
HIGH PERFORMANCE DATA STORE IMPLEMENTATION IN RUST

HIGH PERFORMANCE DOCUMENT STORE IMPLEMENTATION IN RUST

A Project Report

Presented to

Dr. Chris Pollett

Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Class

CS297

By

Ishaan Aggarwal

May 2021

COMPARING PARALLEL SORTING ALGORITHMS

i

ABSTRACT

Databases are a core part of any application which requires persistence of data. A lot of

applications which have become an indispensable part of lives of people, like search

engines, banking systems, social media apps, etc., cannot operate without databases. Due

to such heavy involvement of databases, the performance of these applications is directly

proportional to how fast their database operations are. There are different kinds of

databases for different requirements from applications. Search engines require high data

read speeds for the most part as data updating is rare.

The aim of this project is to implement a high-performance document store for the open-

source search engine Yioop!. We are using Rust to make a document store which is fast,

robust, and memory efficient. This semester, we focused on implementing the modules

which will be required to achieve our aim. These include - a server which can return a

document based on the key provided in the request, implementing linear and consistent

hashing, and developing a reader-writer for WebArchive (.warc extension) files.

Index Terms: High Performance Document Store, Linear Hashing, Consistent Hashing,

WebArchive I/O, Rust

COMPARING PARALLEL SORTING ALGORITHMS

ii

TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. DELIVERABLE-1: A SINGLE NODE DOCUMENT QUERY SERVER ... 3

3. DELIVERABLE-2: LINEAR HASHING IMPLEMENTATION... 3

4. DELIVERABLE-3: WEB ARCHIVE FILE READER-WRITER .. 5

5. DELIVERABLE-4: CONSISTENT HASHING IMPLEMENTATION ... 7

6. CONCLUSION .. 9

COMPARING PARALLEL SORTING ALGORITHMS

1

1. INTRODUCTION

In recent times, the volume of data that is being produced and consumed daily, has

increased aggressively. According to a recent survey by Visual Capitalist [1], in one internet

minute, roughly 4 million Google searches happen, around 700,000 hours’ worth of videos

are watched on Netflix, around 2 million snaps are created on Snapchat, and 4.5 million videos

are uploaded and viewed on YouTube. Apart from these, there are many other essential

services which require error-free storage and processing of data like banking, social media,

government records, etc. The above examples have one thing in common, proper storage and

retrieval of data, and this is what databases are required for. In this project, we aim for

creating a high-performance database system for our application, Yioop! search engine.

Search engines are such applications which depend heavily on their database systems.

Due to the importance of databases in search engines, their performance becomes solely

dependent on how fast their database systems are. They find, store, and update the content

of web pages in their databases, called web crawling. When a user searches for a particular

content, search engines match that with content in web pages that they have stored and

return relevant results. According to worldwidewebsize.com, there are at least 5.27 billion

pages on the internet. To deal with this much amount of data, search engines require not only

sophisticated algorithms, but databases which can support high read-write speeds. Hence,

we will be building a custom database which can fulfil these requirements.

Yioop! is a GPLv3, open source, PHP search engine software. It provides many features as

done by larger search portals like, search results, media services, social groups, blogs, wikis,

web site development, and monetization via ads. A search engine needs to search

inconsistent web pages and show the search results as quickly as possible. This requires a

high-performance document store. Document store is a type of database which allows

schema-free organization of data. This kind of database is most suitable for a search engine

because web pages do not follow any consistent format (schema) or size. This project aims at

building a high-performance document store for Yioop!. This semester, the focus was on

COMPARING PARALLEL SORTING ALGORITHMS

2

implementing the individual modules which will be required in achieving our aim at the end

of the project.

We chose Rust for this implementation. It lets developer decide whether they want to

store data on the stack or on the heap and determines at compile time when memory is no

longer needed and can be cleaned up. This allows efficient usage of memory as well as more

performant memory access [2]. The remaining document is organized in four sections. In

Section 2, we talk about how we implemented a single-node document query server.

Section 3 explains the work done in implementing linear hashing. Section 4 elaborates on

the module which can read and write web archive files (.warc files). Section 5 describes the

implementation of consistent hashing.

COMPARING PARALLEL SORTING ALGORITHMS

3

2. DELIVERABLE-1: A SINGLE NODE DOCUMENT QUERY SERVER

The aim of this deliverable was to get a hands-on with Rust by starting with the

implementation of a simple single node server which can act as a document key-value store.

This will be utilized in future as ultimately, we intend to create an efficient, robust, and high-

performance document store.

The code utilizes a Rust library (called as Rust crate) - unqlite. UnQLite [3] is a software

library which implements a self-contained, serverless, zero-configuration, transactional

NoSQL database engine. UnQLite is a document store database like MongoDB, Redis,

CouchDB etc. as well as a standard key-value store like BerkeleyDB, LevelDB, etc. It is an

embedded NoSQL (key-value store and document-store) database engine. Using this, we

create a key-value store on disk and try storing some key-value pairs. The code then iterates

over those stored values and based on some comparison it deletes the entries. At the end, it

returns the remaining pairs in the store. This implementation shows the capability of

storing/deleting/modifying the entries in the key-value store which will be handy for the

ultimate aim of the project of storing warc files and reading them as required.

3. DELIVERABLE-2: LINEAR HASHING IMPLEMENTATION

Linear Hashing is a dynamic hashing technique that grows the number of initial buckets

one at a time according to some criteria. Hence, the name Linear Hashing. The purpose of this

deliverable is to explore the implementation of dynamic hashing scheme known as Linear

Hashing. This will help in extending the simple key value store developed in the previous

deliverable and lead to development of consistent hashing, as explained in Section 5.

Elaborating more on how linear hashing works, a typical hash function's output will always

give a fixed number of bits. Let us assume a hash function gives a 32-bit hash output from

some key. In Linear Hashing however, we will only use the first I bits to address to N initial

COMPARING PARALLEL SORTING ALGORITHMS

4

buckets. If we start with N =2 bucket, then I = 1 bit. So, we will only use the first bit of the

hash function's 32-bit output to map to a bucket. Let our criteria for adding a bucket be

passing a load factor threshold that is,

Load factor = number of items / (number of buckets * average items in a bucket)

Once the number of insertions exceeds the threshold, we add a bucket to N. If N becomes

another power of 2: N > (2^I -1) we increment I to address the new buckets. When any bucket

is added we split the bucket at an index S. S is initially the first bucket. When we split a bucket,

we rehash all the keys at bucket S add if the keys rehash to the address of the newly added

bucket, we move the key there. Once N buckets has doubled from its initial position, we reset

the S index to 0.

In our implementation, we first hash the key, and take however many bits the hashtable

is currently configured to take. This tells us which bucket to place the record in. A bucket is a

linked list of pages, which are chunks of bytes on disk. Pages in the linked list may be full, so

we now need to figure out which page the record should go in. Once we figure out which page

it should go in, this page is fetched from disk. We then make the necessary changes to the

page in memory– eg. write record, increment number of records in page’s header)– then save

it out to disk. Getting the value is very similar and uses the same method that we use to figure

out which page in the bucket the record should be placed in. We implemented the code in

the form of a library which can be used directly. The tests included inserting one million

records into the key-value store and then trying to retrieve a thousand values. The insertion

of these many records of key and value sizes of 8 bytes took around 25 seconds on an average

and the retrieval of the values took around 10 seconds on average for multiple runs.

There is a scope of improvement in this based on future requirements. One of them is

that the key-value store should be able to allow flexible value sizes. Current implementation

supports only fixed size of the value. Another improvement would be to implement Least

Recently Used (LRU) cache mechanism instead of FIFO to be able to return the values more

efficiently. Another feature that would be useful is to be able to delete the records based on

the key. If it seems that there is a requirement of these improvements, we will be

implementing them.

COMPARING PARALLEL SORTING ALGORITHMS

5

4. DELIVERABLE-3: WEB ARCHIVE FILE READER-WRITER

The web archive (.warc) files are the files which are aggregation of multiple web pages in

a compressed format. These files are a file format tailor made to for archiving resources from

webpages. They files have been used for historical storing of the web-crawl data as sequence

of blocks, collected by the web crawlers. Each WARC file is a concatenation one many WARC

records. Along with their index files (.cdx), it becomes easier to jump to the offset in memory

which stores a relevant information, without needing to decompress the whole files. The

Yioop! search engine stores its crawl data in warc format, which makes this deliverable a

useful tool to read-from and write-to the WARC files.

Example of a WARC file’s header

A WARC record can be broken down in two distinct parts a WARC header and the content

block. With the WARC header containing some information about the block. WARC files are

usually very large and so are gzipped. Hence, this deliverable also involved reading of gzip

files. WARC record headers all start with this line 'WARC/1.0'.

As mentioned earlier, CDX files are used to index records in WARC files. A CDX file contains

a header line specifying the format of all subsequent lines. All subsequent lines universally

contain the URL of a WARC record, information about the record, and offset plus length of

the record in a WARC file. Thus, you can read a CDX index line and then read the subsequent

COMPARING PARALLEL SORTING ALGORITHMS

6

offset specified to retrieve the WARC record in a WARC file quickly. CDX files are simple to

parse as you just need to read the first line in the CDX file then parse generate the format

structure based on the official CDX file specifications. Then read line by line retrieving and

parsing the line according to that format structure. In the CDX structure there should be a

WARC file name and offset where we can use to quickly retrieve the CDX record associated

with this index.

Example of a CDX file

In our implementation, we utilized a Rust crate called libflate[4]. It is a Rust

implementation of DEFLATE algorithm and related formats (ZLIB, GZIP). After decompressing

the WARC file, we are currently storing the result in memory. This is considering the use case

of a user querying some data and we need to return the webpages. This number is something

which can be kept in memory and need not be stored in a separate file. We tested our code

with the gzipped warc files downloaded from archive.org and commoncrawl.org. Each file was

of sizes around one gigabyte. Each WARC file was of five gigabytes. The WARC file parser was

able to read the whole file in twelve minutes. Though in actual requirement, there are remote

chances that we need to read the whole WARC file, we will be using CDX files to make reading

more efficient.

COMPARING PARALLEL SORTING ALGORITHMS

7

5. DELIVERABLE-4: CONSISTENT HASHING IMPLEMENTATION

Consistent Hashing is a distributed hashing scheme that operates independently of the

number of servers or objects in a distributed hash table by assigning them a position on an

abstract circle, or hash ring. This allows servers and objects to scale without affecting the

overall system. It employs hash function on keys to determine their distance from nodes and

assigns the key-value pair to the nearest node to that key.

In our implementation, we mapped the hash output range onto the edge of a circle. That

means that the minimum possible hash value, zero, would correspond to an angle of zero, the

maximum possible value (let us say INT_MAX) would correspond to an angle of 360 degrees,

and all other hash values would linearly fit somewhere in between. So, we could take a key,

compute its hash using the xxhash function, and find out where it lies on the circle’s edge. An

example could look like this where Kate, John, Jane, Steve, and Bill are keys while A, B, and C

are server nodes:

Taking a mechanism where the hash function assigns a key-value to the server node nearest

to it on the circle, the allotment could look like the image below.

COMPARING PARALLEL SORTING ALGORITHMS

8

In consistent hashing, when a server is removed (let us say due to some failure), then only

the keys from that server are relocated. For example, if server S3 is removed then, all keys

from server S3 will be moved to server S1 but keys stored on server S1 and S2 are not

relocated. But there is one problem when server S3 is removed then keys from S3 are not

equally distributed among remaining servers S1 and S2. They were only assigned to server S1

which will increase the load on server S1. Similar thing happens when a new server is added.

In general, only the K/N number of keys are needed to be re-mapped when a server is added

or removed. K is the number of keys and N is the number of servers (to be specific, maximum

of the initial and final number of servers).

To create a high-performance and robust document store, we will be using consistent

hashing to distribute copies of documents to multiple server nodes.

COMPARING PARALLEL SORTING ALGORITHMS

9

6. CONCLUSION

Databases are very important when it comes to the performance of a search engine. Along

with proper algorithms, the internal implementation of the database system is also very

important. This semester we worked on developing the ingredients, in the form of individual

working modules, for our aim of building a high performance data store for the open source

search engine, Yioop!. We worked on developing a single node document query server,

implemented linear hashing, WARC and CDX file reader-writer, and explored consistent

hashing.

In the second semester of the project, we will focus on understanding the current

implementation of document store in Yioop!. This is currently written in PHP. We will require

to migrate that implementation to Rust and utilize the modules implemented in this semester

to enhance the performance of the search engine by reducing query times. We will require

this implementation to support running on multiple nodes to ensure high availability and fault

tolerance. We will deploy the application and run performance tests to compare the times

with current implementation. Based on those results, we will further develop our

implementation to improve the performance.

COMPARING PARALLEL SORTING ALGORITHMS

10

REFERENCES

[1] https://www.visualcapitalist.com/what-happens-in-an-internet-minute-in-2019/

[2] https://stackoverflow.blog/2020/01/20/what-is-Rust-and-why-is-it-so-popular/.

[3] https://crates.io/crates/unqlite

[4] https://docs.rs/libflate/1.1.0/libflate/

[5] https://samrat.me/posts/2017-11-04-kvstore-linear-hashing

[6] https://Rust-lang-nursery.github.io/Rust-cookbook/file/read-write.html

[7] https://archive.org/download/CC-MAIN-2021-04-1610703512342.19-0022

[8] https://commoncrawl.org/2021/03/february-march-2021-crawl-archive-now-available/

[9] https://iipc.github.io/warc-specifications/specifications/cdx-format/cdx-2015/

[10] https://www.toptal.com/big-data/consistent-hashing

[11] https://github.com/mattnenterprise/Rust-hash-ring/tree/master/examples

