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ABSTRACT. We give a random class of lattices in

Zn whose elements can be generated together with a
short vector in them so that, if there is a probabilistic

polynomial time algorithm which finds a short vector in

a random lattice with a probability of at least ~ then

there is also a probabilistic polynomial time algorithm

which solves the following three lattice problems in ev-
e~g lattice in Zn with a probability exponentially close
to one. (1) Find the length of a shortest nonzero vec-

tor in an n-dimensional lattice, approximately, up to a
polynomial factor. (2) Find the shortest nonzero vector
in an n-dimensional lattice L where the shortest vector
v is unique in the sense that any other vector whose

length is at most n’ IIv]l is parallel to v, where c is a

sufficiently large absolute constant. (3) Find a basis

bl, . . . . bn in the n-dimensional lattice L whose length,

defined as rnax~=l Ilbi II, is the smallest possible up to a
polynomial factor. We get the following corollaries: if

for any of the mentioned worst-case problems there is

no polynomial time probabilistic solution then (a) there

is a one-way function (b) for any fixed ~ > e > 0 there

is a polynomial time computable function r(m) with

mc s log ~(m) s m2e, so that the randomized subset

sum problem: ~~=1 aizi s b (mod ~(m)), zi = 0, 1 for
i=l ,..., m, has no polynomial time probabilistic solu-
tion, where ai i = 1, . . . . n and b are chosen at random

with uniform distribution from the interval [1, r(m)].

Introduction. A large number of the existing tech-
niques of cryptography include the generation of a spe-
cific instance of a problem in IVP (together with a solu-
tion) which for some reason is thought to be difficult to
solve. As an example we may think about factorization.
Here a party of a cryptographic protocol is supposed to
provide a composite number m so that the factorization
of m is known to her but she has some serious reason
to believe that nobody else will be able to factor m.
The most compelling reason for such a belief would be
a mathematical proof of the fact that the prime factors
of m cannot be found in less then k step in some re-
alistic model of computation, where k is a very large
number. For the moment we do not have any proof of
this type, neither for specific numerical values of m and
k, nor in some asymptotic sense. In spite of the lack
of mathematical proofs, in two cases at least, we may
expect that a problem will be difficult to solve. One is
the class of IV.P-complete problems. Here we may say
that if there is a problem at all which is difficult to
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solve, then an iVP-complete problem will provide such
an example.

The other case is, if the problem is a very famous
question (e.g. factorization), which for a long time were
unsuccessfully attacked by the most able scientists. In
both cases it is reasonable to expect that the problem is
difiicult to solve. Unfortunately the expression “diflicult
to solve” means difficult to solve in the worst case. If
our task is to provide a specific instance of the problem,
these general principles do not provide any guidance
about how to create one.

It has been realized a long time ago that a possible
solution would be to find a set of randomly generated
problems and show that if there is an algorithm which
finds a solution of a random instance with a positive
probability, then there is also an algorithm which solves
one of the famous unsolved problems in the worst case.
(It does not really matter whether this “positive prob-

ability y“ is ~, c or ~, because taking many instances of
the problem and asking for a solution for each of them,
the probability y can be improved.)

In this paper we give such a class of random prob-
lems. In fact we give a random problem: find a short
vector in a certain class of random Iat t ices (whose el-
ements can be generated together with a short vector
in them), whose solution in the mentioned sense would
imply the solution of a group of related “famous” prob-
lems in the worst case. We mention here three of these
worst-case problems:
(PI) Find the length of a shortest non.zero vector in

an n dimensional lattice, approximately, up to a poly-

nomial factor.
(P2) Find the shortest non.zero vector in an n dimen-

sional lattice L where the shortest vector v is unique in
the sense that any other vector whose length is at most

n’ Ilvll is parallel to v, where c is a sufficiently large ab-
solute constant.
(P3) Finds basis bl, . . . . bn. in the n-dimensional lattice
L whose length, defined as max~=l //bi /1, is the srnadest
possible up to a polynomial fztor.

Remarks. 1. (P2) can be given in a more general
form. If a lattice L G Zn is given, then find all sublat-

tices L’ = V n L (by giving a basis in them), where V is

a d-dimensional subspace of Zn so that min{d, n – d} is

smaller than a constant and V (l L has a basis VI, . . . . vd

so that for al w ~ L\V, nca max$=l llv~ll < Ilwll, where

cd > 0 is sufficiently Laxge with respect to d, but does
not depend on anything else.

2. The random problem can be also formulated as
a linear simultaneous Diophantine approximation prob-
lem.

3. Although (PI) is not in lVF’ (we are not able to
check whether our estimate is good), still, our algorithm
will give a one-sided certificate. Namely we may get a
certificate which shows that there is no shorter vector

than the lower bound in our estimate. (This certificate
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will be a basis with small length in the dual lattice.) In
problem (P3) we get an estimate on the minimal basis
length of the lattice. Since we get it together with a
basis, we have a certificate for the upper bound. We
get no certificate on the lower bound.

4. There are problems, e.g. find the discrete loga-
rithm of a number modulo p or decide whether a number
is quadratic residue modulo m = pg, where it is known
that for any fixed choice of p resp. m the worst case
problem can be easily reduced to the average case prob-
lem. For the choice of p resp. m however, there is no
known method which would guarantee that we get a
problem as hard as the worst case.

Notation, R k the field of real numbers, Z is
the ring of integers, Rn is the Euclidean space of n-
dimensional real vectors with the usual Euclidean norm
Ila[[. Zn is the set of vectors in Rm with integer coordi-
nates.

Definitions. 1. If al, . .. . ~ are linearly inde-
pen$nt vectors in an Rm, then we say that the set

{~~=1 klh, . . . . km are integers } is a lattice in Rn.
We will denote this lattice by L(ctl, . ... an . The set
al, ... 1, an is called a basis of the lattice. T e determi-
nant of a lattice L will be the absolute value of the de-
terminant whose rows are the vectors al, . . . . an. sh(L)
will be the length of a shortest nonzero vector in L, and
bl(L) the length of the shortest basis as defined in (P3)

Histoticai Temarhs. The question of finding a short
vector in a lattice was already formulated by Dirich-
let in 1842, in the form of simultaneous Diophantine
approximation problems. Although the lattices where
these Diophatine problems can be formulated in terms
of finding a short vector or estimating the length of a
short vector, form only a special class of lattices in Rn
the random class that we will define later is an element
of this special class. (Actually every lattice in Zn is
an element of this class.) Moreover Dirichlet’s theorem
about the existence of a good approximation, as we will
see is very relevant to our topic. His theorem is actually
an upper bound on sh(L).

Minkowskl’s theorem about convex, central sym-
metric bodies (published in 1896) is also an estimate
about the length of the shortest nonzero vector (with re-
spect to a norm defined by the convex body). In the case
of Euclidean norm, when the convex body is a sphere,

it gives the upper bound sh(L) < cn $ (det L) * where
det L is the determinant of the lattice. This inequal-
it y and its consequences play an important role in our
proof. Both Dirichlet’s and Minkowski’s proofs are non-
constructive they are based on the Pigeonhole Principle.
Minkowski’s theory of successive minima formulates (as
the two extreme cases) the problem of finding the length
of a shortest vector and the length of the shortest basis
(in the sense given in our problems).

A.K. Lenstra, H.W. Lenstra and L. Lov&sz gave a
deterministic polynomial time algorithm (the basis re-

duction or L3 algorithm) which finds a vector in each

lattice L ~ Rn whose length is at most 2*sh(L).

C.P. Schnorr proved that the factor 2* can be re-
placed by (1 -t- ~)n for any fixed c > 0. These al-
gorithms naturally give an estimate on sh(L) up to a

factor of 2% resp. (1 + E)”. The L3 algorithm was

used in successful attacks on different knapsack cryp-
tosystems. Cf. Adleman [Ad], Lagarias and Odlyzko

\[LaOd], Brie ell [Br]). Lattices, where the shortest vec-
tor is unique in a sense similar to that of (P2), play an
important role (see [LaOd]). (The polynomial factor of
(P2) is substituted by an exponential one.)

The definition of the Tandem class. The lattices
of the random class will consist of vectors with inte-
ger coordinates. Moreover these lattices will be defined
modulo q (where q will be an integer depending only on
n), in the sense that if two vectors are congruent modulo
q then either both of them or neither of them belong to
the lattice. Finally the lattices of the random class will
be defined as the set of all sequences of integers of length
m, (m will depend only on n) which are orthogonal to
a given sequence of vectors Ul, ... .. Um E Zm modulo
q. More precisely if v = (ul, ... . ~) where Ui E Zn
then let A(v, q) be the lattice of all sequences of inte-

gers hl, . .. . . & so that
F

~1 hiui = O (mod q) where
the mod q congruence o two vectors means that all of
their coordlnat es are congruent. Every lattice in our
random class will be of the form A(v, q) for some v and
for a single fixed q (depending only on n).

Our definition of the random class will depend on
the choice of two absolute constant c1 and C2. If n is
given let m = [cln log n] and q = [ncz]. For each n

we will give a single random variable ~ so that A =

A(A, q) is a lattice with dimension m. (The existence of

a polynomial time algorithm which finds a short vector

in A will imply the existence of such an algorithm which

solves the mentioned problems in every latt ice L ~ Rn.)
First we define a simplified version A’ of A, whom

we can define in a simpler way. The disadvantage of A’
is that we do not know how to generate Ji to ether with

?short vector in A(A’, q). Then we define } in a some-
what more complicated way) so that we can generate
it together with a short vector in A( A, q) and we will
also have that P(A # A’) is exponentially small. This
last inequality implies that if we prove our theorem for
A(A’, q] then it will automatically hold for A(A, q) too.

Let ~’ = (V1,..., Vm) where Vl, ... . Om are chosen in-
dependently and with uniform distribution from the set
of all vectors (zl, . .. . Zn) where Z1, .... Zn are integers
and O s xi < q. To find a short vector in the lat-
tice A(A’, q) is equivalent to finding a solution for a lin-
ear simultaneous Diophantine approximation problem.
Dirichlet’s theorem implies that if c1 is sufficiently large
with respect to C2 then there is always a vector shorter
than n.

Definition of A. We randomize the vectors
‘VI, ... . Vm- 1 independently and with uniform distribu-
tion on the set of all vectors (zl, . .. . Zn) c Zn, with
O ~ xi < q. Independently of this randomization
we also randomize a 0, l-sequence 61, .... 6~_1 where
the numbers & are chosen independently and with

uniform distribution from {O, 1}. We define Vm by

vm .= – ~&l b~vj (mod q) with the additional con-
straint that every component of Vm is an integer in the

interval [0, q – 1]. Let A = (vl, ... . Vm). (If we want to
emphasize the dependence of A on n, c1, C2 then we will

write An,F, c,.) We prove that the distribution of ~ is
exponentl~ly close to the uniform distribution in the

sense that ~=c~ IP(A = a) — IAI-ll < 2-en, where A
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is the set of possible values of ~. This will imply that
the random variables A, J’ with the given distributions
can be chosen in a way that P(A’ # A) is exponentially
small.

With this definition our theorem will be formulated
in the following way: “if there is an algorithm which
finds a short vector in A(A, q) given A as an input, then
etc.” That is, we allow the algorithm whose existence is
assumed in the theorem to use A.

The representation of the lattice vectors. To give

an exact formulation of our results we have to fix
some representation of the lattice vectors in problems
(Pa),,. As we have seen already, the vectors in
the random lattice A have integer coordinates, that is,
they are in Zm. We will formulate problems (PI), (P2),
(P3) in terms of vectors in Zn as well. (Another pos-
sible approach would be to have lattice vectors in Rn
given by oracles. In that case it is natural (and possi-
ble) to give the random class in terms of vectors whose
components are random real numbers. The modulo q
arithmetic can be substituted by arithmetic modulo 1.)
The simplest approach is to assume that the lattices in
Zn are presented with a basis where each coordinate of
each vector is an integer given by a polynomial (in n)
number of bits. However our results remain valid even
if the numbers are longer. Naturally in this case the
input size is not n (the dimension of the lattice) but the
total number of bits in the presentation of the lattice,
so our algorithm will be polynomial in this number.

Definitions. 1. If v is a shortest nonzero vector in
the lattice L ~ Rn, and a > 1, we say that v is a-
unique if for any w E L, /[w]] < al[vl] implies that v and
w are parallel.

2. If k is an integer then size(k) will denote
the number of bits in the binary representation of
k, (size(0) = 1). If v = (zl, ,.., Zm) E Zm then

size(v) = ~~=1 size(z~). Our definition implies that for
all v E Zn, size(v) ~ n.

Theorem 1. There are absolu te constants c1, cz, C3
so that the following holds. Suppose that there is a
probabilistic polynomial time algorithm d which given

a value of the random variable Jn,c, ,C, as an input, with

a probability of at least 1/2 outputs a nonzero vector of

A(&,C,,C,, [n”]) of length at most n. Then, there is a
probabilistic algorithm 1? with the following properties.
If the linearly independent vectors al, ..., an 6 Zn are

gi~en as an input, then I?, in time polynomial in ~ =

~$=1 size(ai), gives the outputs z, u, (d~, . ...&) so that,

with a probability of greater than 1– 2–”, the following

three requirement ts are met:
(1.1) if v is a shortest nonzero vector in L(al, ... . an)
then z <. Ilv[[ s n“z
(1.2) If v is an n“-unique shortest nonzero vector in
L(al, . ...an) then u= v oru= –v

(1.3,) dl, . . . . dn is a basis with max~=l Ildill < nc’bl(L).

Remarks. 1. The probability y 1/2 in the assumption
about A can be replaced by n–’. This will increase the
running time of B by a factor of at most nc but does
not affect the constants c1, C2 and C3.

2. If we assume that A produces a vector of length

at most nc’ for some c’ > 1 then the theorem remains
true but cl, C2 and C3 will depend on c’.

3. In the formulation of the theorem we assumed
that A works for each positive integer n. C)ur proof
however will show that if A finds a short vector in

~(~~,.,,~?, [n”]) only for certain values of n then there
1sa f? which solves the worst-case problems for the same
values of n. (Since the estimates of the running time of
1? are explicit we get that there is an absolute constant
c’ so that for each fixed positive integer t if A works for
some fixed n, in time nt then B also works for the same
n in time n’ ‘, that is the theorem has an analogue for
single values of n.

In a similar way nonuniform versions of the theorem
are also true, that is we may assume that both A and
f? are polynomial-size probabilistic circuits.

One-way functions. We define a function f in the

following way. For each fixed positive integer n we de-

fine a function f = f(n). Assume that m = [cl log n]
and q = [nca] where c1, C2 are given in the theo-
rem. The domain of f is the set of all sequences
VI, ....v~_1.61, ....cf~-l where each v,, i = 1, ....n is an

n dimensional vector (zl, . .. . Zn) c Zn, with O < xi < q,

and each bi, i = l,..,, m– 1 is either O or 1. Assume
now that z = (VI, ....v~-1.61, ....6n-1) G domain(~).

Let v~ ~ – ~~~ 16, vi (mod q) with the additional con-
straint that every component of v~ is an integer in the
interval [0, q – 1]. We define now f(z) for each z =
(v~,..., v,,61 ,1, ... . 6~-1) by f(z) = (VI, . . .. Vm_I. Vm).

Assume now that y = (vl, ... . v~) = f(z) where z is a
random element of domain(f). This means that g is a
random value of the random variable &Cl ,Cz. There-
fore if an algorithm is able to invert f at y, that is, the
algorithm can find an x’ with f(d) = y then it has also
found a short vector in A(&,,C,). Consequently the
theorem (and Remark 1) implies that if at least one of
the three worst-case problems have no polynomial time
probabilistic solutions then f is a one-way function.

Sketch of the proof. We prove the theorem for the
random variable A’ instead of A. The fact that their
distribution is exponentially close to each other is not
proved in this paper but can be found in [Ajt ]. We show
first that there is an algorithm 1? so that (1.3) holds.
By (1.3) we have an estimate H on the minimal basis
length up to a polynomial factor. It is a consequence
of Minkowski’s upper bound on sh(L) that H-1 is an
estimate (up to a polynomial factor) on sh(L* ), where
L* is the dual lattice of L ~ Rn. (The dual lattice
is the lattice of all linear functional on Rn that take
integer values on every vectors of L. Each element of
L“ is identified, in the natural way, with an element of
the Euclidean space Rn.) Therefore by estimating the
minimal basis length of L* we get also an estimate on
sh((L*)*) = sh(L).

We will construct an algorithm which produces the
output with property (1.2) by using an algorithm which
satisfies (1.3). In this step we will not use the assump-
tion about our random class directly. Therefore, the
critical part of the proof is the proof of (1.3).

First we note that from a set of n linearly indepen-
dent vectors rl, . .. . Tn E L we can construct in polyno-

mial time a basis s 1, . . . . Sn of L so that max~=l Ils;ll ~
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n ma.x$=l IIri ]]. (See Lemma 1, or for a stronger ver-

sion see Mahler-Weyl lemma [Ca]. p. 135). There-
fore it is enough to construct a set of linearly indepen-
dent elements of L so that each of them is shorter than

nc’-lbl(L).
Assume now that we have a lattice L ~ Z“ and

assume that we have a set of linearly independent ele-
ments al, ...tan E L so that max~=l Ilail[ = AZ. If M ~
nC3 – lbl(L) then we have already found a basis with the

required properties. Assume that Al > n“- lbl(L). We

will construct another set of linearly independent ele-

ments, 61, . . . . bn G L so that m~~=l Ilbil[ ~ ~. Iter-

ating this procedure we find a linearly independent set
of elements d{, ... . d~ with max~=l ]]d~l] ~ n“-’bl(L) in
less than logz M ~ 2U steps.

Starting from the set al, ... . an, we construct a
set of linearly independent elements m L, fl, ..., .f~

so that max~= ~ IIfi II < n3iM and the parallelepipeds
W = p(~l, ... . jm) defined by the vectors fl, . . . . fn, is
very close to a cube. Closeness will mean that the dis-
tance of each vertex of 7( fl, . . . . fn) from the vertices

of a fixed cube will be at most n2 M and, as a conse-
quence the volume, the width, and the surface area of
W will be about the same as that of a cube of similar
size. (See Lemma 2.) This will imply that if we cover
the space with the cells of the lattice determined by a
short basis, then most of the cells intersecting W will be
completely in its interior. (The number of exceptional
cells is polynomially small compared to the total.) As a
consequence we get that all of the parallelepipeds u+ W
where u is an arbitrary element of Rn have about the
same number of lattice points. The error again will be
a polynomially small fraction of the total. These re-
main true even if we consider all of the parallelepipeds

u + ~W where q = [nc~] and C3 is sufficiently large with

respect to C2. This fact will ensure that if we pick a
lattice point at random from a set D of almost disjoint

parallelepipeds of type u + ~W, then the distribution

induced on D is very close to the uniform distribution.
(We will consider two parallelepipeds almost disjoint if
their interiors are disjoint. ) We formulate these state-
ments in Lemma 3 and Lemma 4.

Now we cut W into qn small parallelepipeds each

of the form (~~=1 ~f, ) + ~W, where O S ti< q, i =

1, . . . . n is a sequence of integers. We take a random
sequence of lattice points cl, ... . .&, m = [cln log n] from
the parallelepipeds W’ = 7( fl, . . . . fn) independently and
with (almost) uniform distribution. (For the generation
of the random sequence see Lemma 5 and Lemma 6.)

Assume that (j c (~~=1 $ fi ) + ~ W. Let vj =

(t~), ... . i:]). We will consider the sequence Vl, . .. . Vm as

a value of the random variable A’. Applying algorithm A
to the input v1, . . . .

\

vn we get a vector h:, . . . . hm) G Zn
so that with a probability of at least 1 2 Its length is at
most n and ~~=1 hj vj = O (mod q).

If ~j = ~~.1 ~~i then

u = X ‘1<~ ‘(~~=1 ‘j(’$ – q~))+(~~=l ‘i%).
~~=1 hj vj z O (mod q) together with the definitions of

vj and qj imply that the second term ii = ~~=1 hj qj is

in L(fl, . . . . fn) ~ L. We may get an estimate on the first

term using that I ~~=1 h? I < n2 and (since <j and qj

are in the same parallelepipeds ~j + ~W) the inequality

\!& – Vj]] < nn3Jf~ S n4n-’3M. Therefore we get
Ilu – till < n4n-csMn2 = n6-csAf if Ca ~ 7 this implies

that Ilu – till s $ and because of u G L, ii e L we have
u–ii EL.

We prove that u – ii # O with a positive probability
by performing the randomization of the vectors (j in
a different way. First we randomize the sequence of
vectors v1, ... . vm. This will uniquely determine both
the numbers hl, . . . . hm and the vectors qj. Now we have

to randomize the vectors (j – qj. Assume that we have

randomized them for j = 1, . . . . m – 1, and assume that

hm # O. The distribution of ~j – qj is almost uniform

in ~w. Since u – ii – h~(~~ – q~) =~~=~1 hj (&j – qj)

is already fixed, we get that with high probability u – ii
is not O. By the same argument we also get that with

high probabdit y u – ii is not in any fixed hyperplane.

Therefore if we are getting many (say n2) independent

values of u – ii then with high probability there will

be n linearly independent among them and so we have

constructed n linearly independent elements in L each
of length at most M/2.

Subset Sum %obiems. If we assume that the worst-
case lattice problems are difficult for dimension n, then
the following randomized subset sum problem will be
also difficult. q and m will be the same numbers as in
the proof above. Let ql, . . . . qn be distinct primes be-
tween q and 2q, let T be their product and al, ... . am, b

independent random numbers modulo T. Then we con-
sider the subset sum problem ~~ ziai > b (mod T)

where Zi = 0,1 for i = 1,,.., m. he hardness of this
problem follows from the proof that we sketched above.

If we cut the sides of the parallelepipeds W (as de-
fined above) into ql, . .. . q~- 1 resp. qn parts then we get
?’=ql . . . . . qn little parallelepipeds (instead of qn as

in the original proof.) These parallelepipeds (or their
vertices closest to the origin) form an Abelian group of
order ql . . . . . qn. (The operation is the addition modulo
W, that is each vector which is in the lattice Lw whose
basic parallelpiped is W, is congruent to O.) If the ran-

dom problem ~~1 wa; a b (mod T) where xi = O, 1 for
i = 1, ..., m is easily solvable then the analogue problem
is also easily solvable in our cyclic group. The solution
can play the role of the coefficients hl, . . . . & the same
way as above. Actually everything remains the same if

we pick a larger m say m = nc’ for some c’ > 0. In
this case C2 from the definition of q = [n”] has to be
sufficiently large with respect to c’. A simple calcula.
tion shows that the number of unknowns in the subset
sum problem that we get this way can be greater than
any fixed power of log r, the number of bits in a single
coefficients. Subset sum problems of this type can be
used to construct one-way hash functions. (See, R. Im-
pagliazzo, M. Naor, [IN].)

Sketch of the poof continued. (1.3)-+(1.2). Let
Lo = L“ be the dual lattice of L. We show that if L

has an nc’-unique shortest vector then Lo has an n – 1-
dimensional sublattice L! = Lo n F where F is an n –
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1 dimensional subspace, so that the distances between
the cosets of F intersecting Lo are at least ncbl(L’).
We prove that it is possible to compute a basis of L’,
and using that, a shortest vector v in L. (v will be
orthogonal to L’.)

Although we give a deterministic algorithm for
finding L’ (using the algorithm of (1.3) as a black box),
it is easier to sketch the idea of a probabilistic one.
Assume that we take points of Lo at random from a
parallelepipeds whose center is O and whose diameter is

at most nc’ bl(.L’), where c’ is large with respect to c.
(An inductive argument shows that we are able to con-
st ruct such a parallelepipeds.) If we take enough, but
still a polynomial number, of random points from the
prallelepiped, then at least two of them will be in the
same coset of L’. With high probability y they will be
distinct. Therefore taking all of the differences of the
random lattice points we get, among them, a nonzero
lattice vector UI in L’ = Lo n F. The most important
part of this proof is to show that we are able to decide
whether a vector is an L’, that is, we are able to select
the vector U1 from the set of differences. If this can
be done, then by repeating this procedure many times
we will get a sequence Ul, ... . ti2n. The independence of
the vectors u; implies that there will be n – 1 linearly
independent among them.

To decide whether u is in L! we consider the lattice
L1 generated by the vectors of LO and the vector ~u,

where t > n’ is a prime number. (It is easy to see that
this is indeed a lattice.) Using (1.3) we estimate bl(Lo)
and bl(L1). If the estimates do not differ more than
allowed by the error, then u is in L’. If the estimate
decreaaes more than that, then u @ L’. This follows
from the fact that in the case of u E L’, L1 will be
covered by the cosets of F intersecting Lo, and so bl(L1 )
will be at least the distance of these cosets. In the case
u $ L1 there will be new cosets of F which intersect L1

but not Lo. Between two consecutive cosets intersecting
Lo there will be t-1 intersecting only LI. We get a short
basis of L1 from a short basis of L’ and a lattice vector
of minimal length connecting two consecutive cosets of
F intersecting L1. End of sketch.

Lemma 1. Assume that al, . .. . w c R“ are lin-

early independent vectors, dl, ..., & G L(al, . . . . an) are
also linearly independent and //di [[ ~ M. Then there

is a basis of L(al, . . . . an) consisting of vectors no longer
than nM. Moreover if ai, di are integers for i = 1, . . . . n

then ;he required basis can be found in time polynomial

‘n~~$&$~~~l&~~y inductiononn. Then= 1

case is trivial. Suppose that our assertion holds for lat-
tices of dimension n – 1. Let F be the hyperplane gener-
ated by dl, . .. . dn_l and let L’ = L(al, ,,., an) n F. L’ is
an n — l-dimensional lattice, that is, it has a basis over
the integers, (since it is a subgroup of a free Abelian
group). According to our inductive assumption L’ has

a basis bl, .... 6n_l with max~~~ ]Ibill s (n – l)M. Let
F’ # F be a coset of F with L(al, . . ..an) n F’ # 0

so that the distance of F and F’ is minimal. Clearly
this distance is not greater than the distance of dn
from F and therefore it is not greater than If. Let
u E L(al, .... an) fT F’. Let a’ be the vector that we get

from u by projecting it orthogonally to F. By express-
ing a’ as a linear combination of the vectors dl, ... . &_ 1,
then rounding off the coefficients to the nearest integer
we may write a’ in the form of w +a”, where w G L! and

I/a”// < ~~~~ ]Idill < (n - l)M. bl, .... b~_l. u - w is a
basis of L = L(al, . . . . am), since, according to the mini-
mality of the distance of F’ from F, L(bl, . . . . bm_l, u–w)

contains all cosets of L’ in L. Since the distance of
F and F’ is at most M we have that \lu – a’11 <

M, therefore I[u – wII S ([[u – a’112 + [la’’l(2)J/2 S

(1 + (n – l)2)li2kf <nM implies that every element
of this basis is of length at most nM. The inequality

]Iu - wII ~ (n’ - 2n)’121kf < nM shows that even if we
compute a’ only approximately with a precision greater
than, say, -& M the vector u – w c L that we get from
this approximate value will be shorter than nM. Q.E.D.
Q. E. D.(Lemma 1)

Definition. 1. If bl, . . . . bn E R,n then T(bl, .,., bn)
will denote the parallelepipeds {~~=1 ~~b~10 ~ Yj < 1}.

2. The minimal height (or width) of P(bl, .,., bw)

will be the minimum of the heights belonging to the
various faces of T(bl, . . . . bn).

Lemma 2. Suppose that al, . . . . an are vectors
in Rn and max~=l [Iaill ~ M. Then there are lin-

early independent elements bl, . . . . bw E L(al, . . . . an) so

that max~=l ]Ib,l) < (n3 + ~n)M and the volume of

‘P(bl, . . . . b~) is between ~(n3M)n and 2(n3M)n, its

surface area is at most 6n(n3M)n - 1 and its minimal

height is at least $n3M. Moreover if al, . . . . an c Zn
t&n bl, ..:, b? can be cornpu ted in time polynomial in
)Q”=l slze(az).

Proof. The assumption about the lengths of the
basis vectors a~ imply that for each vector v there is
a v’ ~ L(al, ..., an) so that Ilv – v’1[ < ~Mn. In-

deed we may get such a v’ by expressing v as a lin-
ear combination of the vectors ai with real coefficients
end then rounding off each coefficient to the closest in-
teger. Assume now that ~1, .... fn are pairwise orthog-
onal n-dimensional vectors with length exactly n3 M.
For each i = 1, ..,, n let bz be a lattice vector so that

ll~i – b; II S ~nM. (Clearly this construction which

only involves the solution of a linear system of equa-
tions and rounding can be completed in polynomial
time.) Let Q = P(fl, . . . . f~), Q’ = P(bl, . . . . b~). The
distance of each vertex of Q’ from the corresponding
vertex of Q is at most $n2 M. Therefore if we en-

large the cube Q from its center by a factor of 1 + &

then it will contain Q’. Q. will denote the enlarged
cube. In a similar way if we reduce it into a cube
QI by the same factor than it will be contained in Q’.
volume(Q1 ) < volume(Q’) < volume(Qo) and the in-

equalities ~ ~ (1 + +)–n and (1 + ~)n ~ 2 imply our

assertion about the volume. Q1 ~ P(bl, . .. . bn) there-
fore P(bl,,,., b~) contains a sphere of radius at least

1 (n3M(l - ~)) > ~n3M and so the minimal height5
of ~(bl, . . . . bn) is at least ~n3M. We get the upper

bound on the surface area by estimating the area of each

face using the upper bound (n3 + ~n)M on the lengths
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of their edge vectors. These yields the upper bound

2n(n3 + +n)”-1M”-1 = 2n(n3M)”-1(1 + *)”-l <

6n(n3&f)”-1. Q, E. D.(Lemma 2)
Lemma 3. Assume that. L = L(al, . ...%) is a

lattice in Rm, where Iail < ~, z y 1, .O.,n and gl~ .00!9~
are linearly independent vectors m Rn (not necessary
in L) and b c Rn. Let ko resp. kl be the number of

lattice points in the closed set b + ~(gl, ..., gn) resP” in

its interior. Let H be the minimal height, let V be the
volume and let S be the surface area of T(gl, ... . g~)).

~en (det L)-l(l - Y)”V S kj < (det L)-l(l +

?+#)”v, j = 0, 1

(b) If F is a hyperplane then the number of lattice
points in F n (b + ~(gl, . . ..g~)) is at most 2S~~(l +
‘2Mn n–l det L)-lo
T) (

proof. (a) Let W = b + T(gl, .. . . g~), let W! be the
set that we get from W by enlarging it from Its cen-

ter by a factor of 1 + ~ and W“ be the set that we

get from it by reducing it by 1 – ~. Let B be the

set of all parallelepipeds of the form v + ?(al, ... . an),
where v is a lattice point and (v + P(al, ... . an)) fl W
is non-empty. The definitions of W’, W“ imply that
every element of B is contained in W’ and every ele-
ment of B intersecting W“ is contained in W. Therefore
we get the upper bounds from the fact that the num-
ber of elements of B contained in W’ can be at most

volume( W’)/ det(L). We get the lower bound on k. in
the following way. Let D be the set of those elements
of B that intersect W“. Clearly ID I ~ ko. The defini-
tion of W“ implies that the elements of D cover W“ so

IDI ~ volume(W’’)(det L)-l. To get the lower bound
on kl, we may repeat our argument for each ~ >0 with
Wfl instead of W“ where we get W: by reducing W

with a factor of 1 – ~ – c. This way the elements of

the set D will be in the interior of W. Taking the limit
for all of the resulting lower bounds for kl we get (a).

(b). Let G be the set of those elements of B which
intersect F. The definition of W’ implies that the dis-
tance of F\W’ from F n W is at least Mn. (Any pair of
points from them are separated by a pair of correspond-
ing parallel faces of W and W’ whose distance is at least
Mm) Therefore if T is the orthogonal projection of Rn
to F and T c G then T(T) is in F n W’. Consequently
each T E G is contained in the body that consist of all
points z with mz E W’ n F whose distance from F is at

most Mn. The volume of this body is 2area( W’ nF)M~
and area( W’ nF) is at most the surface area of W’ which
implies our inequality. Q. E. D.(Lemma 3 )

Definition. If al, . . . . an c Rn are line~ly inde-
pendent vectors then P- (al, . . . . an) will denote the set

{YJ’=l’Y~aZlOS ‘Yj < 1}”
Lemma 4. Assume that L = L(al, . . . . an) is a

lattice in Rn, I[aill s M for i = 1,.-,?, bl, .00~bm are

linearly independent elements of L, V 1s the volume,

S is the surface area and H is the minimal height of
P(bl, . . . . bin), q is a positive integer and the following

inequalities hold

Suppose further that ~ is a random variable that
takes its values with uniform distribution on the set R

of lattice points of 7- (bl, ... . k). Then there are. ran-

dom variables <, q with t = ~ + v so that < has uniform

distribution on E = {~~co ~ibil~i E {O, $,..., ~}, i =

1 , . . . . n}, and for each fixed t c E the conditional distri-

bution of q with the condition [ = t meets the following

requirement ts:

(a) P(q c P-($ b~,..., ~bn.)1( = t) >1- ~

(b) for any fixed hyperplane F in R“, P(q c Fl< =
t)< 1/2

Proof. Let T be the set of all sequences tl, . .. . t~ so
that ti E {O, 1, ....q– 1} and for each t= (tl,....tn)c T

let Wt = T(ibl, . . . . ~b~)+x~=l ~bi. Lemma 3 gives the

following estimate on wt the number of lattice points in
Wt:

(det L)-l(l – ~)”V < wt < (det L)-l(l +

2Mn nv.
T)

Inequality (i) implies that 1 – & S (1 – ~)” S

l<(l+%%)” <l+z% andso

(I) (I- ‘&)(det L)-ivs Wt S (1+ &)(det L)-lV.

Let a = [(1 – &)(det L)-lV] and for each t E

X let W; be an arbitrary but fixed subset of W~ with
exactly a elements. For the definition of ~ we will use
another random variable p which is independent of (
and has uniform distribution on E. Suppose that both
~ and p has been randomized. If t 6 UteT W{ then there

is a unique t = (tl, . .. . G-JE T with t c W{. In this case
let c = ~~=1 ~bi. If ~ is outside of lJtcT W; then let

~ = p. Since IW{] does not depend on t and t, p are
independent, we have that ~ has uniform distribution
on E.

(a) (1) and the definition of a implies that the prob-

ability y of t E UtCT Wi’ is greater than 1 — ~. In this

case the definition of< implies that if ~ E Wt then Wt =

( +p(~k...> :bn)) and so n = f – c ● P(:bl! ““”~ :bJ”

(b) According to (a) it is enough to show that
P(q E Fl< = t,~ = C) < ~ – ~. BY Lemma 3

and inequalities (i) ,(ii), the number of lattice points on

F fl W; ~ F n W* is at most ~V(det L)-l. There-

fore the definition of CY= IWt I and the fact that with
the condition f = c, c is uniform on W~ implies (b).
Q. E. D.(Lernrna 4)

Lemma 5. Assume that al, . ...% E R“ me ~n-

early independent. Then, for each b E Rn, there IS a

unique b’ 6 7– (al, . . .. an) so that b— b’ E L(al, . ...a~)
moreover, if b c Zn aria’ a;, c Zn, i = 1, ....n then
b’ can be computed in polynomial time in size(b) +

X;=l Size(ai) -
.,

Proof. We express b as a linear combination of the
vectors ai then take the integral part of the coefficients.
Assume that we get the vector v = ~~=1 Tiai. b’ = b – v

will satisfy our requirement. The uniqueness of b’ is
trivial. Q.E.D. (Lemma 5)

Definition. Assume that al, ... . an, b are. as in
lemma 5. We will denote the unique b’ described in
the lemma by bt~~d al,...,an).
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Lemma 6. For all c1 > 0 there is a C2 > 0

so that the following holds. Assume that dl, ,,., &

are linearly independent vectors in Zn, u ~ n and

al, . . . . an E L = L(dl, . . . . A) is a set of linearly inde-

pendent vectors as well, with max~=l ]Ia;ll < 20=’ and

m~?=l I]dzl] < 2“”. Suppose further that pl, . . . . pn are

independent random variables which take their values

with uniform distribution on the integers in the interval

[O, 2UC2]. Let x = (~~=1 pid;)~~~~ ~,,...,~n~. Then the

distribution of x on the points of L II P-(al, . . . . ~) is

almost uniform in the following sense:

if for each v E T-(al, . . ..an). pV = P(% = v) and k

is the number of lattice points in P– (al, . . . . an), then

Zv6P-(a,,...,an) l~”: *I ~2-0’1: “
Proof. We will need the following observations

in the proof. For each real number “a let Wa =

~-(~dl, . . . . ad~). Since dl, ....& is a basis of L we have
that if a is a positive integer then the number of lattice
points in W~ is an. Since the volume of WI is at least
1, (the value of a nonzero determinant with integer en-

tries) and the area of any face of it is at most ~~=1 Ildi]l

we have that the minimal height H of WI is at least

(~:=1d,)-’> ~-.c~+~
Let t =– [Cc’l. “Let X’ be the set of all paral-. .

lelepipeds J of the form J = u + 7– (al, ... . an) with
u c L and J n Wi # 0. Let X be the set of all sets
J ~ X’ with J C Wt. If we enlarge W~ from its cen-

ter by a factor of -y = 1 + ~- then the resulting

set W’ will contain every element of X’. By lemma
3 the number of lattice Points in W’ – W is at most

(det L)-l((l + ~)”y;t” - (1 - ~)”t”). If c, is
sufficiently large with respect to c1 then this is at most
I-2-o

2.1+1 ~
t.

Let T be the unique element of X’ containing X.

The elements of X are disjoint, so pv = (~JCX P(% =

vl~ c J)P(~ 6 J)) + P(X c Vl~ $! UX)P(r @ UX).

The distribution of x is uniform on 7- (al, ... . an) with
the condition x E J for each fixed J c X therefore the

first term is ~ ~ which does not depend on v.

The second term is at most P(T @ U X). This is
smaller than the number of lattice points in U X’\ U X

divided by tn that is smaller than 2-”2=’”. Since the
number of lattice points in P- (al, ... . an) is at most

volume(al, ... .

[

am) det L)–l s 2U=’+1 this implies our
statement. Q.E.D. Lemma 6)

Using the previous lemmata we can conclude the
proof of the theorem in the following way. First we
describe the algorithm.

Using lemma 2 with ai ~ u~ and ill ~ max~=l llu~ll
we construct a set of linearly independent vectors
VI, ....v~ E L(al, . . . . an ) so that m~~=l llv~ll s (n’+

$ n)ikl and for the volume V, surface area S and min-

imal height H of ?(v1, ... . v~) we have certain bounds.
Now we take a random point of L(al, ... . an) with al-

most uniform distribution in W = P- (v1, ... . v~). More
precisely lemma 6 guarantees that we can compute in

polynomial time the value of a random variable x which

takes its values from R, the set of lattice points in W and

has the property ~ve~ [P(% = v) – AI s 2-””. We

may write x in the form of ~~=1 ~;vz where O ~ /3; .< 1.

By solving a system of linear equations we may find the

rational numbers pi in polynomial time. Let g = [n’z]

and ti = [q~i]li = 1, .... n and a = (tl, . ...tn). Re-
peating this procedure with independent values c)f x
we get a sequence of values Xj, Oj, ~ = 1, . . . . ??l, where

m = [cln log n]. Let L1 be the lattice of m dimensional

integer vectors (hi, ... . hm) so that ~ I ~~1 hiai. NOW
we apply our probabilistic algorithm A, whose existence
was assumed, with the Iat t ice L1 and in polynomial time
we either get a vector S1 E L1 with llslll ~ n or we rec-
ognize that the algorithm failed to produce the required

result. In this case let S1 = O c Rm. In either case
S1 = (z1, ... . z~) is a sequence of integers. Next we find
the vector ~1 = ~~1 z~%i and gl = (.fl)(mod .l,...,un).

(That is gl is the unique element of P- (VI, ... . Vn) with

~1–yl e L(vl, ... . Vn)). We repeat this whole procedure
3n times and get a sequence of vectors gl, . .. . g3n. Let
G be the set of those vectors g~, i = 1, ..., 3n which are
nonzero and are shorter than (n’ + ~n)&f ~ ~ ~. We

try to select n linearly independent vectors from G. If
we succeed then the set of these vectors bl, ... . bn is the
output. If we do not succeed then we apply the algo-
rithm given in lemma 1 with d; + Ui and we get a basis
bl, ... . bn with max~=l Ilbi]l ~nmax;=l Ilutll. In this case
the sequence bl, ... . bn defined in this shorter ah ernative
way will be the output.

Now we prove the correctness of our algorithm.
If for any basis dl, ... . dn of L(al, . . . . an) we have

max~=l ll~;ll < max~=l n c3+111dzll then the vectors
bl, . . . . bn defined by the short alternative way using
lemma 1 (described at the very end of the algorithm)
satisfy the requirements of the lemma. Therefore
we may assume in the following that there is a ba-
sis dl, . ...4 E L(al, . . . . an) so that max~=l llu~ll >

max~=l n“tll[d,ll.

When we start the algorithm we have n linearly in-
dependent vectors U1, .... Um in the lattice L(al, . . . . an).

We try to construct from them an other set of vectors
whose maximal norm is smaller by a factor of two. To
start our construct ion we replace U1, .... Un by an other
set of vectors vl, ... , v~ which are not essentially longer
(only by about a factor of n’) but whose prallelepiped
P(VI, ... . v~) is as close to a cube as possible. Lemma 2
with ai -t Ui gives such a construction. Therefore we
get a set of vectors Vl, ... . Vn 6 L(al, . . . . an) so that if

max~=l Ilu;ll = &l then max~=l I]vill s (n’ -t ~n)~ and

if V is the volume, S is the surface area and H is the
minimal height of P(vl, . . . . v~) then ~ (n3~)n S V S

2(n3kf)n, S < 6n(n3ikf)”-1 and H ~ ~n’lf. The role
of these inequalities will be that they guarantee that
if we take parallelepipeds z + P(vl, ..., v~) for different
elements x E Rn then the number of lattice points in
them will be about the same in the sense that the dif-
ferences will be small relative to the total number of
lattice points. Another consequence of the inequalities
that there will be relatively few lattice points in a par-
allelepipeds of this type which lies on any single fixed
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hyperplane. These properties do not necessarily hold
if the the parallelepipeds is either small relative to the
maximal length of any basis of the lattice, or it is very
much distort ed e.g. one of its heights is very small. Ac-
tually we will need these properties in the case of paral-
lelepipeds of the form ?( $Vl, ... . ~vn) where q = [nc~].

For the next step we need the following observa-
tion. Lemma 6 gives a random variable x which has
only an almost uniform distribution on the set R. How-
ever in our proof we may assume that the distribu-

tion of x is actually uniform. Indeed we know that

Zw.l? l~(x = ~) –~\<2-nc’. This means that there

is a random variable X’ so that X’ has uniform distribu-

tion and P(x # x’) < 2-nc’. Therefore we may assume
that we work with X’ and with high probability its value

is the same as X. This will lead only to a 2–n “ failure
rate in the algorithm. (Even if the failure rate would be
higher we may decrease it exponentially by repeating
the algorithm).

Assume now that the vectors gl, ... . gj has been al-
ready constructed for some O < j < qn and we now
start the construction of gj +l. Let Gj be a maximal

subset of linearly independent vectors of {gl, ... . gJ] with
the property that for all g 6 G we have g # O and

!Ig[l < (n’+ ~n)~:. Let F be a hyperplane in R~ con-

taining Gj. We will prove that (for the randomizations
involved in the selection of gj +1 only and considering F

as fixed), we have

(2) P(gj+l @ F and I]gj+ll[ S (n3 + ~n)M~) >

%_l>J
;– ~2 — 3.

First we notice that (2) implies the lemma. Indeed
(2) and Chernoff’s inequality imply that the set G as
defined in the algorithm will contain n elements.

Now we prove (2). First we prove that

(3) ~(l19i+lll < (~’ + +~)~:) 21 -~.
We apply lemma 4 with bl -i WI, ... . bm ~ Wmand

& -+ x. (As we have explained above we may assume
that x has uniform distribution on the set of lattice
points in ‘P-(vi, ... . Vn)). According to lemma 4, x can
be written in the form of ( + q where ( is uniform on
E and we also know something about the conditional
distribution of q. We claim that if we repeat this process
and get the sequences cl, ... . <m, qI, . . . . qm then with a

probability of at least 1 – ~,

(4) <1 = al,...,<m = Cm and l\qi\l s n2(n3 + ~A4)~

for z = 1, . . ..m.

Indeed, (a) of lemma 4 implies that for all i =

1 , . . . . m with a probability y of at least 1 — ~, we have

<i = ~i and the vector ~i is inside the parallelepipeds

P( $Vl, . . . . ~vn) and so the upper bound on the vectors

VI, . . . . Vn imply the required upper bound on qi. The
vector z = (z1, . . . . Zn ) is no longer than n. We show that

(4) implies that \\gj II ~ (n’+ ~n)IM~. Indeed by (4) the

definition of fj we have fj ~ ~~~ Zaxj = (~ z;(i) –

Z ziT?i =(x zici) – ~ ziqi. We know that either z = O
or we get z as the output of d. In either case we have

IIzII < n and ql ~~lziu;. The latter relation and the

definition of a implies that ~~1 z;<; E L(v1, . . . . vn) and

SOgj = (fj)(mod tii,...,v~) = – ZEI ziqi S (n3+~n)M~

which completes the proof of (3).
We continue the proof of (2) by showing that

(5) P(%+l<F)2:-%” -
As we have seen the probability y of cl = &, . . . . cm =

~m is at least 1 – ~. Therefore it is enou~h to show
that if we change our algorithm so that instead of Oi,
i = 1, ..., m we use <i, i = ~, ... . m in the definition of
the vector hl, ... . hm and so m the definition of z, fj +1

and gj +1 then (5) holds if we change the right-hand side

into ~ — ~.

We may randomize all of the random variables

xl, ... . Xm b first randomiziw iI, . . . . <m and then
ql, . . . . qm. Since the definition of the numbers hi de-
pend only on <i (and not on qi), the values (1, . . . . (n al-

ready determine whether algorithm A succeeds in find-
ing a short vector. The probability (for the random-
ization of <1,..., ~m only) that it does not succeed is at
most 1/2. Therefore it is sufficient to show that for any

possible values t(l), . .. . t(m) of the sequence <1, ....&, if

c1 = t(l), . .. . <~ = t(~) implies that if A finds a short
vector then

(6) ~(gj+l @ Fl~I = t(l), . ...<(m) = t(m)) > ~ - ~.

Assume now that (1 = -t(l), . .. . <(~) = t(~) for such

a sequence t(l), . ... tin). Since A finds a short vector
we have z # O. Let p be the smallest positive integer
with Zp # O. We consider p as a random variable, it
determined by (, and by the randomization included
in A. Now we randomize qP. (b) of Lemma 4 implies

for any fixed r we have F’(qP E Fl~ = -t(l), . . . . <(m) =

t(m), p = r) < 1/2 Since this is true for any choice of
~, we have (6). This concludes the proof of (1.3) of the
theorem.

Definitions. 1. CM will denote a fixed positive
real number so that jor all n = 1, 2, ... and for all
lattice L in Rn there exists a v E L, v # O with

Ilvll ~ cMn~(det L)A. Minkowski’s theorem about
closed, convex, central-symmetric bodies applied to a
sphere implies the existence of such a constant.

2. If L is a lattice in Rn then unit(L) will denote

the number (det L) %.

3. Suppose that L is a lattice in Rm and H is a
k-dimensional subspace of Rn so that L’ = H n L is a

(k-dimensional) lattice in H. The factor lattice L/L’
will be the lattice that we get from L by orthogonally

projecting it onto H~. (We have to prove that L/L’

is indeed a lattice, that is, it has a basis consisting of
n —k elements (over the integers). We may pick a basis
al, ...>an for L so that al, ,.., ak k in L~ (the assumption

that If n L is a k-dimensional lattice implies the exis-
tence of such a basis). If T is the orthogonal projection

of Rn onto HL then ra~+l, . . . . ran will be the required

basis of L/L’,)

Lemma 7 . Suppose that L is a lattice in Rn
and K > 0. Then either L has a fwtor lattice L1 with

unit(L1) ~ K or L1 has a basis whose each vector is not

longer than CMK ~~=1 ~:.
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Proof. It is enough to prove the lemma for K = 1
since we may replace L by $ L. We prove the lemma

by induction on n. For n = 1, unit(.L) is the length of a
short est vector and so CM z 1, therefore our statement
trivially holds.

Assume now that the lemma holds for n – 1. If
unit(L) ~ 1, then our statement holds with L1 =

L. Suppose that unit(L) < 1, then by Minkowski’s
theorem there is a v c L, v # O so that Ilvll <

cMn1f2unit(L) <c&fn112. Let W be the subspace or-
thogonal to v. Let Lv be the one dimensional lattice
generated by v and LI be the factor lattice L/LU. Ac-
cording to the inductive assumption either L1 has a fac-
tor lattice L~ with unit(L~) ~ 1 or L1 has a basis B’

with vector lengths no longer then cM ~~’.ll ii/2. In
the former case we are done since a factor lattice of
L1 is also a factor lattice of L. In the latter case we
may construct a basis B of L in the following way. B

will contain v and for each element b’ E B we take an
element b of L so that b — bl # O is in the one dimen-
siomd vectorspace generated by v and IIb– b’ II is minimal
with this condition. We may pick such a b from those
elements whose image is b’ under the orthogonal pro-
jection of L onto V1. Moreover we may assume that
Ilb – b’]1 ~ ]Ivll. Therefore the length of each element of

B is at most Ilvll + CM ~~;~ il\2 < CM ~~=1 i1j20
Definitions. 1. With each v E Rn we associate a

linear functional & on & defined by & (u) = v ou, for
all u E Rn, where . is the inner product defined on Rm
in the usual way.

2. Let L be a lattice in Rn. We define a subset
L* ~ Rn in the following way: v c L* iff the functional
4V takes integer values on every element of L. It is
easy to see that L* is a lattice in Rn. If al, . .. . % is
basis of L then the set of those functional which take
the value 1 on exactly one a; and the value O on all of
the others form a basis of L*. This is called the dual
basis of al, ... . an. This construction also shows that
(det L)(det L*) = 1 and so unit(L)unit(L*) = 1.

Lemma 8. If L is a lattice in Rn tfien
1< sh(L*)bl(L) ~ c&n1i2 ~~=1 i1i2 ~ cn2, where

c is an —absolu te constant.

Proof of the lower bound, Assume that v c L*,

Ilv[[ = sh(L*) and al, ...lan is a basis of L with

m~fi=l /la~II = bl(L). Since VL is an n – l-dimensional
subspace, there is an aj so that aj and v are not orthog-
onal and so aj . v # O. By the definition of L“, aj . v is

an integer and therefore Iaj cVI ~ 1 and so IIajllllvll ~ 1

and bl(L)sh(L* ) ~ 1.
Proof of the upper bound. For the proof we need

the following trivial observation: the dual space of the
factorspace (L/L’) is a subspace of L*. Indeed assume
that u E (L/L’)*. Since we defined L/L’ as a subset of
Rn, we have that u is a vector in Rn, it is orthogonal
to L’ and for each v E L/L’, u . v is an integer. Let

w c L be arbitrary. By the definition of L/Ll, w can

be written in the form of v + v’, where v c L/L’ and
v’ is in the real vectorspace generated by L’. Therefore
u.w=u. v+u. v’=u. visan integer andsou EL*.

Suppose that c~K ~~=1 ; ~ = bl(L). Then by

Lemma 7 for any K’ < K, K’ > 0 there is a factor

lattice LI of L so that unit (Ll ) ~ K’. Assume that the
dimension of LI is m < n. Since unit(L~)unit(Ll) = 1,

we have unit (L~ ) ~ & and so Minkowski’s theorem

implies that there is a nonzero vector v c L; so that

]Ivll < c~*ml/2. As we have seen L; & L*, there-

fore sh(L*)bl(L) ~ $cJ.fnli2c&f ~~=1 izi2. This holds

for any K’ < K, which implies our upper bound.
Q. E. D.(Lemma 8)

Proof of (1.2). First we prove that under the as-
sumptions of the theorem there is an algorithm l?l with
the following property:

(*) Assume that al, ... . an c Zn and there is a basis

gl, ...,g~ of L(al, -, an) so that max$=-ll IIgi II ~ M and
the distance of gn from the hyperplane F generated by

gl, . . . . gn_l is at least ncM. Then, given al, . . . . an as
input, 2?1 finds a basis dlj . .. . dn_l of F n L(al, ....,an)
in time polynomial in a = ~i=l nsize(ai ) and with a

probability of at least 1 – 2-”.

Let K = max~=l I]ai 1]. By the already proven part

[

of the theorem we may assume that K ~ n“ bl L). [f D
is the distance of gn from D, then bl(L) s D+ n – I.)M
and so K < ncq D for some absolute constant C4. (We
will assume that c is sufficiently large with respect to
C4.) According to Lemma 1 it is enough to find n – 1 lin-
early independent elements dl, .,., dn _ 1 in F. We choose
the elements dk k = 1,..., n – 1 by recursion on k with
the additional property that ]ld~ II ~ 2nc’t5 D. Assume
that the linearly independent elements dl, . .. . dk 6 F,

[Idi[[ s 2nK has been already selected for some () <
k ~ n – 2 (that is, we include the {o!l, . .. . dk} =fJ
case). We may pick a basis dl, . . ..dk. bl, . . . . b~_k of
L(al, . ...an) so that {bl, . . .. bn-k} ~ {al, . . ..an}. Let

iV = nc’+4D. We consider the set YN of all linear
combinations ~~~1~ ~k bk, where @j, j = 1, ... . n - k

are integers with O $ ~j s N. The assumption that
dl, ... . dk, bl, ... . b~–~ 1s a basis implies that if Fh is the
vectorspace generated by dl, ..,, dk over R, then all of
the elements of YN are in different cosets of Fk. Clearly

IYNI ~ I.N “-k ~ (n’4+3D)m-~. For each u c YN
we have I/u I ~ (n – k)~. Therefore YN is contained
in a sphere S with radius (n – k)N. Since the dis-
tance between the neighboring cosets of F (which has
nonempty intersection with L) is D we have that the
number of cosets of F which intersects S n L is at most
1 + 2(n – k) N.D-l < 2n2yc4. Since YN > n3+’4 if we

start to list the points of YN in some ar~ltrary orcler,

then we will not run out of points in the first 2n2+c4

steps and actually among these points there will be two

that are in the same coset of F. Suppose that yl, . .. . y.,
s = nz+’4 are the list of these points and for some k # 1

Yk – Y1 .C ~. (Later we will show that we can actu-
ally decide m polynomial time whether a v c L is also
an element in F if size(v) is polynomial in the input.)
We claim that dk+l = yk – y[ meets our requirement.
Indeed dk+l E F and since yk and yl are in different

cosets of pk we have dk+l @ pk and so dl, . . . . dk, dk~l
are linearly independent. By the definition of YN we

have Ildk+l]l ~ 2(n – k)N ~ 2n’4+5D.
Finally we show how is it possible to decide whether

av ~ L(al, ..., an) is also an element of F, provided that
size(v) < U where U is polynomial in the size of the
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input. Let t be a prime in the interval = [2U, 2U+1].
(We can find such a number t so that with a probability

exponentially close to 1 it meets this requirements.) We

may assume that U > n“ and 2U > 2nND- 1. Let
w = ~v. We consider the Z-module A generated by the
vectors al, ... . ~, w. Since tA & Zn, A, as a Z-module,
can be generated by n elements so it is a lattice. By
(1.1) we can give an estimate 2.4 on bl(A) = ~bl(-tA) in

polynomial time with an error not greater then a factor
n“. We may get a similar estimate ZL for bl(L). We

claim that if v c F then ZL/ZA < nc3 and if v @ F then
ZL/ZA > ncs.

Indeed, if v E F and D is the distance of the hy-
perlane F from g. then
(7) D ~ bl(A) < D + nlkf

Since D z ncll where c is sufficiently large with respect
to CS, this implies 2L/ZA < n“.

Assume now that v @F and that e.g. v and g~ are
in the same halfspace determined by the hyperplane F.

Since gl, ... . g~ is a basis of L and {gl, ... . gn_l} G F,

we may write each vector iw, i = 1, ... .t in the form
q + T;V where O ~ ‘fi < 1 and w E jgn + F for some
positive integer j. Since v c lcgn + F for some integer
k. The choice of U and t imply that t > k and so the
primality of t implies that T~ > 0 for i = 1,..., t-1
and trivially rt = O. Since Ti is the fractional part of
i~l this implies that TI = s/~ for some integer s and

therefore there is a j, O < j < t with Tj = $. IA

Zj c k’gn -t- F and let u be the point that we get from

jw by orthogonally projecting it on k’g~ + F. Clearly

lljv-~11 < ~D. Since Ilgill < M, i = 1, ....n-1. there is
a y E k’g~+F so that llu–ylln~. gl, ...! g~-l)jw–y are

linearly independent vectors in A, IIjw–yll s nM+ *D,

Ilgill ~ M for ‘i = 1, ... . n – 1 therefore lemma 1 implies

that bl(A) s n2i14 + ~ D. This together with (7) and

t ~ n2C3 imply that Z.Z/ZA > nc3. Q. E.D.(*)
The only probabilistic step involved in this proof

was the choice of the prime t.Even this can be avoided

if we perform the described test for all t = P’, ?=

1 n=”., ... . If v @ F for at least one value oft, (when k
is not divisible by -t) the test will show this fact.

We may conclude now the proof of (1.2). More
precisely we prove that the following holds: under the
assumptions of the theorem there is an algorithm Bz
with the following property:
(**) assume that al, . . . . an E Zn and v c L(al, . . . . an),

v # O and for all w c L we have that if w is not in the
subspace generated by v then Ilwl I z n’(v).

Then given al, ... . an as input, Bs will output a vec-
tor z in time polynomial in u = ~~=1 size(a~) so that

with a probability greater than 1 – 2-’, 6 is either v or

—v.

Let L* be the dual lattice of L(al, . . . . an). We will
show that L* satisfies the assumption of (*) with a suit-
able choice of gl, . .. . g~ c L*. First we note that the as-
sumption about the element v implies that if LW is the
one dimensional lattice generated by w then
(8) the factor lattice L/Lv has no shorter nonzero
vector than (n’ - l)IIvII

Let v = V1, V2, .... Vn be a basis of L, let hl, . .. . hm
be the corresponding dual basis of L* and let g~ = hl.
This definition of gn implies that v og~ = 1. Let F
be the hyperplane orthogonal to v. v . gn = 1 implies
that the distance of gn from F is Ilull-1. We claim that
F n L* = L(hs, . . . . hn) has a basis whose elements are

shorter then n-c’ [Ivll-l. Indeed, this lattice is the dual
of L/LV therefore lemma 8 and property (8) implies our
claim. Let gl, ... . g~- 1 be an arbitrary basis of F n L*

with elements no longer than n-c’llvll-’. This way (*)

is satisfied with M = n–” Ilvll-l. Therefore using the
algorithm whose existence was stated in (*) we are able
to find a basis u1, .... un–1 for F n L* in polynomial
time, if al, . .. . am given as an input. We may pick a Un
so that Ul, ....un is a basis of L*. Let dl, . ...dn be the
dual basis in L. We claim that dl is v or –v. Indeed
dl is orthogonal to u1, ... . Un - 1 therefore it is parallel
to v. Since v is a shortest vector in L we have dl =
kv for some integer k. k must be 1 or – 1 otherwise
L(dl, . . . . dn) could not contain v which completes the
proof of the theorem.
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