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Abstract. We describe constructions of several cryptographic primitives, including hash functions,
public key cryptosystems, pseudo-random bit generators, and digital signatures, whose security depends
on the assumed worst-case or average-case hardness of problems involving lattices.

1 Introduction

Initiated by Ajtai’'s paper “Generating Hard Instances of Lattice Problems,” a burgeoning effort to
build cryptographic primitives based on the assumed hardness of worst-case or random instances of
problems involving lattices has proved extremely fruitful. Prior to Ajtai’s work, lattices, and in partic-
ular, the lattice basis reduction algorithm of Lenstra, Lenstra, and Lovasz, were used in cryptography
principally to prove cryptographic insecurity [1, 9, 10, 20, 22, 25]. We describe more positive applica-
tions of lattices: constructions for public key cryptosystems, cryptographically strong hash functions,
and pseudo-random bit generators whose security depends only on the worst-case hardness of the un-
derlying lattice problem; a digital signature scheme whose security depends on the average hardness of
the underlying problem.

2 Definitions

Many of the definitions included here are eztremely informal. References for precise definitions are
included in every case.

2.1 Cryptography

A one-way function is easy to compute and hard to invert. A trapdoor function is a one-way function
for which there exists some special “trapdoor” information, so that given the trapdoor information the
function is easy to invert, but without the trapdoor information the function is hard to invert (see [12]).
A public key cryptosystem is a method of encrypting messages using publicly known information called
the public key, in such a way that only the party knowing the corresponding private key can decrypt
the ciphertext. Thus, encryption has a trapdoor nature: without the trapdoor information (the private
key) decryption is hard, but decryption is easy given the private key (see [16] and [11]).

A digital signature scheme is a method of generating a (public key, private key) pair, together with a
pair of procedures SIGN, and VERIFY. SIGN requires as input the message to be signed and the private key
of the signer, while VERIFY, requires as input the message, its purported signature, and the public key
of the claimed signer. Let (K, s) be a (public key, private key) pair. Let (m, a) be a claimed (message,
signature) pair. Given (m, a, K) the VERIFY procedure, without knowing the secret s, verifies that o =
SIGN(m, s) (see [17]).

A one-way hash function is a one-way function h mapping long strings to short strings, say, h : {0,1}" —
{0, 1}[ for n > ¢. One-way hash functions have many uses in cryptography. In particular they are used
to “shrink” long messages before signing (see [24]). Thus, what is actually signed is h(m) rather than
m (h(m) is sometimes called a message digest). In this case the VERIFY procedure checks that a =
siaN(h(m), s). For this application it is essential that, given h(m), it is hard to find a different message
m' # m, for which h(m’') = h(m). A little more formally, a family of universal one-way hash functions is
a collection F of functions f : {0,1}™ — {0,1}'(™) with the property that for any element z € {0,1}™,
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if f is chosen at random from the collection F, then it is hard to find an element y # z such that
f(y) = f(x). Each choice of I(m) yields a class of hash functions. A slightly stronger notion is collision-
intractability: for a randomly selected function f € F, it is hard to find z,y such that z # y and
f(@) = fy).

A pseudorandom bit generator is a (deterministic) function that takes as input a string s € {0,1}" and
produces as output a string p € {0, 1} where m > n. Moreover, the strings produced in this way when
the inputs s are random should be polynomial-time indistinguishable from truly random strings of
length m. Thus these functions appear to manufacture some additional bits of randomness (see [6, 26];
extensive treatment appears in [23]).

The subset sum problem of dimensions m and [ is: given m numbers a = (a1, ..., am), each of length I,
and a number T, find a subset S C {1,..., m} such that ZiGS a; = T mod 2'. The subset sum problem

can be viewed as that of inverting the function f(a,S) =a, .. . a; mod 2'™.

i€S

2.2 Lattices

The fundamental concepts concerning lattices can be found in [8, 18, 19].

If a1, ..., an are linearly independent vectors in IR", then we say that the set {Z?:l kiailk1,....kn € Z}
is a lattice in IR™. We will denote this lattice by L(ai,...,a,). The set a1, ..., a, is called a basis of the
lattice; its length is maxi<i<n ||ai||. The determinant of a lattice L will be the absolute value of the
determinant of the matrix whose columns are the vectors a1, ...,a,. We let bl(L) denote the length of
the shortest basis for L.

The dual lattice of L, denoted L™, is defined as

L'={zcR"|z'yeZforalyec L}

If (b1,...,by) is a basis of L then (c1,...,c¢,) is a basis for L™, where

o flifi=j
Cibf_{oifz'7éj

Thus, if we represent the lattice L = L(b1,...,b,) by a matrix B with columns b1,...,b,, then the
dual of L is the lattice spanned by the rows of B~'. Each basis vector b; in L = L(b1,...,by) induces a
collection of mutually parallel (n — 1)-dimensional hyperplanes, where, for k¥ € Z, the kth hyperplane
in the collection is the set of all points whose inner product with b; is equal to k. The distance between
adjacent hyperplanes in the collection is ||b;||~'. Thus, if ||b;|] < ||b;||, then adjacent hyperplanes in
the ith collection are farther apart than adjacent hyperplanes in the jth collection. As the formula for
computing the basis for the dual makes clear, the dual lattice is the set of points that are intersections
of n hyperplanes, one from each of the n collections.
Assume n is a positive integer, M > 0, d > 0 are real numbers, and L C Z" is a lattice which has an
n — 1 dimensional sublattice L' with the following properties:

1. L' has a basis of length at most M;

2. if H is the n— 1 dimensional subspace of IR" containing L' and H' # H is a coset of H intersecting

L, then the distance of H and H' is at least d.

We say that L is a (d, M)-lattice. If d > M, then L' is unique. In this case L' will be denoted by L(®),

If ai,...,an € IR™ are linearly independent vectors, then P~ (a,...,an) denotes the half-closed par-
allelepiped {Z?zl'yiaiw <7 < 1,i = 1,...,n}. By “c2modP” we mean the unique vector z’ €
P~ (ai,...,an) so that x — z' is an integer linear combination of the vectors a1, ..., an.

The orthogonality defect of an n x n matrix B is the quantity ﬁ(B) [T;_, lIb:ll. The dual orthogonality
defect of B is the quantity ﬁ IT7, I1b:]l, where for 1 < i <, b; is the ith row of B~".

n
it

3 Generating Hard Instances of Lattice Problems

Cryptographic constructions necessarily require random choices: if, for example, the choice of a key
were deterministic, then the key could not be secret. Thus, the security of the construction relies on the
intractability of a random instance of the problem on which the construction is based. It has therefore



been a longstanding goal in cryptography to find a “hard” problem for which one can establish an
explicit connection between the hardness of random instances and the hardness of the hardest, or
worst-case, instances.

Such a connection is the contribution of the celebrated paper of Ajtai, “Generating Hard Instances of
Lattice Problems” [2]. Specifically, the paper presents a random problem whose solution would imply
the solution of three famous worst-case problems:

1. Find the length of a shortest nonzero vector in an n-dimensional lattice approximately, up to a
polynomial factor.

2. Find the shortest nonzero vector in an n-dimensional lattice L where the shortest vector v is
unique in the sense than any other vector whose length is at most n°||v|| is parallel to v, where ¢
is a sufficiently large absolute constant.

3. Find a basis b1, ..., b, in the n-dimensional lattice L whose length, defined as max;_, ||b;||, is the
smallest possible up to a polynomial factor.

Ajtai’s Random Lattice Problem. For n,m,q € N such that nlogq < m < 5% and ¢ = O(n°) for
a fixed ¢ > 0, given a matrix M € Z;*™ (that is, an n x m matrix of integers in [0,q-1] of a certain
form described below), find a vector & # 0 € Z;" so that Mz = 0 mod ¢ and [[z|| < n. The lattices are
defined modulo ¢, in the sense that if two vectors are congruent modulo g then either both are in the
lattice or neither is in the lattice. Thus the matrix M and the integer ¢ define the lattice: z € A(M,q)
iff Mz = 0(modg).

The matrix M is obtained as follows. Randomize vectors v, ..., v;—1 independently and with uni-
form distribution on the set of all vectors (z1,...,z.) € Z;. Independently randomize a 0,1 se-
quence d1,...,0m—1, where the numbers §; are chosen independently and uniformly. Then define
U = — Z:’:ll 0;v; mod g with the additional constraint that each component of v, is an integer
in [0, ¢ — 1]. The matrix M has columns v, ..., vn. The class of lattices A(M, q) defined by matrices of
this type will be called A. The random problem is to find a vector in A(M, q) of length less than n. Note
that (81,...,0m_1,1) € A(M,q) and its length is O(y/m), so this vector is a solution when m < n?.

Let L be an n-dimensional lattice, let a1,...,a, be a set of linearly independent vectors in L and let
M = maxj_, ||ai||. The heart of Ajtai’s work is a procedure which, if M > n°bl(L) for a fixed consant c,
uses an oracle for the random lattice problem just defined to obtain another set of linearly independent
elements in L whose maximum length is at most § maxi<i<n ||ai|-

In rough outline the procedure works as follows. Starting from ai,...,a,, construct a set of linearly
independent lattice vectors fi,..., f, such that max?, ||fi|| < n*M and W = P(f1,..., f) is close to
a cube, in the sense that each vertex of W will be at most distance nM from a fixed cube. If the space
is covered with the cells of a lattice determined by a short basis, then most of the cells intersecting W
lie completely in the interior of W. This implies that every parallelepiped of the form u + W, u € R",
has roughly the same number of lattice points. Moreover, this also holds for parallelepipeds of the form
u+ %W for ¢ = [n°?], where c» is sufficiently small with respect to c¢. Thus, if we pick a lattice point
v at random from a set D of parallelepipeds of the form w + %W with non-overlapping interiors, then
the distribution induced on D  that is, the choice of which element in D contains v is very close to
the uniform distribution.

The set D of parallelepipeds u + %W that is of interest to us is that obtained by cutting W into ¢"
small parallelepipeds by dividing each of the vectors f; into g pieces of equal length. Thus each of the
small parallelepipeds is of the form (Z?:l ti%) + %W, where 0 < t; < q,i=1,...,n is a sequence of
integers; that is, (t1,...tn) € Z;. Let us call the vector o = Z:L:l ti% the origin of the parallelepiped.
We will name an element of D by the vector t(0) = (t1,...,tn) of coefficients of the % defining its
origin. If we choose a random set of lattice points & ...,&, in W and look at, for each ¢;, the name
t(oj) of the parallelepiped containing ¢;, then we get a sequence t(01),...,t(0m) of elements chosen
almost uniformly from D. Express each £; as the sum of the origin o; and an offset §; € %W. Note
that the offset is relatively short: since d; is contained in %W, |6;]| is bounded by n times the length
of the longest side of W. That is, maxi<j<m ||0;] < n(%n3M).

By definition of D and the fact that the distribution induced on D by the choice of £ is almost
uniform, each t(o;) is distributed almost uniformly in Z7. Let m = [cinlogn]. Consider the se-
quence t(01),...,t(om) as a value of the random variable A (it is shown in [2] that the distribution of



t(o1),...,t(om) is extremely close to that of ). If there exists an algorithm A that can solve Ajtai’s ran-
dom lattice problem, then using A we can find a short (length at most n) vector h = (hy, ..., hm) € Z™
satisfying Z;n:l h;t(o;) = 0 mod gq.

Writing the lattice vector Z;ﬂ:l h;&; as the weighted sum of origins and offsets, we get

MZZhjfj ZZ’Z]'O]' +Zhj6j .
Jj=1 j=1 j=1

Critically, since Z]. hjt(0o;) = 0 mod g, we have that Z]. hjo; is an integer linear combination of the
vectors (fi,...,fn). Since the f; are lattice vectors, so is Zj hjoj. Since w is also in L the difference
w — Z]. hjo; = Zj h;jé; € L. Finally, since | Z;ﬂ:l hj| < n”® and, as noted above, each of the offsets is
also relatively short, the lattice vector Zlgjgn h;d; is relatively short: || Zlgjgn h;d;|| < n? (n4M%)7
which is less than % if ¢ is sufficiently large (say, ¢ > n").

Recently, Ajtai’s results have been tightened by Cai and Nerurkar [7]. Through a number of technical
steps, Cai and Nerurkar are able to shrink the constant ¢ in Ajtai’s reduction, slightly better than
halving it.

Based solely on the results in [2], it is possible to design a number of interactive cryptographic proce-
dures, including schemes for identification, bit commitment, and coin flipping [3].

4 Hashing

The reduction described in the previous section has implications for the security of the following family
of hash functions, studied by Impagliazzo and Naor [21]:

Let I(m) = (1 — ¢)m for ¢ > 0. For ay,...,am € {0,1}''"™) the function fa = fa,...a, : {0,1}™ —
{0, l}l(m) is defined as follows. Let the m-bit number © be written * = x1x2...xm where each z; €
{0,1}. Then fa(z) = 3" zia; mod 2'™).

The bits of x act as selectors to determine which of the a; are summed. We can represent the function as a
1xm matrix M with columns a1, ..., amn. Given z € {0,1}™, the value of the function is Mz mod oHm)
As we next explain, Ajtai’s proof shows that the ability to solve a random instance of the subset sum
problem implies the ability to solve the worst-case lattice problems listed in Section 3 (additional details
appear in [2]). So if we assume that these worst-case problems are hard for dimension n, then these
randomized subset sum problems will be hard as well. To illustrate this connection, let ¢ = [n°?] and
m = [cinlogn] as in the discussion of Ajtai’s reduction in Section 3. Let N = qi1q2 ... ¢, where each g;
is a distinct prime in [q,2q]. Let a1,...,am,b be random integers modulo N. Consider the subset sum
problem of finding = € {0,1}™ such that Zlﬂzl ria; = bmod N.

Remarks.

(1) The numbers a; are of length I(m) ~ nlogq = (1 — ¢)m for some ¢ > 0 if ¢1 > c2. So subset sum
problems of this type are essentially those in the Impagliazzo-Naor family of hash functions.

(2) If z € {0,1}™ then ||z|| < vVm < n.

We may express each a; as a vector of remainders modulo the primes qi,...,¢.: ai = (ai,...,a}),
where a;- € Zy;, for 1 < i <m and 1 < j < n. Note that if a; is chosen uniformly from Zy then
a; is implicitly chosen uniformly from Z,, x ... x Z,,. Similarly, let ¥’ be the Chinese remainder
decomposition of b. Let M be the n x m matrix with columns a},...,a}. If we can find z € {0,1}"
satisfying Z:n:l z;a; = bmod N, then Mz = b' (where the jth component of the product is reduced
modulo g;, 1 < j < n).

The hardness of this problem follows from Ajtai’s proof. The key modification is as follows. Recall that
W = P(fi1,..., fn). Rather than cutting each vector f;, 1 < i < n, into ¢ equal pieces (for a fixed q),
instead for each 1 < i < n, cut f; into g; pieces. Thus, instead of having g™ little parallelepipeds we
will have N = ¢1 ...¢n of them. Any solution z plays the role of the solution h = (hi1,...,hn) in the
original proof. See [2] for more details and extensions of these results.

Impagliazzo and Naor proved that if the subset sum function for length (1 — ¢)m, ¢ > 0, is one-way in
the sense that no polynomial time algorithm can invert the function on a random input, then it is also



a family of universal one-way hash functions [21]. Since this class of subset sum problem is hard on
average (assuming the worst-case lattice problems are difficult for dimension n), the Impagliazzo and
Naor construction yields a family of universal one-way hash functions.

In a related note, Goldreich, Goldwasser, and Halevi [13] observed that these hash functions are actu-
ally collision-intractable. Specifically, they show that if M is a random matrix in Z;*™, then finding
collisions of the function h(z) = Mz mod g is hard provided a slight modification of Ajtai’s random lat-
tice problem is hard. The modification is to only require that the vector = have coefficients in {—1,0,1}
(rather than to require € Z7" and ||z|| < n), and the proof of collision-intractability relies on the
fact that Ajtai’s results hold even if the random lattice problem is relaxed so that ||z| is bounded
by a polynomial in n. (The more relaxed version incurs a cost in the quality of the approximation
obtained in Ajtai’s reduction.) Collision-intractability follows from the fact that if it were easy to find
z,y € {0,1}™ such that Mz = My mod ¢ then M(z —y) = 0 mod ¢. Since x —y € {—1,0,1}™, finding
such a pair z, y is difficult.

5 Public Key Cryptography

Ajtai and Dwork constructed a public key cryptosystem generator with the property that if a random
instance of the cryptosystem can be broken, that is, if for a random instance the probability that
an encryption of a zero can be distinguished from an encryption of a one (without the private key)
in polynomial time is at least % + n~°t for some absoloute constant ¢; > 0, then the worst-case
unique shortest vector problem has a probabilistic polynomial time solution. Intuitively, this worst-
case/average-case equivalence means that there are essentially no “bad” instances of the cryptosystem.
In this discussion we will work with real numbers, ignoring issues of finite precision. The private key is
a vector u € IR" chosen uniformly at random from the n-dimensional unit ball. u induces a collection
of (n — 1)-dimensional hyperplanes, where for i € Z the ith hyperplane is the set of vectors v whose
inner product satisfy u-v = i. Very roughly speaking, the public key is a method of generating a point
guaranteed to be near one of the hyperplanes in the collection. The public key is chosen so as not to
reveal the collection of hyperplanes indeed, Ajtai and Dwork prove that any ability, given only the
public key, to discover the collection implies the ability to solve the worst-case unique shortest vector
problem. Encryption is bit-by-bit: zero is encrypted by using the public key to find a random vector
v € R" near one of the hyperplanes the ciphertext is v; one is encrypted by choosing a random vector
u uniformly from IR™ — the ciphertext is simply u. Decryption of a ciphertext z is simple using the
private key w: if u - z is close to an integer then z is by definition near one of the hidden hyperplanes,
and so x is interpreted as zero; otherwise x is interpreted as one.

If a lattice A has an n°-unique shortest vector v, then L = A* is a (||v|| ™", n lv]| ") lattice, where ¢
is roughly ¢ — 2 (a proof appears in [2]). Moverover, v is orthogonal to the (n — 1)-dimensional space
containing L' = J AU ”””71), and if H is the (n — 1)-dimensional subspace of R” containing L',
then the hyperplanes induced by v are the cosets of H intersecting L (recall the discussion of the dual
in Section 2).

Define pert(R) to be a random variable that, roughly speaking, is normally distributed about the origin
in a ball of radius R. Let K be a very large cube, and let R = n°. It is first shown that if the n“!-unique
shortest vector problem is hard, for ¢; sufficiently larger than ¢, then the distribution obtained by
choosing a random lattice point in K and perturbing it by adding a value of pert(R) (for sufficiently
large R) is polynomially indistinguishable from the distribution obtained by choosing a vector uniformly
at random from K.

To see this, suppose we are given a random lattice A with an n°'-unique shortest vector v, and let L =
A*. Letd=|v|]| ' and M = n= ||v]| =%, where ¢} is roughly ¢; —2. Then L is a (d, M) lattice. Let L' =
LM) have basis by, ..., b, 1. Let H = Hy be the (n— 1)-dimensional hyperplane containing L'. If R is
sufficiently large with respect to b1,...,b,—1, then the random variable obtained by sampling pert(R),
projecting the result onto the (n — 1)-dimensional hyperplane containing L', and taking the projection
modulo P~ (b1,...,b,_1) is extremely close to the value obtained by choosing a point uniformly in
P (b1, bn_1).

Intuitively, this means that any algorithm distinguishing between “lattice point + pert(R)” and the
uniform distribution is really distinguishing between points close to the cosets of H intersecting L and



random points. jFrom this it is possible (with some effort — see [4]) to find H. Finally, given H we can
recover v, the unique shortest vector in A = L* as follows. As noted above, v is perpendicular to H. By
definition ||v|| = d~'; given a basis for L (computable from the given basis for A), we can sample points
from L and compute for each its distance from H. By taking the gcd of many random such distances
we can find d.

The next step is to dispense with the lattice L. Let w be chosen uniformly at random from the n-
dimensional unit ball and let H, be the collection of hyperplanes induced by u. The distribution
obtained by choosing a random point in H, N K and then sufficiently perturbing the chosen point, is
indistinguishable from the uniform distribution in £ otherwise there would be a way of distinguishing
points close to the hyperplanes from random points. The scheme is therefore as follows.

Private Key: vector u chosen at random from the n-dimensional unit ball

Public Key: vi,...,vn: a collection of perturbations of points chosen uniformly from #, N K, and a
parallelepiped P

Encryption: To encrypt zero, choose 01, ...,0m, each §; €g {0,1}. The ciphertext is Z:’;l 6; mod P.
To encrypt one, choose a random point in P~

Decryption: given ciphertext z, compute z - u. If the result is sufficiently close (as a function of R) to
an integer, then decrypt = as zero; else decrypt x as one.

There is some chance of a decryption error. This can be avoided by including in the public key a
point B obtained by averaging two encryptions of zero lying on hyperplanes of different parity. (A
related solution appears in [15].) The procedure for encrypting one becomes: follow the procedure for
encrypting zero but add B before modding out by P.

Very roughly, worst-case/average-case equivalence is shown as follows. Suppose we have an algorithm
A that can break random instances of the cryptosystem with non-negligible probability over the choice
of u. Given any instance L of the unique shortest vector problem, we convert it to an instance of the
cryptosystem by choosing a number of random linear transformations U = fv where § € IR and v
is an orthogonal linear transformation. Intuitively, v rotates the lattice L leaving the lengths of the
basis vectors unchanged, while 6 scales the rotated basis. If v is the unique shortest vector and we
choose enough transformations, then for one of them ||Uv|| < 1 and A can crack the instance of the
cryptosystem defined by u. Note that v is the n°-unique shortest vector of L if and only if Uv is the
n’-unique shortest vector of UL. It follows that J, the dual lattice of UL, is a (1, nfcl) lattice, where
¢’ ~ ¢ — 2. Moreover, the distribution obtained by perturbing points of .J is exponentially close to the
distribution obtained by perturbing points in the hyperplanes induced by Uv. But Uv describes (the
private key of) a random instance of the Ajtai-Dwork cryptosystem: it is random because U is random.
Moreover, the ability to distinguish zeros — points close to the hyperplanes induced by Uv — from ones —
random points would imply the ability to distinguish perturbations of lattice points in J from random
points. As argued above, this ability would yield Uv, the unique shortest vector in .J*, and hence, by
the invertibility of U, v.

6 Pseudorandom Bit Generators

The Ajtai-Dwork construction suggests a pseudorandom bit generator with a very natural geometrical
interpretation. Note that, given the secret information wu, it requires fewer bits to describe a point that
is close to one of the hyperplanes induced by u than to describe a point chosen at random from IR".
To see this, consider a basis b1, ...,b, for R™ in which the first n — 1 vectors lie in Hy, the (n — 1)-
dimensional space orthogonal to u, and b,, is parallel to u. Using this basis it is easy to see that to
describe a random point requires more bits than to describe a point close to one of the hyperplanes
because, intuitively, there are more choices for the random point (the distance of a random point to the
nearest hyperplane can be any value in [0, [|u||/2], while the distance of a point close to the hyperplane
is in [0, n™¢] for a fixed constant ¢ > 0).



7 Digital Signatures

Goldreich, Goldwasser, and Halevi have suggested a digital signature scheme based on a trapdoor
function related to the problem of finding the lattice vector closest to a given vector v [14]. Their
approach, which also yields a public-key cryptosystem, depends on the hardness of random instances of
the underlying problem (rather than worst-case instances). Naor and Yung have shown how to obtain
a digital signature scheme from any one-way function [24]. Other than schemes obtained by applying
this general construction to the one-way functions of [2, 4], we know of no proposed digital signature
scheme with worst-case/average-case equivalence.

The trapdoor function proposed by Goldreich, Goldwasser, and Halevi relies on the difficulty, given a
basis B for a lattice L, of finding a basis for L with small dual orthogonality defect. Call such a basis
reduced.

The trapdoor information is a reduced basis R for an n-dimensional lattice (defined implicitly by R).
Given R, it is possible to generate a second basis B for L = L(R) so that B has high dual orthogonality
defect. The trapdoor function is specified by B and a real parameter o € IR. Given vectors v,e € IR",
the function f(p,)(v,e) = Bv + e. Note that the value o does not appear in the definition of the
function. Rather, o governs the selection of e: each entry in e is chosen at random according to a
distribution with zero mean and variance o?. For example, each entry in e can be chosen uniformly
from {0, —0}.

Assume e is chosen as described and each component of v is chosen uniformly from, say, {—nz, —n? 4+
1,...,n* —1,n?}. Let ¢ = fB,o)(v,e) = Bv +e. If g is chosen carefully, the function can be inverted
using R by applying Babai’s rounding technique [5]: represent c as a linear combination of the columns
of R and then round the coefficients in the linear combination to the nearest integers to obtain a lattice
point (integer linear combination of the columns of R). Once v is recovered we find e = ¢ — Bu.

In the Goldreich, Goldwasser, and Halevi digital signature scheme, the private key is a reduced basis
R and the public key is a non-reduced basis B. To sign a message m encoded as a vector v € IR", the
signer computes, using the reduced basis, a lattice vector w close to v. The public verification key is
a threshold 7 and the non-reduced basis B; the signature is verified by checking that |[v — w|| < 7.
As the authors point out, if u,u’ € IR" are sufficiently close, then a signature on u is likely also to be
a signature on u'; it is therefore important to use a “good hash function” to hash a message before
interpreting it as a vector in IR™ [14].
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