
Node.js Document Store

for Web Crawling

David Bui

1

WARC-KIT

 A JavaScript tool kit for WARC files created in Node.js

 Comes with a WARC parsing tool known as WARCFilter

 Comes with a custom JavaScript only Linear Hash Table

document store

 Overall feature is to create custom indices on WARC file

collections

2

Web Crawling

 Web Crawling: Programmatically browsing the internet through bots

1. Search engine Indexing

2. Web Archiving

3

Link Rot

 Unreachable web

pages

 Dead links

 Deregistered domains

 Chesapeake Digital

Preservation Group

4

Web Archiving

 Digital preservation for posterity.

 Commonly stored resources include

web page content, images and

videos

5

Archive File

Formats

 ARC file format

 WARC file format

6

Current Tools

 warc: A Internet Archive Python WARC library (brief instructions)

 ia-hadoop-tools: A Internet Archive Java/Hadoop/Pig WARC tool (no

documentation)

 webarchive-commons: Java WARC tools maintained by the IIPC

 warcit: Python library for converting html files to WARC files

 WARCIO: Python library for streaming WARC records.

7

Where’s everything else?

8

Node.js

 Language of the web

 Backend JavaScript runtime environment

 Simple, Fast, and Lightweight

 Node Package Manager(NPM) is awesome

 Shown to be 20 times faster than Ruby on Rails

 Few WARC related modules

 Let’s fix that

9

WARC File Format
• Extension of the Internet Archive’s ARC File

Format. Hence the name Web ARChive.

• The WARC file consists of a concatenation
of one or more WARC records.

• There are 8 types of WARC records seen as
seen to the left.

• A WARC record consists of

• The header

• Then Record content block

• The header has mandatory named fields

• Date

• Type

• Length of the record

• Plus, other fields that assist in retrieval

• The content block contains resources in
any format such as images or audio

10

warcinfo record

Response record with

html content

11

CDX File

 Crawl Index (CDX) files consist of individual lines of text that each summarize

a WARC record.

 Starts with a CDX legend that describes how each line of data is formatted.

 Used to index WARC files.

12

WAT and WET

 Web Archive Transformation (WAT): JSON transformed WARC

records

 WARC Encapsulated Text (WET): Plain Text only WARC record

13

WARCFilter

 CLI program to parse and filter out WARC records

 Create new WARC files using records from existing

collections

 Create CDX index files on WARC files

 Parse CDX files and retrieve WARC records.

 Create Webgraph datasets from Common Crawl’s

dataset

14

Webgraph Dataset Creation

 Generated using a Common Crawl

wat.paths file.

 Datasets are generated as a single

compressed text file.

 Each line represents a directed edge.

15

JavaScript Databases

 In memory ones do exist

 On disk databases are nonexistent

 Hybrid On disk databases are plentiful.

 Database storage structure: B+ tree, Log Structured Merge tree,

Hash Tables

 URL Key -> WARC record

16

Linear Hashing Explained

 A hash function will give typically give some number of bits.
Let’s say our hash function gives 32-bit output from some key.
However, in Linear Hashing we will only use the first I bits since
we only start with N buckets.

 If we start with N= 2 buckets, then I = 1 bits. So, we will only
use the first bit of the hash function’s 32-bit output to map to a
bucket.

 Once number of insertions exceed the load factor add 1 bucket
to N. If N >(2^I -1) we need to increment I to address to the new
bucket.

 When any bucket is added we split the bucket at index S’s keys
with the new bucket, rehash if I is incremented, and then
increment S. Once N has doubled from where it was initially, we
reset S to 0.

17

Linear Hash Table Implementation

 Have folders representing a bucket.

 Have header .hix files with offset and length of a .txt data file.

 Implemented put, get, delete, and update functions.

 Use Streams to maximize speed.

 Key-value is limited documented oriented is better

18

Pack

 Originally a Perl function

 Encode primitive variables into a binary String

 boolean: 1 byte, short 2 bytes, int 4 bytes, doubles 8 bytes,

 Has an unpack function to reverse the process.

19

PackedTableTools

 Yioop’s PackedTableTools

 JavaScript Port

 Define a table format for a set of records

 Packs an array of records into a String.

 Make Hash Table document oriented

20

Bucket

Document Style

PackedTabledTools

row
Key

Value

Hix File

Data File

21

Express.js

 All databases need an API

 De facto server framework for Node.js

 Common database operations implemented through HTTP routes

22

GraphQL
 Query language for APIs

 Strictly Defined Schema

 Can be combined with Express.js

 Comes with Graph(i)QL a GUI for

queries

23

WARC-KIT

Functionality

 Create PackedTableTools format

on a WARC file collection

 WARCFilter to parse WARC files

and generate PackedTableTools

Indices

 Insert Indices into Linear Hash

Table.

 Create Express interaction server

and GraphQL query server upon

the Linear Hash Table.

24

25

Country Crawl

 Find records with .country domains

26

27

WARCFilter Experiments

 Dying Dell G7 15 Laptop: I7 8750H 16 GB ram

Samsung 970 evo SSD

 Small Internet Archive WARC dataset

 CDX files vastly speed up filter time.

 Current JS tools for WARC provide only pure

parsing.

 Web graph generation is resource intensive.

28

Linear Hash
Table
Experiments

 Initial bucket

configuration is

crucial.

 Average 1,500

inserts/second

 Get tests on average

are around 2,500 gets

/second

29

WARC-KIT Experiments

 Initial indices creation comparable to

Linear Hash Table insert time.

 Average 46 seconds to create an index

upon 1 WARC file.

 Queries by URL are instant, while

complex queries take longer but are

consistent.

 Common Crawl index server has similar

functionality.

30

Conclusion

 WARC-KIT a WARC toolkit created in JavaScript

 Provides a standalone WARC parsing tool in JavaScript that can create new

WARC files, create CDX index files, and create Web graph datasets.

 Also, provides a Linear Hash Table database that provides document style

storage.

 Finally, WARC-KIT’s main function is to create custom indices upon a WARC

collection for querying.

31

Future Work

 Web crawler in Node.js.

 Create better WARC data.

 Improve Hash table performance by further optimizing bucket splits.

 Improve Web graph dataset creation by filtering out Content delivery

networks (CDNs).

 Improve WARC-KIT’s GraphQL schema.

32

Thank You!

 Happy Holidays!

33

References

 1] Panchal Akshar. Overlapping Community Detection in Social Networks. San Jose State University, 2021.

 [2] CDX and DAT Legend. url: https://archive.org/web/researcher/cdx legend.php (visited on11/10/2021).

 [3] Common Crawl Data. url: https://commoncrawl.org/the-data/get-started/ (visited on11/14/2021).

 [4] Dynamic hashing technique of Berkeley DB. url:
https://titanwolf.org/Network/Articles/Article?AID=9823fa36-325a-40bc-99bc-8f6e0173be50 (visited on
11/14/2021).

 [5] GraphQL. url: https://graphql.org/ (visited on 11/14/2021).

 [6] Adi Robertson. Link rot in 2012: keeping track of how web addresses go dead. May 15, 2012. url:
https://www.theverge.com/2012/5/15/3021913/chesapeake-digital-preservation-group-link-rot-report (visited
on 11/10/2021).

 [7] RustLinearHashTableimplmentation.url:https://github.com/samrat/rust-linhash(visitedon 11/17/2021).

 [8] Stanford Web Archiving Tutorials and Resources. url: https://library.stanford.edu/projects/

 web-archiving/research-resources/tutorials-and-examples (visited on 11/15/2021).

 [9] WARC-KIT Code. url: https://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/

 Spring21/david/WARC_KIT_Code.html.

 [10] WARC,WebARChivefileformat.url:https://iipc.github.io/warc-specifications/specifications/

 warc-format/warc-1.0/#warc-record-types (visited on 11/10/2021).

 [12] Yioop: Open Source Search Engine Software. url: https://www.seekquarry.com/ (visited on11/10/2021).

34

https://www.theverge.com/2012/5/15/3021913/chesapeake-digital-preservation-

