
IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

1

Implementing and Testing Lattice-Based Cryptosystems in Rust

A Project Report

Presented to

Professor Chris Pollett

Department of Computer Science

San Josè State University

In Partial Fulfillment

Of the Requirements for the Class

CS 297

By

Michaela Molina

May 2021

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

2

ABSTRACT

 In this project I investigated lattice-based cryptography. I first looked into the Rust programming

language to learn about the language's features and strengths. I wrote a small program which

demonstrates the use of two Rust libraries. I incorporated these libraries by including them as

dependencies in the Cargo configuration file. I used this knowledge to implement the md5 hash function.

This implementation was tested by hashing 2000 different strings of varying lengths and comparing each

hash to the hash produced by the md5 function from a Rust library. Following this I implemented the

Impagliazzo-Naor hash function, which is a hash function whose security is based on difficulty of a hard

lattice problem. I verified the distribution of this hash function by generating fifteen instances of it. To do

this I generated fifteen random matrices and for each matrix I hashed each possible vector of the specified

length. I verified that each possible hash value has an equal number of occurrences. Finally I implemented

polynomial arithmetic in a ring. I did this by implementing arithmetic, multiplication, and division

combined with modular arithmetic. I used these operations to implement the Extended Euclidean

algorithm which finds the polynomial inverse. These operations are used for key generation in the NTRU

system. This project report follows my investigation into lattice-based cryptography and shows the tests

that were run on each component implemented.

Index terms--Lattice-based cryptography, quantum computing, hash functions, worse-to-average

case reduction

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

3

I. INTRODUCTION

 Lattice-based cryptography has implications for the future in that it is believed to be quantum-

resistant. This means that where other cryptographic schemes whose security holds today will fail against

the attack of a quantum computer, a system whose security rests on a hard lattice problem will remain

uncompromised. This is because there is no known polynomial time algorithm which can solve these

problems [1]. In this project I investigated cryptosystems based on these problems and implemented

components of them. Before implementing these components I developed proficiency in the Rust

programming language. To do this I learned about the features and strengths of Rust and wrote a small

program which demonstrated the use of the Cargo projecy manager and crates. I used this knowledge to

help me implement the md5 hash function using Rust. By doing this I expanded my knowledge further

and developed my understanding of language constructs such as mutability, slices, moving, borrowing,

modules, and type conversions. After this I implemented a hash function based on a hard lattice problem,

the Impagliazzo-Naor hash function. This implementation included generating random matrices and

matrix multiplication. To test the implementation I generated fifteen different instances of the hash

function by generating fifteen random matrices, and I hashed each possible input to the matrix. I showed

the output by for each number of occurrences printing out the list of hash values that occurred that many

times. Finally I implemented polynomial arithmetic in a ring. This arithmetic is used in the NTRU public-

key system to generate keys. I did this by implementing polynomial addition, multiplication, and division

and taking the remainder modulo NTRU's polynomial. I then used these operations to implement the

Extended Euclidean algorithm in order to find the polynomial inverse. These implementations were tested

against other calculators.

 The rest of the project report proceeds as follows. First I discuss my initial steps to get familiar

with Rust. Then I discuss how I implemented the md5 hash function. Following this I describe how I

implemented the Imagliazzo-Naor hash function, and finally I describe how polynomial arithmetic is used

in the NTRU system and how I implemented the arithmetic operations.

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

4

II. GETTING FAMILIAR WITH RUST

 My first goal was to get started with the Rust programming language. To do this I investigated

Rust's strengths and features and wrote a short program which uses Rust libraries. In my small program I

make use of the rand library and the abbreviator library, with results shown below.

Doing this initial research on Rust prepared me for completing more involved programs in the next

deliverables.

III. IMPLEMENTING THE MD5 HASH FUNCTION

 Md5 was invented in 1992 and appears in RFC 1321 [2]. It became insecure in 2004 when it was

shown how to find collisions efficiently in less than an hour [3]. Despite this, implementing this hash

function provided a good opportunity to expand my proficiency with the Rust programming language.

 In the code I converted an arbitrary length string of ascii characters into a binary string. Each

character was converted into its ascii code and had a zero appended to the beginning to form a byte. These

bytes made up the message string. The string was padded so that its length was congruent to 448 modulo

512. The string was then put into a vector of 32-bit words, where each group of 4 bytes were reversed so

that the byte appearing last in the group appeared first. The remaining 64 bits were filled with a binary

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

5

representation of the length of the original message, where the lower-order 32-bit word was appended

first. The message was processed in 16-word blocks. Four registers held initial values, and four different

rounds of sixteen operations were performed on each 16-word block. These operations used auxiliary

functions, addition, multiplication, and bitshifting to modify the contents of one register at each step. For

the four registers which held the hash values at each step, I used four u32 data types. I passed in mutable

references to these registers to the four round functions which altered their values as the algorithm

specifies. By storing each register value as a u32 I utilized Rust's built-in math operations to do the

operations of the algorithm with the exception of a circular left bitshift which I implemented by

converting the u32 to a binary string, shifting it, and converting it back to a u32. At the end of the

rounds, the original content of the registers was appended to the resulting content of the registers, and the

values of the registers represented the value of the hash, starting with the low-order word. The final value

was 128 bits.

 Random strings were generated using the Rust library random_string. This library allowed a

random string of a chosen length to be generated over a specific character set. Here I used a set of 94

ASCII characters as the character set. For each of the lengths of 50, 100, 300, and 500 I generated 500

random strings and computed their hash value using the implemented md5 function. I also computed their

hash value using Rust's built-in md5 function. I compared these two values, and used a hashmap to record

the results, where the keys were true and false and the values were the number of occurrences of that

key. A printout of this hashmap is shown below.

The implemented hash function was shown to be correct on 2000 different strings.

IV. IMPLEMENTING THE IMPAGLIAZZO-NAOR HASH FUNCTION

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

6

 In [4] a hash function is described which is supposed to be as difficult to invert as a worst-case

lattice problem. I implemented this hash function using Rust and ran experiments to test the randomness

of the hash values. A tool to generate a random matrix was written which takes from the command line

the variable m which is the number of vectors in the matrix, and the variable c which sets the dimension

of the vectors as the floor of lm = (1-c)m. The vectors were represented as column vectors, while the

dimension represented the matrix height. Internally, these matrices were represented as two-dimensional

Vecs where each vector in the matrix was a Vec contained in a Vec of other vectors. To generate the

random vectors, Rust's library rand_chacha was loaded and a random number generator from this

library, ChaCha20Rng, was used. I initialized this random number generator with the line let mut

rng = ChaCha20Rng::from_entropy(). This generator used a fresh seed from the operating

system.

 The code generated m Vecs of length lm one at a time by pushing a random number in the range

[0..2) to each Vec lm times and pushing the resulting Vec to the containing Vec. This random matrix

generator was included as one of two main programs in the Cargo's project directory and was used as

cargo run --bin generate_matrix m c > m.txt where m is the number of vectors or the

width of the random matrix, c is the constant used to calculate the dimension of the vectors, and m.txt is

the file which contains a text representation of the random matrix. Another main program used this

random matrix as cargo run --bin hash m.txt where m.txt is the file containing the

representation of the random matrix. This program opened this file, read it line by line, and created its

own copy of the matrix. Each line of the file represented a column of the random matrix. Once the

random matrix was obtained, the code checked the number of vectors in the matrix, which will be equal to

m or the len() of the outer Vec, and generated all vectors of this length with elements from the set

{0,1}. The number of vectors generated was equal to two to the power of m. The code generated the

vectors by counting in decimal from zero to this number minus one and using a method to convert each

number first to a binary string representation and then to a Vec of zeros and ones.

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

7

 Finally, the code iterated through all of these vectors and used a matrix multiplication method to

multiply the random matrix by the vector. By the rules of matrix multiplication, the output of each

multiplication should be a Vec of the same length as the input value. The code created two data structures

as it calculated the hash of each vector. One structure was an array of size two to the power of lm, or the

length of the output vector. Since each hash value consisted of only ones and zeros and was of length lm,

each value corresponded to a decimal number in this array's index range. The code converted each hash

value to a decimal number and recorded the number of occurrences of that value in the corresponding

index. The second data structure created was a hash table where a key was a number that represents a

count of occurrences of a hash value. The value of this key was a list of hash values that occurred the

number of times represented by the key. This allowed a one-screen visual of the distribution of hash

values.

 If the hash function was effective, each possible hash value should have about the same number

of occurrences. To test this, I generated five random matrices, consisting of ten, eight, six, and three

vectors. For each of these matrices I ran the hash program with c at .1, .3, and .8. The results are shown

below.

m = 10, c = .1

m = 10, c = .2

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

8

m = 10, c = .3

m = 8, c = .1

m = 8, c = .2

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

9

m = 8, c = .3

m = 6, c = .1

m = 6, c = .2

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

10

m = 6, c = .3

m = 3, c = .1

m = 3, c = .2

m = 3, c = .3

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

11

 The results show that each possible output of the hash function is hash value an equal number of

times.

V. IMPLEMENTING ARITHMETIC FOR POLYNOMIALS IN A RING

 The NTRU public key system is a practical system whose security depends on a lattice problem.

It features short keys, easy key generation, and efficient encryption and decryption [5]. To generate a

public key for this system, finding a polynomial inverse in necessary. I implemented a function to find the

polynomial inverse by implementing polynomial arithmetic in a ring.

 Polynomial arithmetic in this ring was implemented using Rust. Polynomials were represented as

Vecs of integers, where the first integer represented the coefficient with the highest degree. First a

method was implemented which added coefficients of polynomials from low index to high index and

returned a vector of these sums, also from low index to high index. Polynomial addition was implemented

by reversing two polynomial vectors so that their low order coefficients were in low order indices, calling

the previous method to add coefficients, and then reversing the result. To assist in later methods, a method

which added many polynomial vectors at the same time polynomial_add_multiple was

implemented using this basic polynomial addition method. To get a better visual representation of results,

a function get_polynomial_string was implemented which returned a string representation of a

polynomial, including plus signs, coefficients, and degrees. Polynomial multiplication was implemented

following the methods of polynomial multiplication by hand. First I found which polynomial was the

shortest. Then, for each coefficient in the shortest vector, I multiplied it by each coefficient in the longest

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

12

vector. I ended up with a two dimensional vector of coefficients and called

polynomial_add_multiple to get the final result. Similarly, a polynomial multiplication method

which reduced the coefficients modulo some integer used this method.

 Polynomial division was implemented in the same way as polynomial long division by hand with

the only difference in the coefficients. For use in finding a polynomial inverse modulo an integer q,

described below, the division algorithm used coefficients in the range [0, q). At each step, coefficients

were reduced modulo this number. To find the coefficient of some leading quotient, I found an integer so

that when it was multiplied with the leading coefficient of the divisor it formed a coefficient which when

taken modulo q was equal to the leading coefficient of the dividend. If the integer does not exist the

division could not continue. Outside of this step division proceeded like long division. I found the

quotient degree and the quotient coefficient and multiplied this polynomial by the divisor. I subtracted

from the dividend and checked to see if the remainder had degree greater or equal to that of the divisor. If

it did, the algorithm stopped. Otherwise, it continued by adding another term to the quotient.

 A method to find the inverse of a polynomial in this ring modulo some integer was implemented

using the Extended Euclidean Algorithm [6]. This method is important because key generation depends

on finding these inverses. In the ring defined by NTRU, finding the inverse of some polynomial modulo

some integer p means finding a second polynomial so that if it is multiplied by the first polynomial,

reduced modulo the polynomial of degree 𝑁 defined by NTRU, and reduced modulo the integer p, the

result should be equal to one. If 𝑎𝑥 is the 𝑁𝑡ℎ degree polynomial, and 𝑏𝑥 is the polynomial I want to find

the inverse of, step one was to divide 𝑎𝑥 by 𝑏𝑥 and produce the remainder 𝑟1𝑥. Step two was to divide 𝑏𝑥

by 𝑟1𝑥 and produce the remainder 𝑟2𝑥. Step three was to divide 𝑟1𝑥 by 𝑟2𝑥 and produce remainder 𝑟3𝑥.

These steps were continued until the remainder was a constant. If this remainder was co-prime to the

integer p then an inverse to the polynomial existed. If the two numbers were not co-prime or the

remainder never reaches a constant then there was no inverse. At each of the division steps, I recorded the

quotient and remainder in an array of quotients and an array of remainders. The index of each quotient

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

13

and remainder corresponded to the step where was produced. After each array is filled, I created two new

arrays, called v and w. I initialized the first two elements of v to 0 and 1, and the first two elements of w

to 1 and −𝑞1. Then, I filled the remaining elements of v and w with the following rules: 𝑣𝑖 = 𝑣𝑖−2 − 𝑞𝑖 ∙

𝑣𝑖−1 and 𝑤𝑖 = 𝑤𝑖−2 − 𝑞𝑖 ∙ 𝑤𝑖−1. At each step i the remainder 𝑟𝑖 was equal to 𝑎𝑥 ∙ 𝑣𝑖 + 𝑏𝑥 ∙ 𝑤𝑖. Once all

the indices were filled, the last element of w, corresponding to the last constant remainder, contained the

inverse of the polynomial which still must be multiplied by a number if the first constant remainder was

not 1 [7].

 To test my results I generated the a polynomial inverse with five different parameter sets of the

type used in NTRU. Specifically a user must first find the inverse of some polynomial containing

coefficients from the set {-1,0,1} and where in these coefficients there appears one more positive ones

than negative ones, and any number of zeros [13]. The results are shown below.

N = 11, p = 7, f = [-1,1,0,0,1,0,-1,0,1,1,-1]

N = 11, p = 97, f = [-1,1,0,0,1,0,-1,0,1,1,-1]

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

14

N = 7, p = 37, f = [1,0,-1,-1,1,0,1,0]

N = 12, p = 73, f = [-1,1,-1,0,0,1,0,-1,1,0,1]

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

15

N = 15, p = 11, f = [1,1,1,1,-1-1-1-1,1,0,0,0,0];

The correctness of these results is checked with [8] and [9].

Finally, I show below the results of one iteration of generating a public key. This result is checked with

[8]. Since this step was not the focus of this deliverable, I only complete one example. The public key is h

at the bottom of the screen.

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

16

These examples demonstrate my implementation of polynomial arithmetic in the NTRU ring.

VI. CONCLUSION

 This semester I started out with little knowledge of Rust or lattice-based cryptography. However,

by reading publications on this topic I developed my awareness and I used these publications to prompt

investigation of topics unfamiliar to me. I explored topics such as worse-to-average case reductions, hard

lattice problems, the history of research in the field, and linear algebra concepts. I asked questions in

order to clarify these topics. Furthermore, I gained proficiency in programming in Rust by implementing

components of three systems. Next semester, I hope to continue expanding my understanding of lattice-

based cryptography by learning about the LWE and McEliece problems and implementing related

components. Lattice-based cryptography is promising for post-quantum information security. Further

investigation into this topic will be both practical and engaging.

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

17

REFERENCES

[1] J. Hoffstein, J. Pipher, and J.H. Silverman. An Introduction to Mathematical Cryptography,

Undergraduate Texts in Mathematics. 2nd Ed. New York, NY: Springer New York, 2014, ch. 7, pp.

373.

[2] R. Rivest. "RFC1321: The MD5 message-digest algorithm." (1992).

[3] Wang, Xiaoyun, and Y. Hongbo. "How to break MD5 and other hash functions." In Annual

international conference on the theory and applications of cryptographic techniques, pp. 19-35.

Springer, Berlin, Heidelberg, 2005.

[4] C. Dwork. "Positive applications of lattices to cryptography." In International Symposium on

Mathematical Foundations of Computer Science, pp. 44-51. Springer, Berlin, Heidelberg, 1997.

[5] J. Hoffstein, J. Pipher, and J.H. Silverman. "NTRU: A ring-based public key cryptosystem." In

International Algorithmic Number Theory Symposium, pp. 267-288. Springer, Berlin, Heidelberg,

1998.

[6] W. Stallings. Cryptography and Network Security: Principles and Practice. Sixth ed. Boston: Pearson,

2014.

[7] Q. Ma. "The LTV Homomorphic Encryption Scheme and Implementation in Sage," B.S. thesis,

Worcester Polytechnic Institute, April 25, 2013. Available: https://web.wpi.edu/Pubs/E-

project/Available/E-project-042613-101713/unrestricted/MQP_Report.pdf

IMPLEMENTING AND TESTING LATTICE-BASED CRYPTOSYSTEMS IN RUST

18

[8] Asecuritysite.com. 2021. Lattice Encryption: NTRU Key Generation. [online] Available at:

<https://asecuritysite.com/encryption/ntru_key> [Accessed 11 May 2021].

[9] Mathsci2.appstate.edu. 2021. The Extended Euclidean Algorithm. [online] Available at:

<https://mathsci2.appstate.edu/~cookwj/sage/algebra/Euclidean_algorithm-poly.html> [Accessed 11

May 2021].

