
HIGH PERFORMANCE DATA STORE IMPLEMENTATION IN RUST

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

A Project Report

Presented to

Dr. Chris Pollett

Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Class

CS298

By

Ishaan Aggarwal

Dec 2021

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

2

©2021

Ishaan Aggarwal

ALL RIGHTS RESERVED

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

3

The Designated Project Committee Approves the Master’s Project Titled

High Performance Document Store Implementation in Rust

By

Ishaan Aggarwal

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

DECEMBER 2021

Dr. Christopher Pollett Department of Computer Science

Dr. Robert Chun Department of Computer Science

Mr. Akshay Kajale Amazon

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

1

ACKNOWLEDGEMENT

I would like to thank Dr. Chris Pollett for the guidance, motivation, and support that he

provided over the course of this project. I got to learn a lot while working with him and

consider myself fortunate for the same. His knowledge and approach to problem solving

helped me learn how to troubleshoot and move forward in situations where no solution

seems to work. He suggested me the topic for this project and I was curious because all the

things were new to me, including the implementation language. He has been patient

throughout and always provided the moral as well as technical support that I needed to

continue the project.

I express my gratitude to the members of my defense committee, Dr. Robert Chun and Mr.

Akshay Kajale, and to the CS faculty for providing support over the two years of my degree in

one form or the other. Finally, I would like to thank my friends, peers, and family for the

support and motivation.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

2

ABSTRACT

Databases are a core part of any application which requires persistence of data. The

performance of applications involving the use of database systems is directly proportional to

how fast their database read-write operations are. The aim of this project was to build a high-

performance document store which can support variety of applications which require data

storage and retrieval of some kind. This document store can be used as an independently

running backend service which can be utilized by search engines, applications which deal with

keeping records, etc. We used Rust to make this document store which is fast, robust, and

memory efficient. The document store is a server which can return documents based on the

key provided in the request. It has the capability to read WebArchive (warc extension) files as

a feed to the linear hashing based datastore. The paper focuses on the implementation of this

application and how it is a relevant backend system for a search engine.

We performed various tests for the functionalities that are offered by the application and

documented the noteworthy results. The linear hash-table has the capability to insert 10,000

records with key-value pairs sized 16 bytes in 10 seconds where a similar implementation in

JavaScript takes around 40 seconds for the same. The insertion time in our implementation

increases logarithmically. The hash-table supports retrieval of 10,000 similar sized records in

under 5 seconds. The WebArchive parser utility supports the parsing of 10,000 records of a

compressed (gzip extension) warc file in an average of 70 seconds. This is approximately the

same as the warcio library in Python. This time increases linearly with the number of records

that are read, in our application. Along with the conversion of warc records into a format

suitable for the linear hash-table, it takes the application an average of 80 seconds. The warc

utility also has the ability to write warc files. It can write 10,000 warc files with a body of size

around 60bytes in an average of 2 seconds. Detailed performance comparisons with other

similar tools are also documented in the paper.

Index Terms: High Performance Document Store, Linear Hashing, Hash-Table, Buckets,

WebArchive, Rust, JavaScript, Python, Data Storage, Data Retrieval

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

3

LIST OF FIGURES

Figure 1. Meanings of letters used in CDX header

Figure 2. Example of a CDX file

Figure 3. System architecture

Figure 4. Page struct in our implementation

Figure 5. Methods to read and write metadata

Figure 6. Methods to read and write records

Figure 7. SearchResult struct

Figure 8. Method to search bucket

Figure 9. Example of a WARC file’s header

Figure 10. Consistent hashing – Server with keys unassigned

Figure 11. Consistent hashing – Server with keys assigned

Table 1. Time(seconds) taken to insert number of key-values of different sizes

Table 2. Time(seconds) taken to retrieve number of key-values of different sizes

Table 3. Time(seconds) taken to insert key-values in Rust vs JavaScript implementations

Table 4. Time(seconds) taken to insert key-values in Rust with different number of initial

buckets

Table 5. Time(seconds) taken to parse records from compressed warc file

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

4

TABLE OF CONTENTS

I. INTRODUCTION ... 1

II. DOCUMENT STORES AND SEARCH ENGINES .. 3

III. WEBARCHIVE FILES ... 9

IV. ARCHITECTURE AND WORK FLOW .. 13

V. EXPERIMENTS ... 22

VI. CHALLENGES ... 25

VII. FUTURE WORK ... 26

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

1

I. INTRODUCTION

The volume of data being produced and consumed daily has increased quite aggressively

in recent times. According to a recent survey by Visual Capitalist [1], 4 million Google searches

are performed, 7 hundred thousand hours-worth of videos are consumed on Netflix, Snapchat

creates around 2 million snaps and users upload over 4.5 million videos on Youtube, in just

one internet minute today. Apart from these, there are many other essential services which

require error-free storage and processing of data like banking, social media, government

records, etc. The above examples have one thing in common, proper storage and retrieval of

data, and this is what databases are required for. In this project, we built a high-performance

database system.

Search engines are such applications which depend heavily on their database systems.

Due to the importance of databases in search engines, their performance becomes solely

dependent on how fast their database systems are. They find, store, and update the content

of web pages in their databases, called web crawling. When a user searches for a particular

content, search engines match that with content in web pages that they have stored and

return relevant results. To allow the finding of relevant results, the document store needs to

have a provision for creating index based on various parameters. Datastore needs to ingest

the data in a compact format, allowing fast retrieval. Also, the focus will be to allow higher

read speeds while we can take more time for doing writes. According to

worldwidewebsize.com, there are at least 20 billion pages on the internet. To deal with this

much amount of data, search engines require not only sophisticated algorithms, but

databases which can support high read-write speeds. Hence, we will be building a custom

database which can fulfil these requirements.

A search engine needs to search inconsistent web pages and show the search results as

quickly as possible. This requires a high-performance document store. Document store is a

type of database which allows schema-free organization of data. This kind of database is most

suitable for a search engine because web pages do not follow any consistent format (schema)

or size. Currently, there are various document-based data stores available like MongoDB,

DynamoDB, etc. Some of these are open-source as well and provide lots of functionalities.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

2

These databases are built for general use purposes where reads and writes are equally

important. This project aims at building a high-performance document store which can serve

as a reliable, performant and memory efficient data related backend for any application

involving data storage and retrieval. At the start of the project, the focus was on implementing

the individual modules which will be required in achieving our aim and later they were

integrated to make the functionalities work together.

The main reason why we built this system is the lack of open source data stores which

focus more on higher read speeds. Our datastore will focus on making reads fast while also

caring about writes. We chose Rust for this implementation. It allows the developer to

decide to either store the data on the stack or on the heap. It also determines when

memory is no longer needed and allows for fast clean up at compile time. This feature

allows for efficient usage of memory as well as relatively faster memory access [2].

The remaining document is organized in six chapters to describe the project and its

timeline in a more intuitive way. Chapter II introduces the concept to document stores, their

history of development and purpose. It also covers the individual modules that we

implemented to make the document store work, including a single-node document query

server, linear hash table datastore, and consistent hashing for further extension. Chapter III

elaborates on web archive (warc) files. It sheds light on a brief history of warc files and

covers the modules implemented for reading and writing of warc files as well as gzip files.

Chapter IV explains the architecture of the whole project and the work flow which makes

clear the use of the project. Chapter V covers the experiments that we did to test our

application. Chapter 6 and 7 elaborate on the challenges faced while implementing the code

and what future work is required to make this application production ready and extensible.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

3

II. DOCUMENT STORES AND SEARCH ENGINES

For the purpose of understanding the motive behind this project, it is necessary to

understand the concept of document stores, which are a type of NoSQL databases. It will also

help to understand about how search engines work, their requirements for data persistence

and retrieval, and characteristic functionalities. This chapter will cover, in brief, the evolution

of NoSQL databases, document stores, and features of search engines.

Document stores are data storage systems that facilitate storing, retrieving, and managing

document type records. This kind of databases are an important part of NoSQL database

systems because the documents are semi-structured data. Document stores are a subclass of

key-value stores which form another important part of NoSQL database. The difference

between the two lies in how the retrieval of data happens. In key-value data stores, value is

stored directly against a key and just reaching that key gives you the value. In document

stores, additional steps are required to retrieve the value based on the structure in which

data is there in the document. A document-oriented database offers the ability to query or

update based on the underlying structure of the document through APIs or a query/update

language. This difference may be insignificant for customers who do not require document

databases' richer query, retrieval, or editing APIs. Modern key-value stores frequently

integrate metadata-related features, blurring the distinctions between document and key-

value stores.

2.1 Evolution of NoSQL and Document stores

The term NoSQL origitanted in 1998 and was given by Carlo Strozzi, to refer to his open-

source, lightweight "relational" database that didn't require a structured query language. In

2009, Eric Evans and Johan Oskarsson used the same term to label non-relational databases.

SQL systems are commonly used to refer to relational databases. The word NoSQL can refer

to either "No SQL systems" or "Not exclusively SQL," to underline that certain systems may

offer structured query languages similar to SQL.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

4

NoSQL emerged as a response to web data, the need to process unstructured data, and

the requirement for speedier processing, at least in the beginning. A distributed database

system, or a system with numerous computers, is used in the NoSQL model. The non-

relational system is faster, takes an ad-hoc approach to data organization, and can handle

enormous amounts of data of various types. Due to their flexibility and speed in that

condition, NoSQL databases are a better option to choose than SQL databases for huge,

unstructured data sets in general.

NoSQL systems are capable of handling both structured and unstructured data, as well as

processing unstructured Big Data fast. As a result, companies like Facebook, Twitter, LinkedIn,

and Google have adopted NoSQL systems. Though it is true that if we can structure the data,

SQL databases give better performance. These companies collect and generate massive

amounts of unstructured data in order to uncover patterns and generate business insights. In

2005, the term "big data" was coined.

As per today’s requirements, many of the system need to focus on providing high

availability to the users. Providing consistency with availability is a cumbersome process

where the limitations were enlisted by Eric Brewer in the form of CAP theorem. The CAP

Theorem, sometimes known as Brewer's Theorem is a fundamental concept in non-relational

databases and distributed systems. It specifies that a distributed data store "cannot" provide

more than "two of three" defined guarantees at the same time. Brewer introduced the theory

in the fall of 1998 at the University of California, and it was published in 1999 as the CAP

Principle. The following are the three guarantees that cannot be met at the same time:

Consistency - even after an operation is completed, the data in the database remains

consistent. Availability – the system is always on (always available), and there are no outages.

Partition Tolerance - the system will continue to work even if communication between the

servers is no longer dependable. This is due to the fact that the servers might be partitioned

into distinct groups that are unable to connect with one another.

Open source non-relational data storage is non-relational, schema-less, horizontally

scalable, and employs BASE for consistency. Data storage that is scalable, schema-free, and

enables for rapid updates and replication is referred to as "elasticity." In general, these

characteristics have been achieved by developing NoSQL data storage from the ground up

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

5

and optimizing it for horizontal scaling. These systems frequently only support low-level,

simple APIs (such "get" and "place" operations). As a result, modelling with non-relational

systems feels very different from modelling with relational systems, and it follows a different

philosophy.

2.2 Search engines

Although the little text box on a web page is the most obvious aspect of a search engine,

there are several behind-the-scenes features that make the text box work. Let's look at how

a search engine differs from traditional database queries and why you should think about

search when choosing a NoSQL database.

2.2.1 Search vs Query

A query is not the same as a search. A query obtains data based on whether it matches

the query exactly. Good instances are looking for orders that include a specific item or goods

in a specific price range. In contrast, a search is imprecise and does not necessitate tight

adherence to a shared data model. With potentially sophisticated Boolean logic, terms may

be essential or optional. Rather than just reporting "match" or "not a match" in a query, a

relevance score is usually calculated. These relevancy computations are adjustable, and they

vastly improve the search experience of the average user. Search engines often give you

recommendations on how to narrow down your search. You may be supplied with

information about the entire result set, which are termed facets, in addition to a page of

results and relevancy scores for each result. Facets can be used to filter down a product search

by product category, price range, or date of addition, for example. Facets improve users'

experiences by allowing them to discover new methods to improve their original search

criteria without needing to know anything about data structures.

2.2.2 Web Crawling

Web crawlers are automatic programs that monitor recognized websites for changes and

follow links to new websites and pages, indexing whatever content they come across. They

may also make a duplicate of the current state of a web page when indexing it. The first order

of business when experimenting with search is to find some material! Content on e-

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

6

commerce websites, for example, can be highly structured relational database records. It

could be completely free text, or something in between, such as a Microsoft Word document

or a structured web page.

Crawling the authoritative source system is the first step. Some databases include built-in

indexing, allowing for real-time indexing. However, the vast majority of search engines index

remote information and update their indexes on a regular basis. These indexes may be out of

date, but because a lot of stuff remains the same, you don't need to discover it right away.

A collection of URLs is the starting point for web search engines (Uniform Resource

Locators). They read the text on the web pages and index it, as well as adding newly

discovered links to the queue of indexed sites, when crawling these URLs. This is the only form

of crawler that can find all linked web sites on the internet. It's possible that your company

will need to crawl a number of systems. If that's the case, keep in mind that several search

engines, like IBM OmniFind, HP Autonomy, and Microsoft FAST, provide interfaces to a

number of sources. Crawlers are usually given by independent search engines. Some search

engines, such as MarkLogic's NoSQL document database, are integrated within databases.

Because these embedded search engines scan their own content and don't have crawlers for

other systems, you'll have to move or copy content into the NoSQL database to get it indexed.

The benefits of a real-time index for material stored in a NoSQL database may exceed the

disadvantages of a separate search engine, despite the additional storage requirements. The

main problem of using a different search engine is that crawling happens on a regular basis,

resulting in inconsistent data results and false positives (documents that no longer exist or

don't fit the search query).

2.2.3 Indexing

After you've found some content, you'll need to determine what to index. You only need

to save the title of the document, the link, and the date the content was last updated. You

can also extract the text from the content and create a list of the words mentioned in the

document. You can even save a copy of the page as it was when it was indexed. This is a

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

7

common feature in Google search results, especially if the author of a page has recently

deleted it and you still want to access it as it was when it was indexed.

A standard index keeps track of a document's ID and a list of the terms that appear in it.

This strategy, however, isn't especially beneficial for running a query. It's much preferable to

have document IDs in a list next to each distinct term. A search engine can quickly find the set

of documents that match a query by doing so. This is referred to as an inverted index, and it

is essential for optimum search performance. The more content you index, the more critical

it is to store inverted indexes to save query times. Inquire about the index structure of your

vendor's product as well as the size at which it operates successfully. Of course, there's a

chance you'll want to index more than just words. Date fields (made, updated, indexed at),

numbers (page count, version), phrases, and even geographical coordinates of places

mentioned in content can all be indexed. These are referred to as terms, and the lists of

documents that match them are referred to as term lists.

If the search engine must match all words, dates, and numeric terms in a query, the search

engine will execute an intersection of the matching term lists, which means the search engine

will only return results for documents that include all three term lists. AND Boolean logic is

the name for this type of logic. OR Boolean logic, which means that documents with more

matching terms are given a higher relevancy score, is perhaps more useful. The method for

determining relevancy differs based on the context. For example, you might believe that

findings from recent news stories are more relevant than those from older news stories.

Furthermore, you may want to give more weight to those instances where the terms you

entered are matched more frequently in the same text. However, a document of 20 words

(say, a tweet) that mentions your word once may be more relevant than a paper of 20 pages

that also includes the same word once. A document with a frequency of one word in every

twenty has a high frequency.

2.2.4 Searching

The key to making searching simple is to employ a text format that is easy to grasp, which

is referred to as a search grammar. Most search engines use a Google-like free-text syntax.

Enhanced search services, which allow users to query over hundreds of phrases in a single

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

8

search, are frequently provided by specialist publications. This feature is especially beneficial

for specialized datasets like financial services news items and filings data. Many search

engines give a default grammar, with some allowing you to alter the grammars and how

they're processed, which is beneficial if you're considering switching to a more scalable search

engine but don't want to burden your application's users with learning a new search grammar.

There are further concepts like pagination, sorting, faceting, snipping, dictionaries, etc. which

are used to make searches faster and this discussion is beyond the scope of the project.

2.3 Document Stores and Search Engines

Many modern search engines have a similar architecture to NoSQL databases. Their

indexes and query processing are dispersed over multiple servers. Many search engines can

also serve as a key-value or document store in their own right. NoSQL databases are

frequently used to store unstructured data, documents, or data that can be saved in a variety

of structures, such as social network posts or web pages, as we saw above. This indexed data

has a wide range of structures.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

9

III. WEBARCHIVE FILES

Just like we came to know about what we are building and for what kind of applications

are we building our data store system, in this chapter, we will understand the input data that

needs to be fed to our data store so that it can return the response to the queries. This chapter

will elaborate on web archive files which is in short known as warc, a common format in which

most of the web crawling happens. We will also understand the function of CDX files which

are basically an index on the warc files for faster reads from the huge chunk of data that warc

files are.

3.1 What is a WARC file?

A WARC (Web ARChive) is a container file standard for storing web content in its original

context, maintained by the International Internet Preservation Consortium (IIPC). It is a

container file that is used for multiple purposes. It is a digital file that you can store on your

own local or networked storage, like a PDF document or an MP3 audio file, complete its own

.warc file extension and application/warc mimetype. It is a container file that houses other

files. It concatenates several files into one digital object, like you’ve seen elsewhere from

container formats like ZIP, GZIP, TAR, or RAR. A WARC wraps around other files like the PDF

and MP3 above, along with some additional information and formatting that we’ll cover

below. It is a container for files that are native to the web.

WARCs are produced by crawlers, proxies, and other utilities that retrieve files from a live

web server. They can contain the PDF and MP3 files described above, for instance, but also

the HTML, JS, CSS, and other structural elements that web browsers need to read in order to

represent site contents to human computer users. It can also contextualize those contents.

WARCs contain technical and provenance metadata about the collection and arrangement of

their media so sites can be read and represented in live web browsing experiences like they

were at the time of their collection.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

10

WARC is a standard container format. The WARC file format standard was published by

the International Organization for Standardization (ISO) committee on technical

interoperability as ISO 28500. You might get other outputs from web scraping tools, but

WARC is the generally agreed-upon way to contain web archives such that people and their

software know how to interpret and read the contents today and into the future. It is a

standard maintained by web archivists. Keeping up the WARC file format standard is the

responsibility of the International Internet Preservation Consortium (IIPC). This coalition of

practitioners does the ‘agreeing upon’ above, that keeps the WARC relevant and vital to how

we collect and preserve web archives.

3.2 Brief History of WARC files

The WARC was preceded by the ARC file format, which the Internet Archive used to

contain its collected web archives as far back as 1996. The ARC file was the Internet Archive’s

original container file for web-native resources, so it conformed to the first three bullet points

in the definition above. Reflecting the needs of web archivists around the world to preserve

more context about their collected resources, the WARC standard was formalized in 2009 to

include the very detailed kinds of technical metadata. Much specificity and readability were

added to the WARC standard for its 2017 upgrade to version 1.1.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

11

3.3 CDX files

As mentioned earlier, CDX files are used to index records in WARC files. A CDX file contains

a header line specifying the format of all subsequent lines. Figure 1 shows

Figure 1. Meanings of letters used in CDX header

All subsequent lines universally contain the URL of a WARC record, information about the

record, and offset plus length of the record in a WARC file. Thus, you can read a CDX index

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

12

line and then read the subsequent offset specified to retrieve the WARC record in a WARC

file quickly. CDX files are simple to parse as you just need to read the first line in the CDX file

then parse generate the format structure based on the official CDX file specifications. Then

read line by line retrieving and parsing the line according to that format structure. In the CDX

structure there should be a WARC file name and offset where we can use to quickly retrieve

the CDX record associated with this index.

Figure 2. Example of a CDX file

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

13

IV. ARCHITECTURE AND WORK FLOW

Figure 3. System architecture

The figure shows the architecture of the application that we aimed to build. A user will

visit Yioop search engine and write keywords to be searched in the text box. That query will

be served by the GraphQL based query engine and sent to the document store module of the

application. There, the keyword-based search will happen in the linear hash table which is

already indexed. The document store module also has a separate functionality where, from

the storage of gzipped WARC files on the disk, indexing happens and the location of records

is fed into the linear hash-table. This functionality is independent of the query part of the

application. This module will run when new crawl data is available and will be run by a

scheduler job. In below sub-sections, we will cover the individual components of the modules

to get a better understanding of the functionalities and later, how different modules are

working together.

4.1 Linear Hashing

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

14

The reason we chose Linear Hashing for our hash-table implementation is that linear

hashing is a dynamic hashing technique that grows the number of initial buckets one at a time

according to some criteria. Hence, the name Linear Hashing. Our application employs the

implementation of dynamic hashing scheme known as Linear Hashing.

Elaborating more on how linear hashing works, a typical hash function's output will always

give a fixed number of bits. Let us assume a hash function gives a 32-bit hash output from

some key. In Linear Hashing however, we will only use the first I bits to address to N initial

buckets. If we start with N =2 bucket, then I = 1 bit. So, we will only use the first bit of the

hash function's 32-bit output to map to a bucket. Let our criteria for adding a bucket be

passing a load factor threshold that is,

Load factor = number of items / (number of buckets * average items in a bucket)

Once the number of insertions exceeds the threshold, we add a bucket to N. If N becomes

another power of 2: N > (2^I -1) we increment I to address the new buckets. When any bucket

is added we split the bucket at an index S. S is initially the first bucket. When we split a bucket,

we rehash all the keys at bucket S add if the keys rehash to the address of the newly added

bucket, we move the key there. Once N buckets has doubled from its initial position, we reset

the S index to 0. This logic lets the linear hash-table to occupy minimum extra size while

providing the ability to grow as the input grows. Also, the hashing mechanism leads to fast

reads where the worst-case time complexity becomes a function of a constant.

4.1.1 Implementation Overview

In our implementation, we first hash the key, and take however many bits the hash-table

is currently configured to take. This tells us which bucket to place the record in. A bucket is a

linked list of pages, which are chunks of bytes on disk. Pages in the linked list may be full, so

we now need to figure out which page the record should go in. Once we figure out which page

it should go in, this page is fetched from disk. We then make the necessary changes to the

page in memory – e.g., write record, increment number of records in page’s header) – then

save it out to disk. Getting the value is very similar and uses the same method that we use to

figure out which page in the bucket the record should be placed in.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

15

4.1.2 Pages and Buffer Pool

A file is divided into pages of size 4KB. When we want to read or write some chunk of

bytes in a page, we have to read the page into memory, make whatever changes we want to

make on the copy resident in memory, then save the updated page out to disk.

Now, we will usually have a little more than 4KB of memory at our disposal, so what we

can do is buffer the pages we read and write. So, instead of flushing the page out to disk once

we do one operation, we keep the page in memory as long as possible.

Figure 4. Page struct in our implementation

Notice that besides the bytearray (storage) we have some other metadata about the page

as well: 'id' specifies which page in the file this page is, 'storage' is all the bytes in the page

copied out to a byte array, 'num_records' specifies how many records this page has, 'next' is

what strings the overflow pages we talked about in the last post. It is also used to keep track

of pages that used to be overflow pages but are not in use, 'dirty' specifies whether the page

here is out of sync with its corresponding page on file. The next two fields 'keysize' and

'valsize' specify what length the key and value bytearrays are in the records the page stores.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

16

The metadata is stored in the page itself. To read and write this metadata we have the

methods shown in figure.

Figure 5. Methods to read and write metadata

The main content of the page are records that are stored in it. These are read and written

using the methods in figure below.

Figure 6. Methods to read and write records

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

17

4.1.3 Buckets

For writing the records, we need to be able to write to buckets without having to know in

advance where and in which page the record will go to. The code keeps fetching the next page

in the bucket until it finds the record with the key it’s looking for. What is perhaps interesting

is what it returns when it doesn’t find the record (because the record hasn’t been inserted)–

if there’s space, it indicates in SearchResult which page and row to insert the record in; if

there isn’t any space, it returns what the last page it looked in was, which is meant to be used

when creating an overflow page. Below images show the SearchResult struct and the method

which searches the bucket. After we find out where the record should be placed in a bucket,

it becomes easy to put the record in our hash-table. Which bucket should the record go in

depends on which how many bits we’re looking at and how many buckets we have.

Figure 7. SearchResult struct

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

18

Figure 8. Method to search bucket

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

19

4.1.4 Performance and Limitations

We implemented the code in the form of a library which can be used directly. The tests

included inserting one 10,000 records into the key-value store and then trying to retrieve a

thousand values. The insertion of these many records of key and value sizes of 16 bytes took

around 10 seconds on an average and the retrieval of the values took around 4 seconds on

average for multiple runs. There is a scope of improvement in this based on future

requirements. One of them is that the key-value store should be able to allow flexible value

sizes. Current implementation supports only fixed size of the value. Another improvement

would be to implement Least Recently Used (LRU) cache mechanism instead of FIFO to be

able to return the values more efficiently. Another feature that would be useful is to be able

to delete the records based on the key. If it seems that there is a requirement of these

improvements, we will be implementing them.

4.2 WARC Reader/Writer

As explained above, the WARC files are the files which are aggregation of multiple web

pages in a compressed format. These files are a file format tailor made to for archiving

resources from webpages. They files have been used for historical storing of the web-crawl

data as sequence of blocks, collected by the web crawlers. Each WARC file is a concatenation

one many WARC records. Along with their index files (.cdx), it becomes easier to jump to the

offset in memory which stores a relevant information, without needing to decompress the

whole files. The Yioop! search engine stores its crawl data in WARC format, which makes this

deliverable a useful tool to read-from and write-to the WARC files.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

20

Figure 9. Example of a WARC file’s header

A WARC record can be broken down in two distinct parts a WARC header and the content

block. With the WARC header containing some information about the block. WARC files are

usually very large and so are gzipped. Hence, this deliverable also involved reading of gzip

files. WARC record headers all start with this line ‘WARC/1.0’ or ‘WARC/1.1’.

In our implementation, we utilized a Rust crate called libflate[4]. It is a Rust

implementation of DEFLATE algorithm and related formats (ZLIB, GZIP). After decompressing

the WARC file, we are currently storing the result in memory. This is considering the use case

of a user querying some data and we need to return the webpages. This number is something

which can be kept in memory and need not be stored in a separate file. We tested our code

with the gzipped WARC files downloaded from archive.org and commoncrawl.org. Each file

was of sizes around one gigabyte. Each WARC file was of five gigabytes. The WARC file parser

was able to read the whole file in twelve minutes. Though in actual requirement, there are

remote chances that we need to read the whole WARC file, we will be using CDX files to make

reading more efficient.

4.3 Indexing

For the indexing purposes, we have PackedTableTools.rs which packs as a string an array

of records. Here each record should be an associative array of field items, with field names

and types according to this packed table tools signature. The format of the packed records

string is: output of bool columns as bit string in order of columns as appear in signature, bit

data on sizes to use for each int column (for each column two bit code 00 - 1byte, 01 - 2byte,

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

21

10 - 4byte, 11 - 8byte), text column length (1byte/column saying how long the data stored in

that column is), This is followed by the actual column data (except bool columns) in the order

it is listed in the signature. Int's use their high order bit as a sign bit and are stored using the

number of bytes given by their code in the int column bit data. Real/doubles are stored as

8byte doubles. Given the format as an argument, this file also contains method to unpack a

record and return it in its entirety.

4.4 GraphQL server

GraphQL is both an API query language and a runtime for executing those queries using

your current data. GraphQL gives you a detailed and easy-to-understand description of the

data in your API. It also lets you design your own schema and use it on the server. After a

GraphQL service is up and running (usually at a URL on a web service), it can accept and

execute GraphQL queries. The service analyzes a query to make sure it only refers to the types

and fields defined, then executes the provided functions to generate a result. For us, the

purpose of this server is to handle HTTP requests, incoming from Yioop, take the GraphQL

query parameters provided and use them to retrieve the required data from the linear hash-

table.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

22

V. EXPERIMENTS

We ran tests on various components of the application to compare the performance with

similar implementations in other languages. The one component which decides the

performance of our application is the linear hash-table. Faster the data input and retrieval in

the hash-table, faster our queries could be served. Below tables show the average

performance data of 10 runs for our linear hash-table implementation with various number

of inserts and using different key-value sizes.

We also tested our implementation with similar implementations in JavaScript. Below

table shows the comparison of insertion and retrieval times for different numbers, from the

hash-table for similar sized key-value pairs.

Number of

Insertions

Time (seconds)

– 4 bytes

Time (seconds)

– 8 bytes

Time (seconds)

– 16 bytes

Time (seconds)

– 32 bytes

10,000 19.5812 13.7196 10.7140 11.0392

20,000 40.5785 29.5620 29.2961 29.1158

50,000 135.2164 115.9305 110.8547 111.2843

100,000 294.1901 286.4809 290.2886 295.3691

Table 1. Time(seconds) taken to insert number of key-values of different sizes

Number of

Retrievals

Time (seconds)

– 4 bytes

Time (seconds)

– 8 bytes

Time (seconds)

– 16 bytes

Time (seconds)

– 32 bytes

10,000 8.4741 6.0003 4.0419 4.2534

20,000 22.6415 18.2303 11.5651 11.5278

50,000 77.5042 53.4573 50.5842 55.6155

100,000 103.5246 91.2837 92.4166 91.2974

Table 2. Time(seconds) taken to retrieve number of key-values of different sizes

We see that for our implementation, it performs better if the key-value sizes are around

16 bytes or more. This is due to the way page size, bucket size, and size and number of items

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

23

in the bucket are configured. Also, different results are seen when the bucket splitting

threshold is changed. For now, the buckets split at a threshold of 80 percent capacity.

We also tested our implementation with similar implementations in JavaScript. Note that

these comparisons are keeping similar key-values sizes and with 2 initial buckets. Below table

shows the comparison of insertion and retrieval times for different numbers, from the hash-

table between Rust implementation and JavaScript implementation.

Number of Insertions Time (seconds) –

Rust

Time (seconds) –

JS

10,000 19.5812 45.0361

20,000 40.5785 101.1892

50,000 135.2164 296.7893

100,000 294.1901 687.6312

Table 3. Time(seconds) taken to insert key-values in Rust vs JavaScript implementations

As we will cover further in the future work chapter, this implementation of linear hash-

table needs improvement in run time. Major improvement will come from increasing the

number of initial buckets. In our current implementation, our linear hash-table starts form

initial two buckets. This leads to high number of bucket splits and hashes which is taxing for

the performance. Below table shows the improvement in time achieved in our

implementation by increasing the initial number of buckets.

Number of Insertions Time (seconds) –

(2 buckets)

Time (seconds) –

(256 buckets)

Time (seconds) –

(1024 buckets)

10,000 19.5812 6.1263 6.0912

20,000 40.5785 14.3429 15.2482

50,000 135.2164 43.1485 41.6578

100,000 294.1901 195.3374 156.7210

Table 4. Time(seconds) taken to insert key-values in Rust with different number of initial buckets

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

24

Another important performance parameter apart from the linear hash-table is the warc

parser utility. This is important in terms of getting the data in linear hash-table suitable

format, using the packed table tools utility, from the gzipped warc files. Below table shows

the performance data showing the time taken by the utility to read a number of records.

Number of records

parsed

Time (seconds) -

Rust

10,000 71.5156

20,000 148.0942

50,000 432.8688

Table 5. Time(seconds) taken to parse records from compressed warc file

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

25

VI. CHALLENGES

We faced a lot of challenges while implementing the application and hence, learnt a lot

more in overcoming them. Some of them are mentioned in below sub-sections.

6.1 Limited Rust support on the Web

The most prominent obstacle that we had to face was the limited support that is there on

the web for implementations in Rust language. Since it is a newer language, less people have

expertise in this language and less contributions are there in comparison to older languages.

Implementing the individual components in the first half of the project duration proceeded

in a relatively smooth fashion since they find their use at other places as well, like linear

hashing, WARC file reading and writing, etc. Problem of less support was also seen in terms

of the knowledge available on the web regarding making custom database drivers and query

engines. Support could be found for well-established databases like PostgreSQL, MySQL, etc.

but none could be found for custom databases. Implementation of libraries for basic

functionalities like WARC reading and writing, CDX reading and writing took more time since

they were never done before. This posed a lot of learning opportunity as well.

6.2 Strongly typed vs Loosely typed languages

During the integration part of the project, we faced many hurdles considering that we

were porting some of the code from PHP which is a loosely typed language. Rust being strictly

typed language doesn’t allow many of the default arguments and variables without strict

definition of their type. This took more time in achieving the same functionality which was

being achieved in the older code.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

26

VII. FUTURE WORK

There are multiple things which need to be done in this application so as to make it

production ready. Few of the important ones are mentioned in following sub-sections.

7.1 Distributed Document Store using Consistent Hashing

Consistent Hashing is a distributed hashing system that assigns each server or item in a

distributed hash table a place on an abstract circle, or hash ring, regardless of the number of

servers or objects in the table. This permits servers and objects to grow without harming the

system's overall performance. It a employs hash function on keys to determine their distance

from nodes and assigns the key-value pair to the nearest node to that key.

In our implementation, The hash output range was mapped onto the edge of a circle. That

is, the smallest possible hash value, zero, corresponds to a 0 degree angle, the largest possible

hash value (let's say INT MAX) corresponds to a 360 degree angle, and all other hash values

linearly fit somewhere in between. So, we could take a key, compute its hash using the xxhash

function, and find out where it lies on the circle’s edge. An example could look like this where

Kate, John, Jane, Steve, and Bill are keys while A, B, and C are server nodes:

Figure 10. Consistent hashing – Server with keys unassigned

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

27

Taking a mechanism where the hash function assigns a key-value to the server node nearest

to it on the circle, the allotment could look like the image below.

Figure 11. Consistent hashing – Server with keys assigned

When a server is deleted (say, due to a failure), only the keys from that server are migrated

in consistent hashing. If server S3 is removed, all keys from that server will be moved to server

S1, but keys from servers S1 and S2 will not be moved. However, when server S3 is deleted,

the keys from S3 are not dispersed evenly among the surviving servers S1 and S2. They were

exclusively assigned to server S1, causing server S1 to become overburdened. When a new

server is added, the same thing happens. When a server is added or withdrawn, only the K/N

number of keys must be remapped in most cases. The number of keys is K, while the number

of servers is N. (to be specific, maximum of the initial and final number of servers).

To create a high-performance and robust document store, we will be using consistent

hashing to distribute copies of documents to multiple server nodes.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

28

7.2 Improving features of Linear Hash-table

As mentioned earlier, there is a scope of improvement in this based on future

requirements. One of them is that the key-value store should be able to allow flexible value

sizes. Current implementation supports only fixed size of the value. Another improvement

would be to better Least Recently Used (LRU) cache mechanism instead of FIFO to be able to

return the values more efficiently. Another feature that would be useful is to be able to delete

the records based on the key.

7.3 Allowing custom indexing

Another better improvement in the current application would be to allow multiple kind

of indexing on the data in the linear hash-table. This would result in even faster gets and faster

returning of relevant documents to the user.

7.4 Allow admin to modify data

Another interesting extension of the functionalities would be to enable an admin user to

run mutation queries on the data. GraphQL supports this functionality and it also allows

custom schema which can be fed in initially and used later. Dynamic schema for data retrieval

can also be created.

7.5 Performance tests

To actually be able to use this application on a production level, it is required that the

performance be tested against other implementations, be it in other languages, or using other

kinds of hashing mechanisms.

7.6 Flexible length key value pairs

Current implementation of linear hash-table requires the keys and values to be of same

sizes. This value is required while initializing the hash-table so this cannot be changed later.

For extended use of this application, flexible key value sizes can increase space efficiency of

the application. Further improvement could be to make the sizes of keys and values

independent of each other. We should only use number of bits which are required and none

extra.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

29

VIII. CONCLUSION

Databases are very important when it comes to the performance of a search engine. Along

with proper algorithms, the internal implementation of the database system is also very

important. Over the course of this project we worked on developing the ingredients, in the

form of individual working modules, for our aim of building a high-performance document

data store for applications which focus on data retrieval. We worked on developing a single

node document query server using GraphQL, implemented linear hash table which speeds up

the process of insertion and deletion by up to 25% keeping in mind the discussions we had

above, WARC and CDX file reader-writer with at par speeds with existing Python

implementations, and building indexes on WARC records. All of this, combined, make our

application a promising choice for systems which require high amount of data reading and

querying while not sacrificing on writes as much.

For production level viability, we will require this implementation to support running on

multiple nodes to ensure high availability and fault tolerance. This will allow it to be usable

for distributed and highly available systems. As mentioned in chapter VII, there are multiple

improvements that can be done in the current application. We will deploy the application and

run performance tests to compare the times with current implementation. Based on those

results, we will further develop our implementation to improve the performance.

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

30

REFERENCES

[1] https://www.visualcapitalist.com/what-happens-in-an-internet-minute-in-2019/

[2] https://stackoverflow.blog/2020/01/20/what-is-Rust-and-why-is-it-so-popular/.

[3] https://crates.io/crates/unqlite

[4] https://docs.rs/libflate/1.1.0/libflate/

[5] https://samrat.me/posts/2017-11-04-kvstore-linear-hashing

[6] https://Rust-lang-nursery.github.io/Rust-cookbook/file/read-write.html

[7] https://archive.org/download/CC-MAIN-2021-04-1610703512342.19-0022

[8] https://commoncrawl.org/2021/03/february-march-2021-crawl-archive-now-available/

[9] https://iipc.github.io/warc-specifications/specifications/cdx-format/cdx-2015/

[10] https://www.toptal.com/big-data/consistent-hashing

[11] https://github.com/mattnenterprise/Rust-hash-ring/tree/master/examples

