
High Performance
Document Store in Rust
By

Ishaan Aggarwal

Advisor: Dr. Chris Pollett

Committee : Dr. Robert Chun

Mr. Akshay Kajale

Agenda

• Problem Statement & Introduction

• Important Concepts

• System Architecture & Work Flow

• Individual Components & Technology Choices

• Applications & Dataset

• Experiments & Results

• Challenges & Learnings

• Conclusion

Problem Statement

• There is a lack of database systems which focus more on high read
speeds.

• We aimed to build a high performance database system which:
• Ensures fast read speeds

• Can manage high volume of data

• Allows indexing on the data

• Can be used as a backend engine for variety of data retrieval focused
applications

• Memory efficient

Why solve this problem?

Introduction

• The volume of data being produced and consumed daily has
increased quite aggressively in recent times.

• In just one internet minute –
• 4 million Google searches are performed

• 7 hundred thousand hours-worth of videos are consumed on Netflix

• Snapchat creates around 2 million snaps

• Users upload over 4.5 million videos on Youtube

• Essential services like banking, social media, government records,
etc. require error-free storage and processing of data.

Introduction

• Answer to all of this? – High performance database systems.

• There are many kinds of databases based on how structured the
data is and how the data will be queried.

• Most of the databases are built for general purposes where reads
and writes are equally important.

• Systems focusing on data retrieval or heavy querying of data
require database systems which allow fast read speeds.

• In this project, we aim to build such a database system and show
its functionalities with respect to Search Engines.

We need to understand
Document Stores

Document Stores - Background

• Document stores are data storage systems that facilitate storing,
retrieving, and managing document type records.

• This kind of databases are an important part of NoSQL database
systems because the documents are semi-structured data.

• They offer the ability to query or update based on the underlying
structure of the document through APIs or a query/update
language.

Document Stores & Search Engines

• Many modern search engines have a similar architecture to NoSQL
databases.

• Many search engines can also serve as a document store in their
own right.

• Their indexes and query processing are dispersed over multiple
servers.

• Document stores are frequently used to store unstructured data,
or data that can be saved in a variety of structures, such as social
network posts or web pages, etc.

Document Stores – Existing options

• MongoDB

• CouchDB

• OrientDB

• MarkLogic

• DocumentDB

• CosmosDB

Why not choose out of these?

• Are general purpose databases

• Don’t focus wholly on fast reads
thus sacrificing speed

• Some of them are paid

• It is fun to write your own custom
database as per your requirements!

Understanding the input

Web Crawling

• Web crawlers are automatic programs that monitor recognized
websites for changes and follow links to new websites and pages,
indexing whatever content they come across.

• A collection of URLs is the starting point for a web crawler.

• They read the text on the web pages and index it.

• Add newly discovered links to the queue of indexed sites.

• This allows search engines to return search results from index
pages, fast.

WARC Files

• A WARC (Web ARChive) is a container file standard for storing web
content in its original context.

• WARCs are produced by crawlers, proxies, and other utilities that
retrieve files from a live web server.

• It is a multi-purpose container file:
• It can house other files

• Concatenates several files into one digital object

• Wraps around other files like the PDF and MP3 above, along with some
additional information and formatting

• Container to files that are native to the web

WARC Files

• WARCs contain metadata about the collection and arrangement of
the sites’ media so that they can be read and represented in live
web browsing experiences like they were at the time of their
collection.

• These are maintained by the International Internet Preservation
Consortium (IIPC) which is an organization established to
coordinate efforts to preserve internet content for the future.

• The WARC file format standard was published by the International
Organization for Standardization (ISO) committee on technical
interoperability as ISO 28500.

CDX Files

• CDX files are used to index records in WARC files.

• Generally, WARC files are large in size, approximating a couple of
gigabytes or more, so having an index file helps in quick reads.

• CDX file contains a header line specifying the format of all
subsequent lines.

• We can read a CDX index line and then read the subsequent offset
specified to retrieve the WARC record in a WARC file quickly.

Design

High Level View

System Architecture & Work Flow

Query

engine
Hashtable

Disk

Indexer

Module

WARC I/O

Components – Query Engine

The Query Engine serves the following purposes:

• Keeps running as an HTTP server.

• Receives the search query

• Processes it to format understandable by Indexer Module

• Processes the response from Hashtable

• Sends it back to the application which sent the query

Technology Choice – GraphQL

Below are the advantages of using GraphQL-

• No over-fetching and under-fetching

• Saves time and bandwidth

• Allows custom schema

• Good for fetching nested data

• Supports fetching data from different types of source APIs

• Fits our use case well and provides extensibility in future

Other option we explored was an ODBC based driver which required a
separate HTTP(s) based server and was difficult to integrate with Rust.

Components – Hashtable

The Hashtable serves the following purposes:

• Component which does the actual storing of data and is the
essence of this database system

• Fast read access of values (web pages) based on keys

• Worst-case run time complexity of read operation in linear
Hashtable is O(constant)

• Has no intelligence, does whatever it is told to do by the indexer
module and hence, can be used as a pluggable component

Technology Choice – Linear Hashing

• Key-value pairs are stored in an array with slots pointing to their
corresponding, value-storing linked lists, also called buckets.

• Linear hashing is a dynamic hashtable algorithm where the
buckets, as well as the bucket array can grow as new key-value
pairs are inserted.

• Without linear hashing, in case of collisions, the linked list could
grow to a long length and effectively, read can start becoming a
lengthy operation.

Technology Choice – Linear Hashing

• In linear hashing, a threshold is defined for the length of the
linked lists (or size of a bucket).

• If that threshold is reached, bucket is split into new bucket and
the values in it are re-hashed to newly split buckets, based on LSB
comparisons.

• Causes linear write times if one starts with two buckets because a
lot of splitting and re-hashing occurs.

• Ensures limited length of linked list thus, ensuring fast,
O(constant) read times.

• Is space efficient because at each split, only 1 extra bucket is
created, keeping extra space consumed to a minimum.

Components – Indexer Module

The Indexer Module serves the following purposes:

• A utility which compresses and indexes the WARC records in a CDX
record like format, before storing them in the Hashtable.

• Also decompresses the records after their retrieval from
Hashtable, so that they can be sent as a response.

• Needs to be provided with the format in which indexing is
required.

• Gets this information from Query Engine, based on the schema.

Components – WARC I/O Utility

• Data needs to be present in the linear hashtable for them to be
accessed for a query.

• Data is the web pages which are produced by web crawlers and
stored in WARC files.

• WARC I/O utility, as the name suggests, serves the purpose of
reading and writing WARC files.

• Write functionality is not used in our application as of now, but it’s
an additional feature.

Components – WARC I/O Utility

This utility has the following functionalities:

• Read WARC records

• Read records from a compressed WARC file in GZIP format

• Read records based on a filter

• Write WARC records in existing or new files

• Write records to a compressed WARC file in GZIP format

• Write records based on a filter

Language Choice – Rust

The whole project has been written in Rust because of the following
reasons:

• Rust is becoming the to-go choice wherever performance and
memory efficiency is required, some resources claiming that it
matches, if not exceed, C in terms of performance.

• Uses LLVM to generate assembly level code, hence the speed.

• Good for applications which require security and memory safety.

• Strictly-typed language which detects memory leaks and unsafe
code at compile-time.

• Borrow checker to check lifetime of variables at compile-time and
hence eliminating the need of garbage collection.

Experiments and Results

Hardware Specification

We performed various tests on the application using a machine with
below mentioned specification:

• Model – Dell Latitude 3410

• CPU - Intel® Core™ i5-10210U @ 1.6GHz (8 CPUs) ~2.1 GHz

• RAM – 8192MB

Hardware Configuration

• Disk Type – Solid State Drive

Experiments & Dataset

Following slides will show experiments on two major components:

• Linear Hashtable – dataset is string key-value pairs ranging from 4
bytes to 16 bytes.
• Time taken for insertion of various number of records

• Time taken for retrieval of various number of records

• WARC I/O utility – dataset will be compressed (GZIP) WARC files
• Time taken to read various number of records

• Time taken to write some number of WARC files

These will also be compared against other similar implementations.

Experiments & Results – Linear Hashtable

• Rows represent different number of insertions

• Columns represent, in bytes, the size of keys and values that were
inserted and the time taken

Experiments & Results – Linear Hashtable

• Rows represent different number of retrievals

• Columns represent, in bytes, the size of keys and values that were
inserted and the time taken

Experiments & Results – Linear Hashtable

• Rows represent different number of insertions

• Columns represent comparison between java script and rust
implementation starting with 2 initial buckets

Experiments & Results – Linear Hashtable

• Rows represent different number of insertions of key-values of 32
bytes

• Columns represent the time taken for insertions when the number
of initial buckets is increased

Experiments & Results – WARC Reads

• Rows represent different number of WARC records parsed; each
record is of size ~20KB

Challenges

• Rust is a relatively newer and less popular language in comparison
to Java, C++, Python, JavaScript, etc.

• Steep learning curve

• Not many experts in this language

• Integration support available for established technologies but
nearly no support for custom implementations

• Lack of libraries in Rust which are easily found in older languages

• Strongly typed vs Loosely typed languages - Porting indexer
module from PHP to Rust was challenging

Learnings & Growth

Technical:

• Understood linear hashing mechanism, indexing in databases, and
query engines

• Rust

• WARC files

Personal

• Troubleshooting

• Finding multiple solutions to one problem

• Perseverance

Conclusion

• We have built a document store which can support applications
focusing on data retrieval.

• We have built a document store which is a high performing,
durable, and memory efficient database system which can support
fast reads.

• Our Linear Hashtable implemented using Rust, which is the core of
this fast database, performs better than other similar
implementations.

• Our WARC I/O utility in Rust performs similar to current Python
implementation.

References

• https://samrat.me/posts/2017-11-04-kvstore-linear-hashing/

• https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-
it-so-popular/

• https://dzone.com/articles/why-and-when-to-use-graphql-1

• https://blog.logrocket.com/how-to-create-a-graphql-server-in-
rust/

• https://iipc.github.io/warc-specifications/specifications/cdx-
format/cdx-2015/

https://samrat.me/posts/2017-11-04-kvstore-linear-hashing/
https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-it-so-popular/
https://dzone.com/articles/why-and-when-to-use-graphql-1
https://blog.logrocket.com/how-to-create-a-graphql-server-in-rust/
https://iipc.github.io/warc-specifications/specifications/cdx-format/cdx-2015/

Thank You

Questions are welcome!

