ×Zp. Using Claim 5.3
with the group G = Zn

p × Zp, we obtain that with probability exponentially close
to 1, the distribution on (a, b) obtained by encryptions of 0 is exponentially close
to the uniform distribution on Zn

p ×Zp. Therefore, except with exponentially small
probability,

|p0((ai , bi )
m
i=1) − pu((ai , bi )

m
i=1)| ≤ 2−�(n).

Hence, our two estimates differ by at most 1
32nc + 2−�(n), and Z rejects.

Next, we show that if R is As,χ for s ∈ Y then Z accepts with probability
1/poly(n). Notice that p0(s) (respectively, pu(s)) is the average of p0((ai , bi )m

i=1)
(respectively, pu((ai , bi )m

i=1)) taken over the choice of (ai , bi )m
i=1 from As,χ . From

|p0(s) − pu(s)| ≥ 1
4nc we obtain by an averaging argument that

|p0((ai , bi )
m
i=1) − pu((ai , bi )

m
i=1)| ≥ 1

8nc

with probability at least 1
8nc over the choice of (ai , bi )m

i=1 from As,χ . Hence, with
probability at least 1

8nc , Z chooses such a (ai , bi )m
i=1 and since our estimates are

accurate to within 1
64nc , the difference between them is more than 1

16nc and Z
accepts.
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