
Positive Applications of Lattices to Cryptography?Cynthia DworkIBM Almaden Research Center.Abstract. We describe constructions of several cryptographic primitives, including hash functions,public key cryptosystems, pseudo-random bit generators, and digital signatures, whose security dependson the assumed worst-case or average-case hardness of problems involving lattices.1 IntroductionInitiated by Ajtai's paper \Generating Hard Instances of Lattice Problems," a burgeoning e�ort tobuild cryptographic primitives based on the assumed hardness of worst-case or random instances ofproblems involving lattices has proved extremely fruitful. Prior to Ajtai's work, lattices, and in partic-ular, the lattice basis reduction algorithm of Lenstra, Lenstra, and Lov�asz, were used in cryptographyprincipally to prove cryptographic insecurity [1, 9, 10, 20, 22, 25]. We describe more positive applica-tions of lattices: constructions for public key cryptosystems, cryptographically strong hash functions,and pseudo-random bit generators whose security depends only on the worst-case hardness of the un-derlying lattice problem; a digital signature scheme whose security depends on the average hardness ofthe underlying problem.2 De�nitionsMany of the de�nitions included here are extremely informal. References for precise de�nitions areincluded in every case.2.1 CryptographyA one-way function is easy to compute and hard to invert. A trapdoor function is a one-way functionfor which there exists some special \trapdoor" information, so that given the trapdoor information thefunction is easy to invert, but without the trapdoor information the function is hard to invert (see [12]).A public key cryptosystem is a method of encrypting messages using publicly known information calledthe public key, in such a way that only the party knowing the corresponding private key can decryptthe ciphertext. Thus, encryption has a trapdoor nature: without the trapdoor information (the privatekey) decryption is hard, but decryption is easy given the private key (see [16] and [11]).A digital signature scheme is a method of generating a (public key, private key) pair, together with apair of procedures sign, and verify. sign requires as input the message to be signed and the private keyof the signer, while verify, requires as input the message, its purported signature, and the public keyof the claimed signer. Let (K; s) be a (public key, private key) pair. Let (m;�) be a claimed (message,signature) pair. Given (m;�;K) the verify procedure, without knowing the secret s, veri�es that � =sign(m;s) (see [17]).A one-way hash function is a one-way function hmapping long strings to short strings, say, h : f0; 1gn !f0; 1g` for n > `. One-way hash functions have many uses in cryptography. In particular they are usedto \shrink" long messages before signing (see [24]). Thus, what is actually signed is h(m) rather thanm (h(m) is sometimes called a message digest). In this case the verify procedure checks that � =sign(h(m); s). For this application it is essential that, given h(m), it is hard to �nd a di�erent messagem0 6= m, for which h(m0) = h(m). A little more formally, a family of universal one-way hash functions isa collection F of functions f : f0; 1gm ! f0; 1gl(m) with the property that for any element x 2 f0; 1gm,? This paper appeared in the proceedings of the 22nd International Symposium on Mathematical Foundations ofComputer Science, LNCS 1295, Springer, 1997.



if f is chosen at random from the collection F , then it is hard to �nd an element y 6= x such thatf(y) = f(x). Each choice of l(m) yields a class of hash functions. A slightly stronger notion is collision-intractability: for a randomly selected function f 2 F , it is hard to �nd x; y such that x 6= y andf(x) = f(y).A pseudorandom bit generator is a (deterministic) function that takes as input a string s 2 f0; 1gn andproduces as output a string p 2 f0; 1gm where m > n. Moreover, the strings produced in this way whenthe inputs s are random should be polynomial-time indistinguishable from truly random strings oflength m. Thus these functions appear to manufacture some additional bits of randomness (see [6, 26];extensive treatment appears in [23]).The subset sum problem of dimensions m and l is: given m numbers a = (a1; : : : ; am), each of length l,and a number T , �nd a subset S � f1; : : : ;mg such thatPi2S ai = T mod 2l. The subset sum problemcan be viewed as that of inverting the function f(a; S) = a;Pi2S ai mod 2l(n).2.2 LatticesThe fundamental concepts concerning lattices can be found in [8, 18, 19].If a1; :::; an are linearly independent vectors in IRn, then we say that the set fPni=1 kiaijk1; :::; kn 2 ZZgis a lattice in IRn. We will denote this lattice by L(a1; :::; an). The set a1; :::; an is called a basis of thelattice; its length is max1�i�n kaik. The determinant of a lattice L will be the absolute value of thedeterminant of the matrix whose columns are the vectors a1; :::; an. We let bl(L) denote the length ofthe shortest basis for L.The dual lattice of L, denoted L�, is de�ned asL� = fx 2 IRn j xT y 2 ZZ for all y 2 Lg:If (b1; : : : ; bn) is a basis of L then (c1; : : : ; cn) is a basis for L�, wherecTi bj = � 1 if i = j0 if i 6= jThus, if we represent the lattice L = L(b1; : : : ; bn) by a matrix B with columns b1; : : : ; bn, then thedual of L is the lattice spanned by the rows of B�1. Each basis vector bi in L = L(b1; : : : ; bn) induces acollection of mutually parallel (n� 1)-dimensional hyperplanes, where, for k 2 ZZ, the kth hyperplanein the collection is the set of all points whose inner product with bi is equal to k. The distance betweenadjacent hyperplanes in the collection is kbik�1. Thus, if kbik < kbjk, then adjacent hyperplanes inthe ith collection are farther apart than adjacent hyperplanes in the jth collection. As the formula forcomputing the basis for the dual makes clear, the dual lattice is the set of points that are intersectionsof n hyperplanes, one from each of the n collections.Assume n is a positive integer, M > 0, d > 0 are real numbers, and L � ZZn is a lattice which has ann� 1 dimensional sublattice L0 with the following properties:1. L0 has a basis of length at most M ;2. if H is the n�1 dimensional subspace of IRn containing L0 and H 0 6= H is a coset of H intersectingL, then the distance of H and H 0 is at least d.We say that L is a (d;M)-lattice. If d > M , then L0 is unique. In this case L0 will be denoted by L(d;M).If a1; : : : ; an 2 IRn are linearly independent vectors, then P�(a; : : : ; an) denotes the half-closed par-allelepiped fPni=1 iaij0 � i < 1; i = 1; : : : ; ng: By \x mod P" we mean the unique vector x0 2P�(a1; : : : ; an) so that x� x0 is an integer linear combination of the vectors a1; : : : ; an.The orthogonality defect of an n� n matrix B is the quantity 1det(B) Qni=1 kbik. The dual orthogonalitydefect of B is the quantity 1det(B�1)Qni=1 kb̂ik, where for 1 � i � n, b̂i is the ith row of B�1.3 Generating Hard Instances of Lattice ProblemsCryptographic constructions necessarily require random choices: if, for example, the choice of a keywere deterministic, then the key could not be secret. Thus, the security of the construction relies on theintractability of a random instance of the problem on which the construction is based. It has therefore



been a longstanding goal in cryptography to �nd a \hard" problem for which one can establish anexplicit connection between the hardness of random instances and the hardness of the hardest, orworst-case, instances.Such a connection is the contribution of the celebrated paper of Ajtai, \Generating Hard Instances ofLattice Problems" [2]. Speci�cally, the paper presents a random problem whose solution would implythe solution of three famous worst-case problems:1. Find the length of a shortest nonzero vector in an n-dimensional lattice approximately, up to apolynomial factor.2. Find the shortest nonzero vector in an n-dimensional lattice L where the shortest vector v isunique in the sense than any other vector whose length is at most nckvk is parallel to v, where cis a su�ciently large absolute constant.3. Find a basis b1; : : : ; bn in the n-dimensional lattice L whose length, de�ned as maxni=1 kbik, is thesmallest possible up to a polynomial factor.Ajtai's Random Lattice Problem. For n;m; q 2 N such that n log q < m � q2n4 and q = O(nc) fora �xed c > 0, given a matrix M 2 ZZn�mq (that is, an n �m matrix of integers in [0,q-1] of a certainform described below), �nd a vector x 6= 0 2 ZZmq so that Mx � 0 mod q and kxk < n. The lattices arede�ned modulo q, in the sense that if two vectors are congruent modulo q then either both are in thelattice or neither is in the lattice. Thus the matrix M and the integer q de�ne the lattice: x 2 �(M; q)i� Mx � 0(modq).The matrix M is obtained as follows. Randomize vectors v1; : : : ; vm�1 independently and with uni-form distribution on the set of all vectors hx1; : : : ; xni 2 ZZnq . Independently randomize a 0; 1 se-quence �1; : : : ; �m�1, where the numbers �i are chosen independently and uniformly. Then de�nevm = �Pm�1i=1 �ivi mod q with the additional constraint that each component of vm is an integerin [0; q� 1]. The matrix M has columns v1; : : : ; vm. The class of lattices �(M; q) de�ned by matrices ofthis type will be called �. The random problem is to �nd a vector in �(M; q) of length less than n. Notethat (�1; : : : ; �m�1; 1) 2 �(M; q) and its length is O(pm), so this vector is a solution when m < n2.Let L be an n-dimensional lattice, let a1; : : : ; an be a set of linearly independent vectors in L and letM = maxni=1 kaik. The heart of Ajtai's work is a procedure which, if M > ncbl(L) for a �xed consant c,uses an oracle for the random lattice problem just de�ned to obtain another set of linearly independentelements in L whose maximum length is at most 12 max1�i�n kaik.In rough outline the procedure works as follows. Starting from a1; : : : ; an, construct a set of linearlyindependent lattice vectors f1; : : : ; fn such that maxni=1 kfik � n3M and W = P(f1; : : : ; fn) is close toa cube, in the sense that each vertex of W will be at most distance nM from a �xed cube. If the spaceis covered with the cells of a lattice determined by a short basis, then most of the cells intersecting Wlie completely in the interior of W . This implies that every parallelepiped of the form u+W , u 2 IRn,has roughly the same number of lattice points. Moreover, this also holds for parallelepipeds of the formu + 1qW for q = [nc2 ], where c2 is su�ciently small with respect to c. Thus, if we pick a lattice pointv at random from a set D of parallelepipeds of the form u+ 1qW with non-overlapping interiors, thenthe distribution induced on D { that is, the choice of which element in D contains v { is very close tothe uniform distribution.The set D of parallelepipeds u + 1qW that is of interest to us is that obtained by cutting W into qnsmall parallelepipeds by dividing each of the vectors fi into q pieces of equal length. Thus each of thesmall parallelepipeds is of the form (Pni=1 ti fiq ) + 1qW , where 0 � ti < q, i = 1; : : : ; n is a sequence ofintegers; that is, ht1; : : : tni 2 ZZnq . Let us call the vector o =Pni=1 ti fiq the origin of the parallelepiped.We will name an element of D by the vector t(o) = ht1; : : : ; tni of coe�cients of the fiq de�ning itsorigin. If we choose a random set of lattice points �1 : : : ; �m in W and look at, for each �j , the namet(oj) of the parallelepiped containing �j , then we get a sequence t(o1); : : : ; t(om) of elements chosenalmost uniformly from D. Express each �j as the sum of the origin oj and an o�set �j 2 1qW . Notethat the o�set is relatively short: since �j is contained in 1qW , k�jk is bounded by n times the lengthof the longest side of W . That is, max1�j�m k�jk � n( 1qn3M).By de�nition of D and the fact that the distribution induced on D by the choice of � is almostuniform, each t(oj) is distributed almost uniformly in ZZnq . Let m = [c1n log n]. Consider the se-quence t(o1); : : : ; t(om) as a value of the random variable � (it is shown in [2] that the distribution of



t(o1); : : : ; t(om) is extremely close to that of �). If there exists an algorithm A that can solve Ajtai's ran-dom lattice problem, then using A we can �nd a short (length at most n) vector h = hh1; : : : ; hmi 2 ZZmsatisfying Pmj=1 hjt(oj) � 0 mod q.Writing the lattice vectorPmj=1 hj�j as the weighted sum of origins and o�sets, we getw = mXj=1 hj�j = mXj=1 hjoj + mXj=1 hj�j :Critically, since Pj hjt(oj) � 0 mod q, we have that Pj hjoj is an integer linear combination of thevectors (f1; : : : ; fn). Since the fi are lattice vectors, so is Pj hjoj . Since w is also in L the di�erencew �Pj hjoj =Pj hj�j 2 L. Finally, since jPmj=1 h2j j � n2 and, as noted above, each of the o�sets isalso relatively short, the lattice vector P1�j�n hj�j is relatively short: kP1�j�n hj�jk � n2(n4M 1q ),which is less than M2 if q is su�ciently large (say, q � n7).Recently, Ajtai's results have been tightened by Cai and Nerurkar [7]. Through a number of technicalsteps, Cai and Nerurkar are able to shrink the constant c in Ajtai's reduction, slightly better thanhalving it.Based solely on the results in [2], it is possible to design a number of interactive cryptographic proce-dures, including schemes for identi�cation, bit commitment, and coin ipping [3].4 HashingThe reduction described in the previous section has implications for the security of the following familyof hash functions, studied by Impagliazzo and Naor [21]:Let l(m) = (1 � c)m for c > 0. For a1; : : : ; am 2 f0; 1gl(m) the function fa = fa1;:::;am : f0; 1gm !f0; 1gl(m) is de�ned as follows. Let the m-bit number x be written x = x1x2 : : : xm where each xi 2f0; 1g. Then fa(x) =Pmi=1 xiai mod 2l(m).The bits of x act as selectors to determine which of the ai are summed.We can represent the function as a1�m matrixM with columns a1; : : : ; am. Given x 2 f0; 1gm, the value of the function isMx mod 2l(m).As we next explain, Ajtai's proof shows that the ability to solve a random instance of the subset sumproblem implies the ability to solve the worst-case lattice problems listed in Section 3 (additional detailsappear in [2]). So if we assume that these worst-case problems are hard for dimension n, then theserandomized subset sum problems will be hard as well. To illustrate this connection, let q = [nc2 ] andm = [c1n log n] as in the discussion of Ajtai's reduction in Section 3. Let N = q1q2 : : : qn where each qiis a distinct prime in [q; 2q]. Let a1; : : : ; am; b be random integers modulo N . Consider the subset sumproblem of �nding x 2 f0; 1gm such thatPmi=1 xiai � b mod N .Remarks.(1) The numbers ai are of length l(m) � n log q = (1� c)m for some c > 0 if c1 > c2. So subset sumproblems of this type are essentially those in the Impagliazzo-Naor family of hash functions.(2) If x 2 f0; 1gm then kxk � pm < n.We may express each ai as a vector of remainders modulo the primes q1; : : : ; qn: a0i = (ai1; : : : ; ain),where aij 2 ZZqj , for 1 � i � m and 1 � j � n. Note that if ai is chosen uniformly from ZZN thena0i is implicitly chosen uniformly from ZZq1 � : : : � ZZqn . Similarly, let b0 be the Chinese remainderdecomposition of b. Let M be the n �m matrix with columns a01; : : : ; a0n. If we can �nd x 2 f0; 1gmsatisfying Pmi=1 xiai � b mod N , then Mx � b0 (where the jth component of the product is reducedmodulo qj , 1 � j � n).The hardness of this problem follows from Ajtai's proof. The key modi�cation is as follows. Recall thatW = P(f1; : : : ; fn). Rather than cutting each vector fi, 1 � i � n, into q equal pieces (for a �xed q),instead for each 1 � i � n, cut fi into qi pieces. Thus, instead of having qn little parallelepipeds wewill have N = q1 : : : qn of them. Any solution x plays the role of the solution h = hh1; : : : ; hmi in theoriginal proof. See [2] for more details and extensions of these results.Impagliazzo and Naor proved that if the subset sum function for length (1� c)m, c > 0, is one-way inthe sense that no polynomial time algorithm can invert the function on a random input, then it is also



a family of universal one-way hash functions [21]. Since this class of subset sum problem is hard onaverage (assuming the worst-case lattice problems are di�cult for dimension n), the Impagliazzo andNaor construction yields a family of universal one-way hash functions.In a related note, Goldreich, Goldwasser, and Halevi [13] observed that these hash functions are actu-ally collision-intractable. Speci�cally, they show that if M is a random matrix in Zn�mq , then �ndingcollisions of the function h(x) =Mx mod q is hard provided a slight modi�cation of Ajtai's random lat-tice problem is hard. The modi�cation is to only require that the vector x have coe�cients in f�1; 0; 1g(rather than to require x 2 ZZmq and kxk < n), and the proof of collision-intractability relies on thefact that Ajtai's results hold even if the random lattice problem is relaxed so that kxk is boundedby a polynomial in n. (The more relaxed version incurs a cost in the quality of the approximationobtained in Ajtai's reduction.) Collision-intractability follows from the fact that if it were easy to �ndx; y 2 f0; 1gm such that Mx �My mod q then M(x� y) � 0 mod q. Since x� y 2 f�1; 0; 1gm, �ndingsuch a pair x; y is di�cult.5 Public Key CryptographyAjtai and Dwork constructed a public key cryptosystem generator with the property that if a randominstance of the cryptosystem can be broken, that is, if for a random instance the probability thatan encryption of a zero can be distinguished from an encryption of a one (without the private key)in polynomial time is at least 12 + n�c1 for some absoloute constant c1 > 0, then the worst-caseunique shortest vector problem has a probabilistic polynomial time solution. Intuitively, this worst-case/average-case equivalence means that there are essentially no \bad" instances of the cryptosystem.In this discussion we will work with real numbers, ignoring issues of �nite precision. The private key isa vector u 2 IRn chosen uniformly at random from the n-dimensional unit ball. u induces a collectionof (n � 1)-dimensional hyperplanes, where for i 2 ZZ the ith hyperplane is the set of vectors v whoseinner product satisfy u � v = i. Very roughly speaking, the public key is a method of generating a pointguaranteed to be near one of the hyperplanes in the collection. The public key is chosen so as not toreveal the collection of hyperplanes { indeed, Ajtai and Dwork prove that any ability, given only thepublic key, to discover the collection implies the ability to solve the worst-case unique shortest vectorproblem. Encryption is bit-by-bit: zero is encrypted by using the public key to �nd a random vectorv 2 IRn near one of the hyperplanes { the ciphertext is v; one is encrypted by choosing a random vectoru uniformly from IRn { the ciphertext is simply u. Decryption of a ciphertext x is simple using theprivate key u: if u � x is close to an integer then x is by de�nition near one of the hidden hyperplanes,and so x is interpreted as zero; otherwise x is interpreted as one.If a lattice � has an nc-unique shortest vector v, then L = �� is a (kvk�1; n�c0kvk�1) lattice, where c0is roughly c � 2 (a proof appears in [2]). Moverover, v is orthogonal to the (n � 1)-dimensional spacecontaining L0 = L(kvk�1;n�c0kvk�1), and if H is the (n� 1)-dimensional subspace of IRn containing L0,then the hyperplanes induced by v are the cosets of H intersecting L (recall the discussion of the dualin Section 2).De�ne pert(R) to be a random variable that, roughly speaking, is normally distributed about the originin a ball of radius R. Let K be a very large cube, and let R = nc. It is �rst shown that if the nc1 -uniqueshortest vector problem is hard, for c1 su�ciently larger than c, then the distribution obtained bychoosing a random lattice point in K and perturbing it by adding a value of pert(R) (for su�cientlylarge R) is polynomially indistinguishable from the distribution obtained by choosing a vector uniformlyat random from K.To see this, suppose we are given a random lattice � with an nc1 -unique shortest vector v, and let L =��. Let d = kvk�1 and M = n�c01kvk�1, where c01 is roughly c1�2. Then L is a (d;M) lattice. Let L0 =L(d;M) have basis b1; : : : ; bn�1. Let H = H0 be the (n�1)-dimensional hyperplane containing L0. If R issu�ciently large with respect to b1; : : : ; bn�1, then the random variable obtained by sampling pert(R),projecting the result onto the (n� 1)-dimensional hyperplane containing L0, and taking the projectionmodulo P�(b1; : : : ; bn�1) is extremely close to the value obtained by choosing a point uniformly inP�(b1; : : : ; bn�1).Intuitively, this means that any algorithm distinguishing between \lattice point + pert(R)" and theuniform distribution is really distinguishing between points close to the cosets of H intersecting L and



random points. >From this it is possible (with some e�ort { see [4]) to �nd H. Finally, given H we canrecover v, the unique shortest vector in � = L� as follows. As noted above, v is perpendicular to H. Byde�nition kvk = d�1; given a basis for L (computable from the given basis for �), we can sample pointsfrom L and compute for each its distance from H. By taking the gcd of many random such distanceswe can �nd d.The next step is to dispense with the lattice L. Let u be chosen uniformly at random from the n-dimensional unit ball and let Hu be the collection of hyperplanes induced by u. The distributionobtained by choosing a random point in Hu \ K and then su�ciently perturbing the chosen point, isindistinguishable from the uniform distribution in K { otherwise there would be a way of distinguishingpoints close to the hyperplanes from random points. The scheme is therefore as follows.Private Key: vector u chosen at random from the n-dimensional unit ballPublic Key: v1; : : : ; vm: a collection of perturbations of points chosen uniformly from Hu \ K, and aparallelepiped PEncryption: To encrypt zero, choose �1; : : : ; �m, each �i 2R f0; 1g. The ciphertext is Pmi=1 �i mod P.To encrypt one, choose a random point in P�.Decryption: given ciphertext x, compute x � u. If the result is su�ciently close (as a function of R) toan integer, then decrypt x as zero; else decrypt x as one.There is some chance of a decryption error. This can be avoided by including in the public key apoint B obtained by averaging two encryptions of zero lying on hyperplanes of di�erent parity. (Arelated solution appears in [15].) The procedure for encrypting one becomes: follow the procedure forencrypting zero but add B before modding out by P.Very roughly, worst-case/average-case equivalence is shown as follows. Suppose we have an algorithmA that can break random instances of the cryptosystem with non-negligible probability over the choiceof u. Given any instance L of the unique shortest vector problem, we convert it to an instance of thecryptosystem by choosing a number of random linear transformations U = �� where � 2 IR and �is an orthogonal linear transformation. Intuitively, � rotates the lattice L leaving the lengths of thebasis vectors unchanged, while � scales the rotated basis. If v is the unique shortest vector and wechoose enough transformations, then for one of them kUvk < 1 and A can crack the instance of thecryptosystem de�ned by u. Note that v is the nc-unique shortest vector of L if and only if Uv is thenc-unique shortest vector of UL. It follows that J , the dual lattice of UL, is a (1; n�c0) lattice, wherec0 � c� 2. Moreover, the distribution obtained by perturbing points of J is exponentially close to thedistribution obtained by perturbing points in the hyperplanes induced by Uv. But Uv describes (theprivate key of) a random instance of the Ajtai-Dwork cryptosystem: it is random because U is random.Moreover, the ability to distinguish zeros { points close to the hyperplanes induced by Uv { from ones {random points{ would imply the ability to distinguish perturbations of lattice points in J from randompoints. As argued above, this ability would yield Uv, the unique shortest vector in J�, and hence, bythe invertibility of U , v.6 Pseudorandom Bit GeneratorsThe Ajtai-Dwork construction suggests a pseudorandom bit generator with a very natural geometricalinterpretation. Note that, given the secret information u, it requires fewer bits to describe a point thatis close to one of the hyperplanes induced by u than to describe a point chosen at random from IRn.To see this, consider a basis b1; : : : ; bn for IRn in which the �rst n � 1 vectors lie in H0, the (n � 1)-dimensional space orthogonal to u, and bn is parallel to u. Using this basis it is easy to see that todescribe a random point requires more bits than to describe a point close to one of the hyperplanesbecause, intuitively, there are more choices for the random point (the distance of a random point to thenearest hyperplane can be any value in [0; kuk=2], while the distance of a point close to the hyperplaneis in [0; n�c] for a �xed constant c > 0).



7 Digital SignaturesGoldreich, Goldwasser, and Halevi have suggested a digital signature scheme based on a trapdoorfunction related to the problem of �nding the lattice vector closest to a given vector v [14]. Theirapproach, which also yields a public-key cryptosystem, depends on the hardness of random instances ofthe underlying problem (rather than worst-case instances). Naor and Yung have shown how to obtaina digital signature scheme from any one-way function [24]. Other than schemes obtained by applyingthis general construction to the one-way functions of [2, 4], we know of no proposed digital signaturescheme with worst-case/average-case equivalence.The trapdoor function proposed by Goldreich, Goldwasser, and Halevi relies on the di�culty, given abasis B for a lattice L, of �nding a basis for L with small dual orthogonality defect. Call such a basisreduced.The trapdoor information is a reduced basis R for an n-dimensional lattice (de�ned implicitly by R).Given R, it is possible to generate a second basis B for L = L(R) so that B has high dual orthogonalitydefect. The trapdoor function is speci�ed by B and a real parameter � 2 IR. Given vectors v; e 2 IRn,the function f(B;�)(v; e) = Bv + e. Note that the value � does not appear in the de�nition of thefunction. Rather, � governs the selection of e: each entry in e is chosen at random according to adistribution with zero mean and variance �2. For example, each entry in e can be chosen uniformlyfrom f�;��g.Assume e is chosen as described and each component of v is chosen uniformly from, say, f�n2;�n2 +1; : : : ; n2 � 1; n2g. Let c = f(B;�)(v; e) = Bv + e. If � is chosen carefully, the function can be invertedusing R by applying Babai's rounding technique [5]: represent c as a linear combination of the columnsof R and then round the coe�cients in the linear combination to the nearest integers to obtain a latticepoint (integer linear combination of the columns of R). Once v is recovered we �nd e = c�Bv.In the Goldreich, Goldwasser, and Halevi digital signature scheme, the private key is a reduced basisR and the public key is a non-reduced basis B. To sign a message m encoded as a vector v 2 IRn, thesigner computes, using the reduced basis, a lattice vector w close to v. The public veri�cation key isa threshold � and the non-reduced basis B; the signature is veri�ed by checking that kv � wk � � .As the authors point out, if u; u0 2 IRn are su�ciently close, then a signature on u is likely also to bea signature on u0; it is therefore important to use a \good hash function" to hash a message beforeinterpreting it as a vector in IRn [14].References1. L. Adleman, On Breaking Generalized Knapsack Public Key Cryptosystems, Proceedings 15thAnnual ACM Symposium on Theory of Computing, 1983, pp. 402{4122. M. Ajtai, Generating Hard Instances of Lattice Problems, Proceedings 28th Annual ACM Sym-posium on Theory of Computing, 1996, pp. 99{108 Electronic Colloquium on ComputationalComplexity TR96-007, http://www.eccc.uni-trier.de/eccc-local/Lists/TR-1996.html3. M. Ajtai, discussion with the author, 19964. M. Ajtai, C. Dwork, A Public-Key Cryptosystem with Average-Case/Worst-Case Equiv-alence, Proceedings 29th Annual ACM Symposium on Theory of Computing, 1997; seealso Electronic Colloquium on Computational Complexity TR96-065, http://www.eccc.uni-trier.de/eccc-local/Lists/TR-1996.html5. L. Babai, On Lov�asz' Lattice Reduction and the Nearest Lattice Point Problem, Combinatorica6(1), 1986, pp. 1{136. M. Blum and S. Micali, How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits, SIAM J. Computing 13, 1984, pp. 850{8647. J.-Y. Cai and A. P. Nerurkar, An ImprovedWorst-Case to Average-Case Connection for LatticeProblems, private communication, 19978. J.W.S. Cassels, An Introduction to the Geometry of Numbers, Springer, 19599. D. Coppersmith, Finding a Small Root of a Univariate Modular Equation, Proc. EURO-CRYPT'9610. D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter, Low Exponent RSA with RelatedMessages, Proc. EUROCRYPT'96



11. D. Dolev, C. Dwork, and M. Naor, Non-Malleable Cryptography, Proceedings 23th AnnualACM Symposium on Theory of Computing, 1991, pp. 542{55012. O. Goldreich, Foundations of Cryptography (Fragments of a Book),http://www.wisdom.weizmann.ac.il/people/homepages/oded/frag.html13. O. Goldreich, S. Goldwasser, and S. Halevi, Collision-Free Hashing from Lattice Prob-lems, Electronic Colloquium on Computational Complexity TR96-042, http://www.eccc.uni-trier.de/eccc-local/Lists/TR-1996.html14. O. Goldreich, S. Goldwasser, and S. Halevi, Public-Key Cryptosystems from LatticeReduction Problems, Electronic Colloquium on Computational Complexity TR96-056,http://www.eccc.uni-trier.de/eccc-local/Lists/TR-1996.html15. O. Goldreich, S. Goldwasser, and S. Halevi, Eliminating the Decryption Error in the Ajtai-Dwork Cryptosystem, to appear, Proc. CRYPTO'9716. S. Goldwasser and S. Micali, Probabilistic Encryption, J. Comput. System Sci. 28, 1984, pp.270{29917. S. Goldwasser, S. Micali, and R. Rivest, A \Paradoxical" Solution to the Signature Problem,SIAM J. Computing 17, 1988, pp. 281{30818. M. Gr�otschel, Lov�asz, A. Schrijver, Geometric Algorithms and Combinatorial Optimization,Springer, Algorithms and Combinatorics 2, 198819. P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers, North-Holland, 198720. J. Hastad, Solving Simultaneous Modular Equations of Low Degree, SIAM J. Computing 17(2),pp.336{341, 198821. R. Impagliazzo and M. Naor, E�cient Cryptographic Schemes Provably as Secure as SubsetSum, J. Cryptology 9, pp. 199{216, 199622. J.C. Lagarias, A.M. Odlyzko, Solving low-density subset sum problems, Journal of the Asso-ciation for Computing Machinery 32 pp. 229-246, 1985. An earlier version appeared in Proc.24th Annual Symposium on Foundations of Computer Science, 198323. M. Luby, Pseudo-randomness and applications, Princeton University Press, 1996.24. M. Naor and M. Yung, Universal One-Way Hash Functions and Their Cryptographic Applica-tions, Proceedings 21th Annual ACM Symposium on Theory of Computing, 1989, pp. 33{4325. A. Shamir, A Polynomial-Time Algorithm for Breaking the Basic Merkle-Hellman Cryptosys-tem, Proc. 23rd Annual Symposium on Foundations of Computer Science, 1982, pp. 145{15226. A. C. Yao, Theory and Applications of Trapdoor Functions, Proc. 23rd Annual Symposium onFoundations of Computer Science, 1982, pp. 80{91

This article was processed using the LATEX macro package with LLNCS style


