

Problem Statement

F

Introduction

Introduction

» Answer to all of this? - High performance database systems.

» There are many kinds of databases based on how structured the
data is and how the data will be queried.

* Most of the databases are built for general purposes where reads
and writes are equally important.

» Systems focusing on data retrieval or heavy querying of data
require database systems which allow fast read speeds.

* |n this project, we aim to build such a database system and show
its functionalities with respect to Search Engines.

.

Document Stores - Background

» Document stores are data storage systems that facilitate storing,
retrieving, and managing document type records.

 This kind of databases are an important part of NoSQL database
systems because the documents are semi-structured data.

» They offer the ability to query or update based on the underlying
structure of the document through APIs or a query/update
language.

%//////,

Document Stores & Search Engines

 Many modern search engines have a similar architecture to NoSQL
databases.

* Many search engines can also serve as a document store in their
own right.

» Their indexes and query processing are dispersed over multiple
servers.

* Document stores are frequently used to store unstructured data,
or data that can be saved in a variety of structures, such as social
network posts or web pages, etc.

|

0 se databases
wholly on fast reads

is fun to write your own custom
database as per your requirements!

.

Web Crawling

 Web crawlers are automatic programs that monitor recognized
websites for changes and follow links to new websites and pages,
indexing whatever content they come across.

A collection of URLs is the starting point for a web crawler.
* They read the text on the web pages and index it.
« Add newly discovered links to the queue of indexed sites.

 This allows search engines to return search results from index
pages, fast.

F

WARC Files

e standard for storing web

: @ digital object

S 11
o

e PDF and MP3 above, along with some

;v ormatting
native to the web

n and
'2?

WARC Files

« WARCs contain metadata about the collection and arrangement of
the sites’ media so that they can be read and represented in live
web browsing experiences like they were at the time of their
collection.

» These are maintained by the International Internet Preservation
Consortium (IIPC) which is an organization established to
coordinate efforts to preserve internet content for the future.

* The WARC file format standard was published by the International
Organization for Standardization (ISO) committee on technical
interoperability as 1SO 28500.

CDX Files

7

1
2,
) ~r1f
/

-
=

anc then read the subsequent offset
ecord in @ WARC file quickly.

o

System Architecture & Work Flow

?f/////

> by Indexer Module

h sent the query

o

Technology Choice - GraphQL

m different types of source APIs
| and provides extensibility in future

lored was an ODBC based driver which required a
///’/////,//4/ server and was difficult to integrate with Rust.

.

Components - Hashtable

The Hashtable serves the following purposes:

» Component which does the actual storing of data and is the
essence of this database system

» Fast read access of values (web pages) based on keys

» Worst-case run time complexity of read operation in linear
Hashtable is O(constant)

» Has no intelligence, does whatever it is told to do by the indexer
module and hence, can be used as a pluggable component

%%,

Technology Choice - Linear Hashing

» Key-value pairs are stored in an array with slots pointing to their
corresponding, value-storing linked lists, also called buckets.

 Linear hashing is a dynamic hashtable algorithm where the
buckets, as well as the bucket array can grow as new key-value
pairs are inserted.

« Without linear hashing, in case of collisions, the linked list could
grow to a long length and effectively, read can start becoming a
lengthy operation.

Technology Choice - Linear Hashing

* |In linear hashing, a threshold is defined for the length of the
linked lists (or size of a bucket).

» |f that threshold is reached, bucket is split into new bucket and
the values in it are re-hashed to newly split buckets, based on LSB
comparisons.

» Causes linear write times if one starts with two buckets because a
lot of splitting and re-hashing occurs.

» Ensures limited length of linked list thus, ensuring fast,
O(constant) read times.

* |s space efficient because at each split, only 1 extra bucket is
created, keeping extra space consumed to a minimum.

%%,

Components - Indexer Module

The Indexer Module serves the following purposes:

A utility which compresses and indexes the WARC records in a CDX
record like format, before storing them in the Hashtable.

» Also decompresses the records after their retrieval from
Hashtable, so that they can be sent as a response.

* Needs to be provided with the format in which indexing is
required.

» Gets this information from Query Engine, based on the schema.

Components - WARC /0 Utility

/ sle for them to be

y web crawlers and
///

suggests, serves the purpose of

Components - WARC /0 Utility

NARC file in GZIP format

'

dsting or new files
ressed WARC file in GZIP format

Language Choice - Rust

The whole project has been written in Rust because of the following
reasons:

» Rust is becoming the to-go choice wherever performance and
memory efficiency is required, some resources claiming that it
matches, if not exceed, C in terms of performance.

» Uses LLVM to generate assembly level code, hence the speed.
* Good for applications which require security and memory safety.

» Strictly-typed language which detects memory leaks and unsafe
code at compile-time.

» Borrow checker to check lifetime of variables at compile-time and
hence eliminating the need of garbage collection.

Hardware Specification

We performed various tests on the application using a machine with
below mentioned specification:

* Model - Dell Latitude 3410
e CPU - Intel® Core™ i5-10210U @ 1.6GHz (8 CPUs) ~2.1 GHz
e RAM - 8197MB =

Current Date/Time: Friday, December 10, 2021, 7:11:47 AM
Computer Mame: 226LATITUDES410
Operating System: Windows 10 Enterprise 64-bit (10.0, Build 19042)
Language: English (Regional Setting: English)
System Manufacturer: Dell Inc.
System Model: Latitude 3410
BIOS: 1.5.2

Processor: Intel(R) Core(TM) i5-102101) CPU @& 1.60GHz (8 CPUs), ~2.1GHz
Memory: 3192MEB RAM
Page file: 10037ME used, 30683ME available
Directx Version: Directy 12

Hardware Configuration

 Disk Type - Solid State Drive

[- x
Theme Help Language
n 1GiB_ ~|| C: 88% (210/238GiB)
ead (MB/s) Write (M .f}
2150.84] 1172.55

]

%//////,

Experiments & Dataset

Following slides will show experiments on two major components:

» Linear Hashtable - dataset is string key-value pairs ranging from 4
bytes to 16 bytes.
* Time taken for insertion of various number of records
* Time taken for retrieval of various number of records

« WARC |/0 utility - dataset will be compressed (GZIP) WARC files
 Time taken to read various number of records
« Time taken to write some number of WARC files

These will also be compared against other similar implementations.

Experiments & Results - Linear Hashtable

Number of Time (seconds) | Time (seconds) | Time (seconds) | Time (seconds)

Insertions — 4 bytes — 8 bytes — 16 bytes

40.5785 29.5620 29.2961 2
135.2164 115.9305 110.8547
294.1901 786.4800 790.2886

* Rows represent different number of insertions

» Columns represent, in bytes, the size of keys and values that were
inserted and the time taken

Experiments & Results - Linear Hashtable

Number of Time (seconds) | Time (seconds) | Time (seconds) | Time (seconds)

Retrievals - 4 bytes — 8 bytes

10,000 8.4741 4.0419 4.2534

20,000 77 .6415 11.5651 11.5278
50,000 77.5042 50.5842 55.6155
100,000 103.5 1.2 92.4166 91,2974

* Rows represent different number of retrievals

» Columns represent, in bytes, the size of keys and values that were
inserted and the time taken

Experiments & Results - Linear Hashtable

Number of Insertions | Time (seconds) — Time (seconds) -
Rust J5

10,000 19.5812 45.0361

20,000 40.5785 101.1892
50,000 135.2164 296.7893
100,000 294.1901 687.6312

* Rows represent different number of insertions

» Columns represent comparison between java script and rust
implementation starting with 2 initial buckets

Experiments & Results - Linear Hashtable

Number of Insertions | Time (seconds)— | Time (seconds) - Time (seconds) —
(2 buckets) (256 buckets) (1024 buckets)

20,000 40.5785 14.3429 15.2482
50,000 135.2164 43.1485 41.6578
100,000 294.1901 195.3374 156.7210

e Rows represent different number of insertions of key-values of 32
bytes

» Columns represent the time taken for insertions when the number
of initial buckets is increased

Experiments & Results - WARC Reads

Number of records Time (seconds) -
parsed Rust

10,000 71.5156
20,000 148.0942
50,000 432.8688

* Rows represent different number of WARC records parsed; each
record is of size ~20KB

.

Challenges

 Rust is a relatively newer and less popular language in comparison
to Java, C++, Python, JavaScript, etc.

» Steep learning curve
* Not many experts in this language

* Integration support available for established technologies but
nearly no support for custom implementations

 Lack of libraries in Rust which are easily found in older languages

 Strongly typed vs Loosely typed languages - Porting indexer
module from PHP to Rust was challenging

Learnings & Growth

.

Conclusion

« We have built a document store which can support applications
focusing on data retrieval.

* We have built a document store which is a high performing,
?urable,dand memory efficient database system which can support
ast reads.

* Our Linear Hashtable implemented using Rust, which is the core of
this fast database, performs better than other similar
implementations.

e Our WARC 1/0 utility in Rust performs similar to current Python
implementation.

References

:-‘5513.4:/‘4'//.491//1};

/]

]
i % UL

el t0-use-graphqgl-1
/{/ a-graphqgl-server-in-

fications/specifications/cdx-

https://samrat.me/posts/2017-11-04-kvstore-linear-hashing/
https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-it-so-popular/
https://dzone.com/articles/why-and-when-to-use-graphql-1
https://blog.logrocket.com/how-to-create-a-graphql-server-in-rust/
https://iipc.github.io/warc-specifications/specifications/cdx-format/cdx-2015/

