Dynamic Hashing Schemes

David Bui

Static Hashing

Separate Chaining

0 0 o 0
1 1 1 1 = TE
2 2 2 2
3 3 3 3
4 4] 4
5 5 5 5
& & &]
itial Empty Table Insert 50 Insert 700 and 76 Insert 85: Collision
Cceurs, add to chain
o o
1 —N =5 =N 92 | 1 = I I
2 2
3 3 = T
g 4
5 5
& &
Inser 92 Collision Insert 73 and 101
Occurs, add to chain

 Storage space allocated
statically

* Issue 1: If file size exceeds
allocated space the entire
file needs to be moved to a
larger space and rehashed

* Issue 2: Eventually access
time will grow from O(1) to
O(n) due to overflow.

e Static hash techniques:
Linear Probing, Coalesced
Chaining, Separate Chaining

Dynamic Hashing

* Hashing schemes that expand and s oot
contract when needed. o

e Require hash functions to generate —f 0=
more key bits as file expands and Directories Date
less key bits as file shrinks.

Buckets

Extendible Hashing

* There are two types of dynamic
hashing schemes those with Example of Linear Hashing
directory schemes and > On 5plit, Ry is used to

re-distribute entries.

directoryless schemes

h h PRIMARY (43 = 101011) h h

1 0 | Next—0 PAGES H . 1 0

o0 | oo | (32144361 | 000 | 00

Next=

oot | or| [#2595:] | with RO o1 | o1 o

010 | 10 '\ Primary 010 | 10
bucket page

OVERFLOW
PAGES

314354 7 114

011 11 .‘ 011 11

(h;info is shown only (Actual contents

Sor illustration....!) of linear hashed file) 100 00 ..

Extendible Hashing

Local Depth ~—3[7] * The dynamic hashing technique

Global Depth=2 |2 i i
Slobal Depth that uses directories.

e Directories store bucket addresses
in pointers. Each directory has a
dynamically changing id.

* Global Depth: Number of bits in
directory id

. . Data
Directories

* Local Depth: Number of bits in

bucket id. Local Depth is always
Extendible Hashing <= Global Depth

Buckets

Extendible hashing steps

Hash the data
Local Depth —~a[?2]

Match “global depth” number lower significant bits of ¢ ..0e0m2 [2

the hashed data to the corresponding directory id Data
Go to bucket pointed by directory and insert if there is 2]

no overflow.)I Data

If bucket overflows and local depth = global depth,

expand directory, split bucket, and then increment Data
local and global depth number. 7]

If bucket overflows and and local depth < global depth | | Data

just split the bucket and increment local depth by 1 Directories

All split buckets must be rehashed Buriels

Extendible Hashing

Linear Hashing

* The dynamic hashing

Example of Linear Hashing technique that uses no

directories.
On split, by 149 1S used to * Instead, keys are hashed
re-distribute entries. . ’
directly to a bucket.
Level=0, N=4 Insert 43* Level=0
h | n PRIMARY (EEML e [l PRIMARY OVERFLOW
1 0 | Next=0 PAGES U . 1 0 PAGES PAGES

o | oo| EEE] w | o (G

NEX
EE| U0 T o | o | TR

L

oo | 10 | (411811070 erimary oo | 10

== bucket page

001 01

* 114 31435474 11 ‘
o | 1| [P onn | | B3PI (e T
T _—/
(h; info is shown only (Actual contents - -
Sor illustration....!) of linear hashed file) 100 00 |44q 36%

15

Linear Hashing Terms

* N = number of buckets (initial number always a power of 2)
* S = index of bucket to be split

e |[= number of bits needed to address N BUCKETS

* Load factor = number used a threshold to determine if we expand or
contract the table

Linear Hashing Steps

* A hash function will give typically give some number of bits. Let’s say our hash
function gives 32-bit output from some key. However, in Linear Hashing we will
only use the first | bits since we only start with N buckets.

* If we start with N= 2 buckets, then | = 1 bits. So, we will only use the first bit of
the hash function’s 32-bit output to map to a bucket.

* Once number of insertions exceed the load factor add 1 bucket to N. If N >(27 -1)
we need to increment | to address to the new bucket.

 When any bucket is added we split the bucket at index S’s keys with the new
bucket, rehash if | is incremented, and then increment S. Once N has doubled
from where it was initially, we reset S to 0.

* Extendible Hashing

e Advantages

1.

Since Buckets are a
fixed size in directory
hashing schemes
possible to set a
upper bound access
times.

* Disadvantages

1.

2.

Wasted memory when

global and local depth
difference becomes
large.

Directory can become

Comparison

* LinearHashing

unbalanced due to too
many hashed records.

* Advantages
1.

Lower on average
access time due to no
directory.

Partial expansion
more graceful than
doubling directory

. Disadvantages
1.

Unable to set an
upper bound like
directory schemes
Physical
implementation
performance is
unclear.

Reference

* Enbody, R. J., & Du, H. C. (1988). Dynamic hashing schemes. ACM
Computing Surveys, 20(2), 850-113

