
Dynamic Hashing Schemes
David Bui

Static Hashing
• Storage space allocated

statically

• Issue 1: If file size exceeds
allocated space the entire
file needs to be moved to a
larger space and rehashed

• Issue 2: Eventually access
time will grow from O(1) to
O(n) due to overflow.

• Static hash techniques:
Linear Probing, Coalesced
Chaining, Separate Chaining

Separate Chaining

Dynamic Hashing
• Hashing schemes that expand and

contract when needed.

• Require hash functions to generate
more key bits as file expands and
less key bits as file shrinks.

• There are two types of dynamic
hashing schemes those with
directory schemes and
directoryless schemes

Extendible Hashing

• The dynamic hashing technique
that uses directories.

• Directories store bucket addresses
in pointers. Each directory has a
dynamically changing id.

• Global Depth: Number of bits in
directory id

• Local Depth: Number of bits in
bucket id. Local Depth is always
<= Global Depth

Extendible hashing steps

1. Hash the data

2. Match “global depth” number lower significant bits of
the hashed data to the corresponding directory id

3. Go to bucket pointed by directory and insert if there is
no overflow.

4. If bucket overflows and local depth = global depth,
expand directory, split bucket, and then increment
local and global depth number.

5. If bucket overflows and and local depth < global depth
just split the bucket and increment local depth by 1

6. All split buckets must be rehashed

Linear Hashing
• The dynamic hashing

technique that uses no
directories.

• Instead, keys are hashed
directly to a bucket.

Linear Hashing Terms

• N = number of buckets (initial number always a power of 2)

• S = index of bucket to be split

• I= number of bits needed to address N BUCKETS

• Load factor = number used a threshold to determine if we expand or
contract the table

Linear Hashing Steps

• A hash function will give typically give some number of bits. Let’s say our hash
function gives 32-bit output from some key. However, in Linear Hashing we will
only use the first I bits since we only start with N buckets.

• If we start with N= 2 buckets, then I = 1 bits. So, we will only use the first bit of
the hash function’s 32-bit output to map to a bucket.

• Once number of insertions exceed the load factor add 1 bucket to N. If N >(2^I -1)
we need to increment I to address to the new bucket.

• When any bucket is added we split the bucket at index S’s keys with the new
bucket, rehash if I is incremented, and then increment S. Once N has doubled
from where it was initially, we reset S to 0.

Comparison

• Extendible Hashing
• Advantages

1. Since Buckets are a
fixed size in directory
hashing schemes
possible to set a
upper bound access
times.

• Disadvantages
1. Wasted memory when

global and local depth
difference becomes
large.

2. Directory can become
unbalanced due to too
many hashed records.

• Linear Hashing
• Advantages

1. Lower on average
access time due to no
directory.

2. Partial expansion
more graceful than
doubling directory

• Disadvantages
1. Unable to set an

upper bound like
directory schemes

2. Physical
implementation
performance is
unclear.

Reference

• Enbody, R. J., & Du, H. C. (1988). Dynamic hashing schemes. ACM
Computing Surveys, 20(2), 850-113

