
Node.js based Document Store for Web Crawling

CS 298 Project Report

Presented to

Prof. Chris Pollett

Prof. Katerina Potika

Prof. Ben Reed

Department of Computer Science

San Jose State University

by

David Bui

Fall 2021

Abstract

WARC files are central to internet preservation projects. They contain the raw resources

of web crawled data and can be used to create windows into the past of web pages at the time

they were accessed. Yet there are few tools that manipulate WARC files outside of basic parsing.

The creation of our tool WARC-KIT gives users in the Node.js JavaScript environment, a tool kit

to interact with and manipulate WARC files.

Included with WARC-KIT is a WARC parsing tool known as WARCFilter that can be used

standalone tool to parse, filter, and create new WARC files. WARCFilter can also, create CDX

index files on the WARC files, parse existing CDX files, or even generate webgraph datasets

for graph analysis algorithms. Aside from WARCFilter, WARC-KIT includes a custom on disk

database system implemented with an underlying Linear Hash Table data structure. The database

system is the first of its kind as a JavaScript only on disk document store. The overall main

application of WARC-KIT is that it allows users to create custom indices upon collections of

WARC files. After creating an index on a WARC collections, users are then query their collection

using the GraphQL query language to retrieve desired WARC records.

Experiments with WARCFilter on a WARC dataset composed of 238,000 WARC records

demonstrates that utilizing CDX index files speeds WARC record filtering around ten to twenty

times faster than rawWARC parsing. Database timing tests with the JavaScript Linear Hash Table

database system displayed twice as fast insertion and retrieval operations than a similar Rust

implemented Linear Hash Table database. Experiments with the overall WARC-KIT application

on the same 238,000 WARC record dataset exhibited consistent query times for different complex

queries.

1

Contents

1 Introduction 6

2 Preliminaries 8

2.1 Warc File Format . 8

2.2 CDX File Format . 12

2.3 WAT and WET Formats . 12

2.4 Linear Hashing . 14

2.5 Node.js . 16

2.6 GraphQL . 18

3 Implementation 22

3.1 WARCFilter . 22

3.2 Node.js Database . 25

3.3 Express Servers . 29

3.4 WARC-KIT . 30

4 Experiments 35

4.1 WARCFilter Experiments . 35

4.2 Database Experiments . 39

4.3 WARC-KIT Experiments . 41

5 Conclusion 44

2

List of Figures

1.1 A snapshot of Google’s homepage in 2003 viewed through the Internet Archive’s

Wayback Machine. 7

2.1 Example of a WARC record, consisting of both the header and content block. . . . 10

2.2 The possible types of WARC record types defined in [32]. 11

2.3 An example of a CDX file, including the initial header legend and index lines. . . 12

2.4 A WAT file JSON envelope example including header block and content block. . . 13

2.5 The directory structure of the Extendible Hashing scheme. 15

2.6 Example of how Linear Hashing is conducted, where I bits represents a mapping

to a bucket index. From [18], Figure 21. 16

2.7 Example of a simple GraphQL Schema definition. 19

2.8 Example of a GraphQL Schema definition with both queries and mutations. 20

2.9 TheGraphiQLGUIwhich allows users and developers to performGraphQL queries

on the fly. 21

3.1 Example of a webgraph dataset file generated from a Common Crawl WAT file

collection. 24

3.2 The argument format of the WARCFilter CLI program. 25

3.3 The indices in a header .hix file. Each line contains a hash in JavaScript BigInt

representation, a offset, and a length of a value in the data file. 27

3.4 The process of defining and packing data using PackedTableTools. PackedTable-

Tools formatted objects are packed into formatted binary string with metadata

columns boolean, int, and text proceeding the packed data. 28

3.5 List of commands possible through the WARC-KIT CLI. 32

3.6 Flow chart of a WARC file collection indexing operation using WARC-KIT. 33

3.7 The GraphiQLQuery page result of a JPG query on a WARC-KIT GraphQL server. 34

3

4.1 An example of usingWARCFilter’s CLI program to create a CDXfile from aWARC

file. 35

4.2 A community detection graph produced from aWebgraph dataset generated from

the WARCFilter tool [1]. 39

4.3 Comparison of insertion runtime between a Linear Hash Table with initial num-

ber of bucket set to 256 buckets versus 1024 buckets. 40

4.4 The Common Crawl index server search page, which allows users to query their

CDX files. 43

4

List of Tables

2.1 NPM Packages used in WARC-KIT. 18

4.1 Comparison of the time WARCFilter takes to parse and filter WARC files directly

versus parsing their CDX files. 36

4.2 Comparison of the time node-warc takes to parse through WARC file Records . . 37

4.3 Table showing the time and number of edges generated for each Common Crawl

dataset paths file. 38

4.4 Get performance test between our JavaScript implemented Linear Hash Table vs

a Rust implemented Linear Hash Table . 41

4.5 Time to create and insert PackedTableTools formatted indices into Linear Hash

Table and create a GraphQL query server on a WARC file collection 42

4.6 VariousQueries on the GraphQL query server created from a indexed WARC file

collection. 42

5

1. Introduction

Web crawling is the act of programmatically browsing the internet to either indexwebsites

for search engines or archive internet resources for both research and preservation purposes. The

Internet Archive is one such organization dedicated to preservation of the World Wide Web [27].

Through their open source web crawler Heritix and their archive viewer the Wayback Machine,

the Internet Archive stands as the organizational standard to strive towards in internet archival

projects. In order to store the data obtained from their crawls, the Internet Archive created the

WARC file format as a standardized way to store crawled data. WARC files contain a series a

records with each record corresponding to either the original web page, an image, or a video

retrieved from a crawled URL on the internet. The Internet Archive and other organizations like

it usually provide an interface allowing average users to access their web crawls to view their

WARC files. The original data while preserved and viewable through one of the many WARC

viewer tools, can only be accessed if the user remembers the original URL. This is a inconvenient

for most users as exact URLs are usually not human readable let alone rememberable. Thankfully

if one wants to create one’s own WARC file collections to save one’s favorite web pages, there

are many free open source web crawlers that can save specified websites into personal WARC

file collections like the Internet Archive’s Heritix. Tools to process and analyze large amounts of

WARC files also exist, although they most rely on existing online WARC file resources such as

Common Crawl [25]. Unfortunately, there are only a few dedicated tools for users to maintain,

and search their own WARC collections. Many of those tools are also written only in either Java

or Python leaving programmers in other languages fending for themselves.

One such tool that is written in another programming language that allows users to main-

tain and index their own WARC collections is Yioop, an open source PHP search engine [34].

Having tools like Yioop in other programming languages would allow more extensibility in the

processing of WARC files. For example, JavaScript with the advent of Node.js has a large open

source community of useful modules such as Express.js for server side web programming. Yet,

there are few JavaScript modules to work with WARC files. To solve this gap in WARC process-

6

ing and indexing tools for users, we created a JavaScript tool that has these WARC manipulation

features named WARC-KIT. WARC-KIT is a tool composed of a combination of a newly created

WARC processing tool along with a custom made database system in Node.js that allows users

to filter, query, and index their own WARC file collections.

The rest of the report is organized as follows. We discuss the the format of WARC files,

their CDX index files, and other derivatives of WARC files. Subsequently, we discuss dynamic

hashing techniques andwhywe chose to develop the tool in Node.js. Next we discuss the creation

and design decisions of our toolkit to work with WARC files and their derivatives from existing

WARC collections. Then we discuss the creation of the database system, its underlying dynamic

hashing implementation, and document style storage of rows. After we discuss the overall design

of WARC-KIT starting with the extraction of a table format using the WARC parsing tool, inser-

tion of the generated indices into the database system, and the creation of a GraphQL server to

allow GraphQL queries of our WARC files. Thereafter, we conduct experiments on WARC-KIT,

discuss its performance in various scenarios, and conduct comparisons to other similar systems.

Finally we conclude this paper with a discussion on improvements and future ideas.

Figure 1.1: A snapshot of Google’s homepage in 2003 viewed through the Internet Archive’s

Wayback Machine.

7

2. Preliminaries

Before we discuss the design and implementation of the the tools that compose WARC-

KIT we will discuss the WARC file format plus it’s derivatives, dynamic hashing concepts, and

the JavaScript modules that are integrated into WARC-KIT.

2.1 Warc File Format

Web ARChive or WARC files are an aggegragate file format created for the purpose of

archiving multiple different types of digital resources from web pages [32]. First defined in 2008,

theWARCfile format was created by the Internet Archive as a successor to their original ARChive

or ARC file format. Enhancements from ARC to WARC include better assigned metadata defini-

tions, easier duplicate detection, date format transformations, and more. WARC files are given

and identified by the .warc extension. They are almost always gzipped compressed as well due

to their large file sizes, which produces the commonly seen .warc.gz extension when a user en-

counters a WARC file.

WARC file collections are currently only used to store web crawls, though they may be-

come more important in the future to the average internet user. Currently for most internet

users, the internet is just a series of web pages they access to do various activities like watch

their favorite online videos, view funny images, or post personal status updates on social media.

Unfortunately for the average user many of their favorite web pages may not be there in 10 or 20

years. Although there’s a popular saying that once something’s on the internet its there forever,

studies have shown that saying is simply not true. In a recent study [8] by the New York Times,

researches found that in just New York Times articles 25% of links going to other websites were

“rotted” meaning the web pages were unreachable. Furthermore, they found that the older the

link was the higher chance the link was rotted. Around 6% of links from 2018, 43% of links from

2008, and 72% of links from 1998 were found to be unreachable. This is a phenomenon known as

link rot where over time web pages on the internet become unreachable because the original URL

is no longer valid due to website domain name changes, removal of the original web page, URL

8

syntax changes etc. In another study on link rot in 2012, the Chesapeake Digital Preservation

Group found in a dataset of 800 web pages from 2007 to 2012 that 26% of web pages no longer

worked [20]. The irony of this study is that the URL linking to the original report has also rotted.

This means a report on how web pages can no longer be accessed is itself no longer accessible.

Though there is no way to directly stop link rot, there is a way to preserve internet resources

even when the original URL is no longer reachable and that is with WARC files. Many Internet

preservation organizations have large online WARC file collections that are made available for

free to users. Users who have lost their favorite web page may be able to find a copy in one of

these many WARC collections.

Recent work to expand user access to cloud hosted WARC collections have found some

success. The Archives Unleashed Project has been developing their website to provide a non-

programmer friendly online interface to a variety of cloud hosted WARC collections like the

Internet Archive and Common Crawl [22, 23]. Although the Archives Unleashed project aims to

be a fully operational sometime in the near future, the project acknowledges that their ongoing

struggle to bridge the knowledge gap for non-programmatical users is their most challenging

task. Further studies by the Archive unleashed project have shown the feasibility of developing

personal cloud based tools for accessing WARC file collections. They found that the cost of an-

alyzing cloud hosted WARC collections costs just around 7 USD per TB [4]. Studies have also

been conducted to mitigate the computational cost of processing online WARC collections such

as constructing a WARC processing framework using Apache Hive and SparkSQL [29]. While

optimizing access to current cloud hosted WARC collections is important, there is still a lack of

programmatic variety in local tools for users who maintain their own WARC collections.

Pivoting back to the WARC file format, a WARC file consists of the concatenation one or

more WARC records that are new line separated. A WARC record can be broken down in two

distinct parts a WARC header and aWARC content block. As shown in Figure 2.1 a WARC record

header will always start with the WARC format type, the current format is WARC 1.0, along

with various header fields. The various WARC header fields can differ depending on the type of

WARC record. Mandatory WARC Header fields include the WARC-Type, WARC-Date, WARC-

Record-ID and Content Length fields. The WARC-Type field identifies the type of WARC record,

9

the WARC-Date field holds the date the record was created, the WARC-Record-ID contains a

uniquely generated record ID of a record and the Content-Length field holds the length of the

WARC content block in number of bytes. Other WARC header record fields are optional and can

be included at the discretion of the WARC file creator. Following a WARC record header will

always be a new line then the WARC record content block. What is contained in the content

block depends on the WARC record type but should always be the raw web content retrieved

from a web crawl free of any modifications. These can be things such as the HTML response of

a web page, raw image data, or raw video data.

Figure 2.1: Example of a WARC record, consisting of both the header and content block.

There are a total of 8 different types of WARC records defined by the official WARC file

specification as seen in Figure 2.2. Each record type will always follow the same WARC header

convention with differences in optional headers fields and in the WARC content block. The

warcinfo record type is the header record of a WARC file. Typically the first record in a WARC

file, the warcinfo record contains the information about the web crawl that generated the current

WARC file. The response record type contains the full HTTP response of a crawled URL including

HTTP headers. If there are any errors due to link rot or other issues, the WARC writer should

account for this and store in the WARC content block the full HTTP error message. Successful

10

HTTP responses typically usually includes the entire HTML of the web page being accessed and

is stored in the the content block as retrieved. Resource type records differ from HTTP response

record by removing protocol response data and containing just the raw data of the crawled URL.

This includes HTML of a web page, images, videos, etc. Request type records are records gener-

ated from the HTTP request sent to a crawled URL and includes the full HTTP or HTTPS request

scheme. Metadata type records are user specified generated records used to generate more de-

scriptive data of other WARC record types. Revisit record types as the name implies are records

specified to have already been crawled in the current web crawl. Conversion records are records

specified to have transformed retrieved data in some way. The transformation is done because

the resource data is in a deprecated file format that would be impossible to view on current sys-

tems like Adobe Flash Video files. Continuation records are records that are extensions of other

record types and are created when a record’s byte length exceeds a user defined limit. These are

the 8 different types of records a person would encounter when viewing a WARC file. However,

users will never usually directly view the WARC file themselves as the files are large and will

crash most normal test editors. Thus external programs are usually used to interact with WARC

files. Due to the difficulty of handling WARC files because of their size, the Internet Archive also

designed a file format known as the CDX file to assist with the situation.

Figure 2.2: The possible types of WARC record types defined in [32].

11

2.2 CDX File Format

CDX files, first defined in 2015 by the Internet Archive, were created as a WARC record

index file where each line of text in the CDX file refers to an individual WARC record in a WARC

file [26]. CDX files are identified using the .cdx extension but are usually gzip compressed like

WARC files to form the commonly seen .cdx.gz extension. CDX files are structured with the first

line in the file being a header indicating the the format of each subsequent line. Users are able to

define their ownCDXheader for CDXfiles using the Internet Archive’s CDX legend [2]. However,

most web crawlers use a standard known as the CDX11 format as shown shown in Figure 2.3.

While the index contains useful information such as the type of correspondingWARC record, the

most important fields are the compressed file offset and compressed record length. These fields

allow programs to programmatically read just the chunk containing theWARC record of aWARC

file corresponding to these fields without having to read the entire WARC file. The usefulness of

these CDX file indices is why the Internet Archive typically bundles their WARC file dumps with

a complimentary set of CDX files.

Figure 2.3: An example of a CDX file, including the initial header legend and index lines.

2.3 WAT and WET Formats

Other than the Internet Archive, there are other organizations that participate in web

crawling and internet archiving such as the Common Crawl Project. While the Internet Archive

focuses on preservation, Common Crawl focuses on making web crawled data publicly accessible

for scientific analysis and studies [3]. Common Crawl datasets date back to 2008 and have since

2013 been using the WARC file format to store their web crawls. Web crawled data at Common

Crawl is posted monthly and is available to download for free at their public Amazon S3 instance.

12

Besides storing their data in the WARC file format they have also invented two variations of the

WARC file format, theWAT andWET file formats. TheWAT file format like aWARC file contains

a series of WARC records. However, the WAT file format transforms regular WARC records into

a JSON formatted block that only contains any data and metadata deemed useful by Common

Crawl. As shown in Figure 2.4, the JSON format allows for easy programmatic parsing of a

record and lowers the amount of data needed to parse a record. The WET file format resembles

the original WARC file’s header and content block record, however, the content block will only

contain any plaintext data that is located at a URL.This is useful for storing news articles or forum

posts which have pages filled with plaintext.

Figure 2.4: A WAT file JSON envelope example including header block and content block.

13

WARC files are the archival file type of choice for web crawls. They can be indexed using

created CDX files and to allow for easier extraction of records. WAT and WET files variations,

created the Common Crawl Project, exist to allow for easier programmatic parsing and are made

available for free publicly alongwith the originalWARCfiles by the CommonCrawl organization.

In order to parseWARC, CDX, andWATfiles, we created our own parsing toolwith enhancements

and features others might find useful which we will discuss in the next chapter.

2.4 Linear Hashing

In order to build a database capable of indexing on large WARC file collections we first

needed to decide upon an underlying data structure. For our database’s underlying data structure

we chose to implement a Linear Hash Table as the backbone of the database system. Linear

Hashing is one many techniques in a group of hashing schemes known as dynamic hashing [18].

Dynamic hash tables shrink and expand by utilizing hash functions to generate more key bits as

the table expands while reducing the number of key bits as the table shrinks. Dynamic hashing

techniques fall under two schemes one with directories and one without. Extendible Hashing

is a hashing technique that falls under the scheme with directories. Extendible Hashing has a

separate structure known as a directory. Each entry in the directory points to a bucket where

the data is hashed. An example of the directory structure for Extendible Hashing is displayed

in Figure 2.5. This hashing scheme grows exponentially as the number of buckets double as

the number of directory bits are doubled. On the other hand, Linear Hashing is a directory-

less scheme and expands it’s hash table one bucket at a time. Linear Hashing is directory-less

because keys are hashed directly to a bucket. Linear Hashing get its name from the one bucket

at a time growth, hence the name Linear Hashing. One small advantage Extendible hashing has

over Linear Hashing is that the due its criterion design it is possible to set an upper bound to limit

on access times for get operations. However, the wasted memory from an exponentially growing

directory is a downside that puts Extendible Hashing below Linear Hashing in most use cases.

Thus the data structure chosen for WARC-Kits database design was an on disk Linear Hash Table

implementation.

14

Figure 2.5: The directory structure of the Extendible Hashing scheme.

Linear Hashing has 4 factors that need to be tracked to determine when to grow or shrink

the table. N which is the number of initial buckets and must always be a power of 2, S a pointer

to a bucket designated to be split when a split criterion is met, I which is the number of bits used

to address N buckets, hence why N must be a power of 2, and a load factor which is the number

of items in the table divided by the current number of buckets times the average or maximum

size of each bucket. Load factor is used as the threshold to grow or shrink the hash table one

bucket at a time. All of these factors revolve around a central hash function, whose I bits become

our bucket index.

Hash functions are designed to always output a specific number of bits no matter the

input. Connecting this feature of hash functions to our Linear Hash table let’s say for example,

some hash function gives a 32-bit output for a key of some size. In Linear Hashing we will only

use the first I bits of the hash function output, since a Linear hash table only indices initially to

N buckets. If we start with N = 2 buckets, then I = 1 bit. So, we will only use the first bit of the

hash function’s 32-bit output to map to a bucket. Once number of insertions exceeds the load

factor, we add one additional bucket to N. If we exceed the number of buckets addressable with I

bits, we need to increment I to be able to address to the new bucket. When any bucket is added

we rehash the keys at split bucket S and then increment S to indicate the next bucket as the new

split bucket. Once N has doubled from where it was initially, we reset the S the split bucket index

back to 0.

15

A Linear Hash Table gives us the flexibility of growing our database as we insert in new

data while maintaining near constant average access and insertion times. Data systems that use

Linear Hashing include BerkleyDB a commercial key-value embedded database system currently

owned by Oracle[5]. In the next chapter we will discuss our implementation of our own Linear

Hash Table in JavaScript and our improvements to make it document oriented. However, before

that we discuss in the next section why we chose to develop our tool in JavaScript using the

Node.js environment.

Figure 2.6: Example of how Linear Hashing is conducted, where I bits represents a mapping to a

bucket index. From [18], Figure 21.

2.5 Node.js

We chose to createWARC-KIT tool in JavaScript due to the distinct lack of both JavaScript

libraries to work with WARC files and lack of database implementations in JavaScript. Although

JavaScript is the defacto programming language of the web, the vast majority of web crawling and

WARC parsing tools are created in Java and Python [25]. Besides being used for web program-

ming, JavaScript can also be run server side with Node.js, an asynchronous JavaScript runtime

16

environment based on Google’s JavaScript V8 engine [12]. Node.js is both a fast and lightweight

runtime environment that has become the backend environment of choice that many companies

use for great results. For instance in 2012, LinkedIn switched their mobile backend servers from

Ruby on Rails to Node.js and saw 20x increase in performance during testing scenarios [17]. Ad-

ditionally, the advantage of unifying frontend and backend development under one programming

language allows for the development of software that interacts with both ends of the stack. Hence

why WARC-KIT was created specifically in Node.js to take advantage of the software that was

developed in the unified JavaScript ecosystem.

One of the greatest assets of Node.js is the Node Package Manager or as its more com-

monly known NPM. NPM allows any user to publish their own packages to the NPM registry.

Other users can then download and use any package in the NPM registry for their own JavaScript

programs. NPM is easy to install and easy to use while maintaining the dependency structure

of any downloaded packages by downloading a local copy to a folder known as node modules.

This is done so that if an author updates their package on the NPM registry your Node.js program

won’t suddenly stop working. There are caveats to working with NPM though, for instance when

you download a package from NPM all of its dependencies are added to node modules. Down-

loading simple package for managing server routes can balloon into a 100 package dependency

chain which can be hundred of megabytes in size to your node modules. There’s also no good

way to move or delete node modules because of its size. This has lead to the creation of recursive

NPM packages just to remove node modules [19]. However, the advantage of having access to

the open source Node.js community far outweighs these minor detriments. As such many useful

packages were included into the design of WARC-KIT. A brief highlight the main NPM packages

used in WARC-KIT can be found below in table 2.1.

17

Table 2.1: NPM Packages used in WARC-KIT.

Package Name Description

fs-extra Enhancement of the standard Node.js fs library

express A web application framework

node-fetch Node.js port of the Fetch API

axios Promise based HTTP client

locutus Node.js port of other programming language libraries

graphql Data query language for APIs

2.6 GraphQL

While the other Node.js packages are notable in their own right, GraphQL is distinctly

notable for WARC-KIT as it was chosen as the query language for the database system. GraphQL

is an open source query language created by Facebook to query web APIs [6]. GraphQL also

includes a server side runtime environment for executing the queries and has language bindings

for almost every currently used programming language. Specifically in Node.js, GraphQL has

integration with popular server frameworks such Express.js and Apollo.js. This allows developers

to build their APIs from the ground up with GraphQL queries in mind. Some notable companies

that currently use GraphQL for their APIs include NBC, Starbucks, Twitter, PayPal, Github, and

of course Facebook.

GraphQL starts with a user defined API schema. Here the user has to strictly define what

custom data types GraphQL can read, what types of queries can be performed, and what muta-

tions on the data source can be made. As show in Figure 2.7 every possible query must be defined

and any classes and member variables must be defined as well. Types that do not need to be

defined are primitive types String, Int, Float, Boolean, and ID.

18

Figure 2.7: Example of a simple GraphQL Schema definition.

Any changes to the data source must also be defined as a mutation in GraphQL. While

it is possible to modify a data source with a query in GraphQL, mutations are defined purely to

differentiate GraphQL queries that alter data rather than read. Defining mutations and queries

is similar to defining ordinary API routes for a backend server. Mutations and queries must also

be assigned corresponding user defined resolver functions which perform the actual work of

querying the data source. As shown in Figure 2.8 mutations like queries must be defined in the

schema and cannot be changed once a schema is created.

19

Figure 2.8: Example of a GraphQL Schema definition with both queries and mutations.

The original function and motivation for GraphQL is to allow users to query API data

sources in one HTTP request. Users would pass in a query function in as an HTTP request and

receive back the data returned from the GraphQL resolver function. An added bonus is that

GraphQL also provides a built in GUI for developers and users to test out queries. This GUI

program known as GraphiQL, notice the extra i, comes built in and is activated as a argument

parameter when starting a GraphQL server. Users and developers can then navigate to the GUI

running on localhost to test out queries directly with the GraphQL server. An example of the

GraphiQL interface can be seen in Figure 2.9.

20

Figure 2.9: The GraphiQL GUI which allows users and developers to perform GraphQL queries

on the fly.

The ease of use and widespread availability of GraphQL is why we chose to integrate it

as the query language for WARC-Kits database. Since GraphQL has its own syntax other pro-

gramming languages can simply send GraphQL formatted HTTP requests to a running GraphQL

server and receive a GraphQL formatted response. This allows WARC-KIT the ability to inter-

faced by other languages similar to a database driver. The implementation of this we will be

discussing in the next chapter.

21

3. Implementation

In this chapter we discuss the implementation of the various tools that compose WARC-

KIT. These include both a standalone WARCFilter tool that interacts with WARC files, a database

system with an underlying Linear Hash Table implementation, and their combination with a

GraphiQL server to create WARC-KIT.

3.1 WARCFilter

In order to create our own enhanced indexing onWARC files, we created our own parsing

program that is capable of parsing WARC files. WARC files are large in size and cannot be read

into memory all at once. Therefore file streams, where file data is loaded into memory only a

few hundred bytes at a time, are necessary to process WARC files. File streams also allow us to

process the data as soon as it arrives rather than wait for the full file to be read into memory.

As our tool is made in Node.js, we use the fs-extra library, a community patch of the standard

Node.js fs library, to help us. We first simply open the WARC file in a gzip decompression stream

to decompress the initial stream of data. Then feed that decompression stream to a standard read

stream to allow us to begin reading theWARC file data. As seen before in Figure 2.1. EachWARC

record begins with a header block with the WARC format type; which is WARC 1.0 currently. We

simply take this initial format type as the start of a WARC record and read until we encounter a

new line. The header block and content block are always separated by a new line so, we treat any

previous line as part of the header block and any subsequent line as part of the content block. We

continue reading through the content block until we encounter another WARC 1.0 style format

header. We take this encounter as the start of another WARC record and treat all previous read

lines as one WARC record. With that we are now able to simply run through a WARC file record

by record.

With the traversal through a WARC file completed, the creation of a CDX index file is

now possible as well. In order to create a CDX index file of a WARC record we keep track using a

counter of the number of compressed bits going into the decompression stream and the number

22

of bits of text coming out of the decompression stream to get the compressed record offset and

length. We then convert the relevant fields of theWARC record header into the CDX style format

and write the index to our created CDX file. One thing to note is that legend of a CDX header in a

CDXfile defined by the Internet Archive does not have an official mapping from theWARC record

counterpart to the CDX. As such what is included in a CDX index is usually left to the author

writing a CDX creator. That is why CDX files from different organizations can have slightly

different fields even if both organizations are following the same CDX header style. For our tool,

we follow the Internet Archive’s CDX format. Besides the parsing of WARC files and creation of

CDX indices, our custom parsing tool includes a feature to retrieve the full WARC record using

the CDX’s WARC compressed file offset and length. Users can then specify the creation of a new

WARC file containing the retrieved records.

Another added feature is to parse and create newWARC files from records retrieved based

on a argument format based on date, URL or type of record. This allows for the creation of custom

WARCfiles containing onlyWARC records thatmatched the query argument. Meaning if the user

uses this tool on a WARC file collection they can extrapolate only records that match their query

criteria and have their own WARC file collection comprised of only records that they want. This

filtering of WARC records is what gives the standalone tool, WARCFilter, its name.

An additional feature of this tool is the generation of webgraph datasets using Common

Crawl’s WAT files. Webgraphs are directed graphs where vertices are URLs representing web

pages on the internet. Each directed edge in the Webgraph represents the link from one web

page to another. WARCFilter when given a Common Crawl wat.paths.gz file as input, parses the

paths file, downloads the corresponding WAT file at the path URL, and begins parsing the WARC

JSON records. Only JSON records that are web pages are parsed and any link information that was

on the original web page is retrieved. The original URL of the web page and any embedded links

are written to a text file where each line is an original web page URL and an external link URL

pair. Each line represents an edge in a graph and can thus be evaluated and analyzed using graph

algorithms. Figure 3.1 shows a an example of how each line in the webgraph is written.

23

Figure 3.1: Example of a webgraph dataset file generated from a Common Crawl WAT file collec-

tion.

WARCFilter can be used independent ofWARC-KIT, and comeswith its ownCLI program.

From the CLI program users can specify a source and destination file/folder to create eitherWARC

files, CDX files, or webgraph datasets. As shown in Figure 3.2 the argument format is simply one

long formatted string. WARCFilter come with 4 modes that have to specified in the command

string. The first mode warc will parse a WARC file and write WARC records that match the query

criteria to the specified destination file. The second mode cdx will read a CDX file, extract records

from the correspondingWARC file and output theWARC records that pass the filter to a specified

destination file. The thirdmode creatCDX will generate a CDX index file on a specifiedWARC file.

The fourth mode genCCWebgraph will create a webgraph dataset file from a specified Common

Crawl wat.paths file.

24

Figure 3.2: The argument format of the WARCFilter CLI program.

The code for the standaloneWARCFilter tool can be found onGitHub under the namewar-

cfilter [33]. In the next section wewill describe the creation of our JavaScript database system that

works in tandem with WARCFilter to allow database style queries on WARC collections.

3.2 Node.js Database

Although JavaScript is known as the language as the web, even with the advent of Node.js,

JavaScript still falls behind in performance compared to languages like C/C++. Unsurprisingly,

most database implementations are in C/C++ for performance. However, JavaScript implemented

databases do exist, such as PouchDB an in memory database that runs within the browser [16].

Hybrid databases also exist such as HarperDB, a JavaScript implemented database that has as its

underlying implementation connected to a Lightning Memory-Mapped Database (LMDB), a C

implemented database [7]. One of the goals in the creation of WARC-KIT is to make the imple-

mentation wholly in JavaScript so that future development can be done solely in one language.

Since JavaScript is a web based language, we have to take advantage of its strengths in order to

compete with other database implementations.

25

Most database management systems use an underlying on disk data structure like a B+

tree for LMDB or a Log-structured merge-tree such as Facebook’s RocksDB.[21]. One of the most

well known examples is SQLite which condenses its data into one file organized as a B+ tree. For

the implementation of WARC-KIT’s on disk database we used the previously discussed Linear

Hash Table data structure as our underlying implementation. The Linear Hash Table allows for

the linear growth of the table to store increased items while maintaining quick access times with

its key-value storage paradigm.

As we have discussed the various details of a Linear Hash Table in the previous chapter

we now translate that design into code. The hash function chosen for the Linear Hash Table was

the MD5 hash function. MD5 was chosen for its relatively small 128 bit hash output and fast

computation speed. MD5 loses in computation speed only to SHA-1, which has a 160 bit hash

output, and its predecessor MD4 which has more collision issues than its successor [13]. Only

the first I bits of the MD5 hash will be used to index to a bucket giving us an absolute maximum

of 2
128

- 1 possible buckets to index to. Our bucket design takes inspiration from the Extendable

Hashing structure while preserving the Linear Hash Table Structure. Buckets are represented as a

folders containing two files a header .hix file and data file a .txt file. The header file contains index

lines with each line containing the hash of the key plus the offset and length of the corresponding

value in the data file. Figure 3.3 shows an example header file. This allows us to only parse the

header file and then quickly read the corresponding chunk we need from the data file once we

find the right key. The default design of a hash table however, is restrictive because associating

a key to a single value is limiting in storing extra data. So we opted to improve our Linear Hash

Table by adding a document style design for storing values.

26

Figure 3.3: The indices in a header .hix file. Each line contains a hash in JavaScript BigInt repre-

sentation, a offset, and a length of a value in the data file.

In PHP there is a function called pack, which is a port of the Perl function of the same

name. The pack function allows us to encode primitive variables such as ints, floats, and booleans

to a binary string format. Recall that we discussed earlier that the open source search engine

Yioop is implemented in PHP. In Yioop, there is a class called PackedTableTools which allows

users to define a SQL like table with with each column packed into binary string using PHP’s

pack. For the Linear Hash Table database a JavaScript port was made of PackedTableTools so that

we could use this format in the table. The PHP function pack utilized in Yioop’s PackedTableTools

was ported with a JavaScript version of the pack function from Locutus, a Node.js library intent

on porting every function from every other programming language such as PHP [9]. With the

implementation of the PackedTableTools in JavaScript we were able to design a document style

format for the Linear Hash Table. The primary key of the PackedTableTools format serves as the

key hashed in the Linear Hash Table while the rest of the columns in the format will packed into a

binary string representing the value in the hash table. Figure 3.4 displays the process of defining

a PackedTableTools format, packing formatted objects to a binary string, and then unpacking.

With the inclusion of PackedTableTools into our database, we are able to achieve a document

style format for storing keys and values in our Linear Hash Table.

27

Figure 3.4: The process of defining and packing data using PackedTableTools. PackedTableTools

formatted objects are packed into formatted binary string with metadata columns boolean, int,

and text proceeding the packed data.

Four main functions were implemented into the Linear Hash Table, a put, get, delete, and

update function. However, unlike in memory hash tables designs, the time complexity in the

worse case for the Linear Hash Table differs. For a get operation we have to search the number of

I initial bit buckets we first started with, to I + X number of bits we have added. For example, if

our Linear Hash Table first started with I = 5 bits to map 2
5
buckets and eventually grew to map

2
7
buckets with I = 7 bits we would need to search 3 buckets. Consequently the time complexity

in the worse case for a get is 𝐼curr − 𝐼init + 1) buckets. In practice, if we set our initial addressable

buckets to a high number of I bits we will only need to search the length of a single bucket. A

put operation in the Linear Hash Table has the same time complexity as a get operation but as

a slightly worse as we have to check for duplicates. If no duplicates are found the put is simply

a file append. Since we are writing our data to text files, on disk deletion and update operations

are expensive. To optimize deletions only the index in the header file is deleted when a delete

operation is called on a valid key. When the number of deletions surpass a threshold of 10% of the

number of values in the data file we rewrite the data file to excluding data whose headers were

deleted. Updates require a full data file rewrite for operations as we need to retrieve the packed

data row update the value and rewrite. With those 4 functions implemented the, creation of a on

28

disk database in JavaScript is complete. While the creation of the database complete there is still

one more thing to implement for the database and that is a database driver.

3.3 Express Servers

Database connectivity drivers offer a way for programs to establish a connection to a

database. These drivers also offer an API for programming languages to programmatically estab-

lish connections to database systems. The most well known example of this is the ODBC driver

or the Open Database Connectivity driver [10]. ODBC was designed to be independent of any

database management system so that developers could write ODBC compliant drivers for their

own databases. For WARC-KIT, the original plan was to write a ODBC compliant driver for our

Linear Hash Table database. Unfortunately because there are no JavaScript databases that have

used ODBC in the past, writing a ODBC compliant driver in JavaScript would have to be done

from the ground up with no documentation. So, we opted for a more JavaScript like solution for

an API to access the database and it all starts with Express.js.

Express.js is a back end server framework in Node.js that has become the unofficial stan-

dard server framework for Node.js. For the Linear Hash Table, to setup database driver style

API we opted to setup an Express HTTP server with HTTP routes that can interact with and

manipulate a Linear Hash Table. The standalone nature of HTTP means that other program-

ming languages can make HTTP requests to our Express server to interact with our database

system. Allowing for cross language compatibility. However, that is not all we did with Express

servers we also opted utilize GraphQL, the API query language discussed in the previous chap-

ter, as a query language for our database rather than make the user send our own user defined

format. GraphQL has a node package that also provides direct integration with Express with the

aptly named express-graphql. However, there is an issue with having all API functionality routed

through GraphQL.

GraphQL as we discussed in the previous chapter must have a strictly defined static

schema before creating a GraphQL Express server. Unfortunately for our database system, ta-

ble formats can differ between table to table as the PackedTableTools format is user defined. All

29

database systems are capable of having different formats for each created table. So, having a

single fixed format for each table in our database system is neither scalable nor dynamic. The

work around for this is to dynamically generate a schema before creating a GraphQL Express

server. When a user specifies and creates a Linear Hash Table with a defined PackedTableTools

format we generate GraphQL schema to match the format and write the schema into a file stored

along with the Linear Hash Table. When we switch between tables with different formats we

simply close the server with one format and open a new one with the needed file. This allows us

to have a somewhat dynamic format with GraphQL even though GraphQL was originally static

schemed. Unfortunately even with this workaround we could not route all database system API

functionality through GraphQL.

GraphQL mutations have a stricter calling syntax than queries. Since mutations are sup-

posed change the underlying data source and we intend the have users be able to define many

different types of table schema, dynamic generation of a GraphQL with mutations is an arduous

task. As such, we opted to have two API servers running simultaneously. One server is a regu-

lar Express.js server to handle regular database management system operations such as creating

new tables, inserting values into tables, deleting tables etc. The other server would be a Express

GraphQL server that can only query the Linear Hash Table its attached to. This solution requires

the shut down and start up of a different GraphQL server each time a user is switching between

different types of Linear Hash Tables. Upon the completion of our database API we have finished

the final piece to needed create WARC-KIT.

3.4 WARC-KIT

With the creation of of both a WARCFilter tool to parse WARC files, a database system

with underlying Linear Hash Table implementation, and a database API using Express.js in tan-

dem with GraphQL we are ready for the final task. The final step is to combine all of our tools

into a unified application we call WARC-KIT. The main function of WARC-KIT is to combine all

the previous implemented components into one application that users can use to index and query

their WARC file collections,

30

In order to interact with WARC-KIT directly in Node.js a simple console program was

developed to allow users to type in commands to directly interact with database functions. All

commands typed to the console are translated to HTTP requests made using axios, a Node.js

HTTP request client package. The requests are sent to the main Express server which handles

and translates the request to a database system function. This means that users can make a HTTP

request directly to the server rather than just using the console program. When first running

WARC-KIT the initial Express server will start immediately and display the console program.

HTTP requests to perform operations can be done immediately at that point.

The first step to getting started with WARC-KIT is to create a database. A database will

be any folder specified to contain any Linear Hash Tables. Once that is finished users can then

create a Linear Hash Table with a user defined PackedTableTools format. All created tables will

be saved to current active database. Users can then specify the folder containing their WARC

files as the target of an ingesting operation. WARC-KIT will then use WARCFilter to parse all

WARC files located in the specified folder and generate a PackedTableTools formatted row from

each parsed WARC record. Each row representing, a custom index format, is then inserted into

the Linear Hash Table. When the insertions are finished a GraphQL Express server is generated

for the defined PackedTableTools format and run on the port adjacent to the main Express server.

Users can then send query requests to the GraphQL server to query their active Linear Hash

Table. Users can query by key value which is the URL of the WARC record or they can query

by any field in their PackedTableTools format. Users will then receive their results in GraphQL

formatted HTTP response. In GraphiQL, all query results will be directly displayed to the right of

the screen. Users are then able to feed these indices back intoWARCFilter to generate aWARCfile

containing these records or are free to feed the indices to their own WARC generation programs

as well. The ingestion operation only needs to be done once as when the user closes WARC-

KIT, the configurations of both the table and the GraphQL server will be saved to a parameters

file. This file will be loaded again on program restart. The one time cost of indexing on a large

WARC collection is invaluable as every subsequent query to receive desired WARC records can

performed without having to parse through the entire WARC file collection. Figure 3.5 contains

a list of the possible commands for WARC-KIT.

31

Figure 3.5: List of commands possible through the WARC-KIT CLI.

Figure 3.6 both illustrates how a user interacts with WARC-KIT and how WARC-KIT

utilizes both WARCFilter and the Linear Hash Table to accomplish a WARC indexing operation.

Not shown in the figure is that the user can also programmatically interact with the Express and

GraphQL servers through their own HTTP requests. Additionally users can interact directly with

the GraphQL server through the GraphiQL interface.

32

Figure 3.6: Flow chart of a WARC file collection indexing operation using WARC-KIT.

In Figure, 3.7 we display GraphiQL query page of a indexed WARC collection. Besides us-

ing GraphiQL, users are also able to programmatically use a GraphQL formatted HTTP request

to receive the same output shown here. With the main function of WARC-KIT implemented we

have successfully created an JavaScript application that allows users to manipulate their WARC

file collections. While WARC-KIT’s main function is to index and query WARC collections, it’s

composing applications WARCFilter and the Linear Hash Table database can also be used in-

dependently. The code for WARC-KIT can be found on the web page documenting this project

[31].

33

Figure 3.7: The GraphiQLQuery page result of a JPG query on a WARC-KIT GraphQL server.

34

4. Experiments

In this chapter we demonstrate each individual tool and the overall function ofWARC-KIT

with various experiments. We also conduct experiments that compare and contrast with other

tools with similar functions to WARC-KIT. All experiments in this chapter are run on a 2018 Dell

G7 15 laptop.

4.1 WARCFilter Experiments

In this section we show off the stand alone WARCFilter tool to parse and filter out WARC

records, generate newWARCfiles, create CDXfile indices, and generate awebgraph dataset using

the online Common Core datasets.

We first begin by showing of the CDX creation mode. In Figure, 4.1 we show an example

of passing in a single WARC file and show the time it takes to create a simple CDX file. Average

time to create a normal sized CDX file is around 24 seconds. WARCFilter also allows for argument

chaining which lets users process multiple WARC files in one command.

Figure 4.1: An example of using WARCFilter’s CLI program to create a CDX file from a WARC

file.

The advantage of creating a CDX file is not fully exhibited until we demonstrate parsing

on larger datasets. For this next example, we demonstrate the filtering of WARC records from

a small dataset of WARC files from 2011 saved on the Internet Archive [30]. We use 5 WARC

35

files from the dataset numbering 238,000 WARC records generated using the Internet Archive’s

Heritix web crawler. We then generate 5 CDX files on the 5 WARC files to run a filter operation.

In this experiment we are simply are looking for WARC records that contain image files. We run

WARCFilter in warc and cdx mode looking for records with JPG and PNG file type images. In

table 4.1, we can see the results running WARCFilter with the image argument criteria on these

files. As we can see from the results, CDX files vastly speed up the time it takes to retrieve desired

WARC records.

WARC File Name Total # of records WARC Filter Time CDX Filter Time

WIDE-20110225183219005-04371 42800 38.716 sec. 0.938 sec

WIDE-20110225184020081-04372 57557 39.655 sec. 1.876 sec.

WIDE-20110225210142891-04382 43129 37.162 sec. 2.94 sec.

WIDE-20110225215415804-04385 44646 37.456 sec. 1.812 sec.

WIDE-20110225221304846-04388 50493 39.367 sec. 3.099 sec.

Table 4.1: Comparison of the timeWARCFilter takes to parse and filterWARC files directly versus

parsing their CDX files.

In this next experiment, we show off a Node.js package known as node-warc which acts as

a JavaScript library to parse WARC Records [11]. We run node-warc on the same WARC dataset

for the experiment. The difference between node-warc and WARCFilter is that node-warc does

not have any filter functions. This means node-warc simply reads through a WARC file without

much parsing. As shown in table 4.2 node-warc performs well when parsing through just WARC

records. However, on closer inspection how node-warc parses WARC records node-warc takes a

shortcut by only parsing the WARC header of a record and then packaging subsequent WARC

content block in a buffer object without parsing. This explains the fast parse time of node-warc

as much of the parsing time of WARCFilter is spent on parsing both the WARC header and con-

tent block to search for filter criteria. This searching results in WARCFilter’s much longer parse

time. Thus while node-warc provides fast parsing WARC files, it lacks the filtering capabilities of

WARCFilter.

36

Table 4.2: Comparison of the time node-warc takes to parse through WARC file Records

WARC File Name node-warc parse time

WIDE-20110225183219005-04371 14.187 sec.

WIDE-20110225184020081-04372 16.163 sec.

WIDE-20110225210142891-04382 14.859 sec.

WIDE-20110225215415804-04385 16.187 sec.

WIDE-20110225221304846-04388 14.919 sec.

The last standalone demonstration of WARCFilter is the generation of webgraph datasets.

Running WARCFilter in genCCWebGraph mode we pass in a Common Crawl wat.paths file as

the source file. This mode requires an active internet connection as it will download and parse

the corresponding online WAT file simultaneously. New Common Crawl datasets are generated

every month. We opted to generate a dataset from the years 2015 - 2020 aiming for datasets

generated in or around November. We parse 100WAT files per Common Crawl paths file starting

at offset 100 into the paths file. Results are shown in the table 4.3 below. One thing to note is

the November 2015 dataset has double the number of generated vertices compared to the other

datasets. This is because it was run before unique URL filtering was applied. When unique URL

filtering is specified as an argument, edges whose vertices have the same base URL are not added

to the dataset. Meaning a Google.com web page connected with a Google.com search result web

page will not be added as they share the same base URL.

37

Table 4.3: Table showing the time and number of edges generated for each CommonCrawl dataset

paths file.

Common Crawl WAT datasets # Edges Generated Generation time

cc-nov-2015-wat.paths 188,721,679 4219.540 sec.

cc-dec-2016-wat.paths 120,007,747 4268.837 sec.

cc-nov-2017-wat.path 81,434,921 4085.955 sec.

cc-nov-2018-wat.path 75,781,930 4303.162 sec.

cc-nov-2019-wat.path-04385 81,100,750 4135.753 sec.

cc-nov-dec-2020-wat.path 57,240,145 3818.900 sec.

As we can see the results in the table above, generation time for a webgraph dataset takes

on average when filtering for unique base URLs around one hour and ten minutes per dataset

generation. Common Crawl WAT files are around 500 MB each. Each WAT File is downloaded

then thrown away one by one to save hard drive space. Around 250 GB of WAT files were down-

loaded for the generation of these datasets. Users of this WARCFilter mode should beware if they

have a internet data cap.

These graph files follow the standard webgraph dataset format. Meaning algorithms or

programs that parse and analyze webgraph datasets will also work on these generated datasets.

An example community detection webgraph created from the generated Common November

2015 webgraph dataset is shown in Figure 4.2.

38

Figure 4.2: A community detection graph produced from a Webgraph dataset generated from the

WARCFilter tool [1].

4.2 Database Experiments

In this section we show off the stand alone Linear Hash Table database we created for

WARC-KIT. Expectations are that since JavaScript is a web language with no direct file access

even with Node.js, file operations will be slow compared to other languages.

The first experiment consists of a pure insertion test of a number of simple string key-

value pairs. We test two configurations of the Linear Hash Table database one configured with

256 initial buckets and one with 1024 initial buckets. From the results in Figure 4.3, we see that

initial bucket configuration of a Linear Hash Table makes a large impact on performance as the

number of insertions and pairs in the table increases. This is because the bucket splitting operation

to add a bucket to the table is the most expensive operation for a Linear Hash Table. Even though

the keys in only one bucket are rehashed during a split operation. The smaller 256 bucket database

39

has to perform a significantly larger number of more split operations, leading to a performance

decrease. As such at least for Linear Hash Tables, it is better to set a higher number of initial

number of buckets to minimize split operations.

Figure 4.3: Comparison of insertion runtime between a Linear Hash Table with initial number of

bucket set to 256 buckets versus 1024 buckets.

Next we perform a pure get test by retrieving all values inserted after n insertions. For

this test we also wanted to compare our Linear Hash Table implementation with a similar sys-

tem. Luckily there is a Linear Hash Table implementation in Rust as well [24]. Rust is a relatively

new programming language invented in 2010 and is touted as having performance comparable to

C++ [28]. However the Rust Linear Hash Table implementation has some drawbacks that affect

performance. First the Rust table has oddly inconsistent insertion times for key-value pairs but

consistent get times. Second the table is hard coded at a currently unchangeable 32 initial num-

40

ber of buckets. Therefore we expect the current Rust Linear Hash Table to underperform in the

following experiment. As we can see in table 4.4 there is linear growth for the retrieval times in

our JavaScript implemented Linear Hash Tables with no performance differences between initial

bucket configurations. Also as we predicted, the Rust Linear Hash Table implementation per-

formance is underwhelming. Future work can include improving this Rust Linear Hash Table

to have the same underlying implementation as our Linear Hash Table design. We predict that

when given identical Linear Hash Table implementations the improved Rust implementation we

outperform our JavaScript implementation.

Table 4.4: Get performance test between our JavaScript implemented Linear Hash Table vs a Rust

implemented Linear Hash Table

Number of gets LHT256 time LHT1024 time Rust LHT time

10,000 key-value gets 2.023 sec. 2.634 sec. 8.582 sec.

100,000 key-value gets 42.733 sec. 40.267 sec. 102.321 sec.

4.3 WARC-KIT Experiments

In this section, we show off WARC-KIT experiments including timing experiments and a

comparison in functionality to Common Crawl’s index server. Experiments will be done using

the same WARC file dataset from the WARCFilter section.

First we show a simple experiment for the time WARC-KIT takes to create an Index on

a WARC file collections of different sizes. Linear Hash Table configurations are set to an initial

bucket number of 1024 buckets. The singleWARC file test contains 42000 indices, the 3 fileWARC

test contains about 143,000 indices, and the combined 5 file WARC test contains 238,000 indices.

We expect similar index creation and insertion times to the number of regular insertions in a

Linear Hash Table. As shown in the simple table 4.5 the insertion times do indeed comparatively

line up similar to the corresponding number of Linear Hash Table insertions. Also, important to

note is that these creation operations only need to be done once as a one time setup.

41

Table 4.5: Time to create and insert PackedTableTools formatted indices into Linear Hash Table

and create a GraphQL query server on a WARC file collection

1 WARC file 3 WARC files 5 WARC files

39.741 sec. 156.639 sec. 238.414 sec.

For the next experiment, we display the timing tests of various queries on the GraphQL

server through GraphiQL interface. The results are displayed in table 4.6 below. As expected the

query results also sync closely to the Linear Hash Table get times. One thing interesting to note

is that query times for a WARC file collections of the same size stays relatively consistent even if

a query is more complex. Another interesting thing to discuss is that if the user knows the exact

URL of the record they want the query is nearly instantaneous, even for large collections.

Table 4.6: Various Queries on the GraphQL query server created from a indexed WARC file col-

lection.

Query Name 1 WARC file index 3 WARC file index 5 WARC file index

Single URL get 0.001 sec. 0.002 sec. 0.003 sec.

HTMLQuery 2.784 sec. 10.525 sec. 17.067 sec.

JPGQuery 2.62 sec. 10.311 sec. 17.151 sec.

UK HTMLQuery 2.91 sec. 10.433 sec. 17.130 sec.

RU PNGQuery 2.55 sec 10.312 sec. 17.007 sec

42

In Figure 4.4, the interface of Common Crawl’s Index Server search is shown. Common

Crawl’s index server is a Python based program that allows users to search through their CDX

collection of files. Similar to WARC-KIT, there is an advance query section to filter and output

CDX indices. A contrast to WARC-KIT is that is the original WARC files are not interacted with

in this application. Meaning a user must use a different application to download and retrieve

the WARC records. Common Crawl’s index server are also limited to the CDX file format that

Common Crawl generates. While WARC-KIT offers custom PackedTableTools formatted indices

that can be augmented to include user defined information.

Figure 4.4: The Common Crawl index server search page, which allows users to query their CDX

files.

Thus concludes our experiments on the various features of WARC-KIT. WARCFilter itself

works as a standard WARC parsing and filtering tool. As a Node.js package, node-warc provides

fast traversal of WARC files but lacks the filtering and content block parsing that WARCFilter

offers. The Linear Hash Table database system offers the first of its kind a on disk JavaScript

document store. When compared to a unoptimized Rust Linear Hash Table implementation our

JavaScript Linear Hash Table database outperforms the former. However, while Linear Hash Ta-

bles are dynamic in their growth, performance is significantly impacted by the number bucket

splits. WARC-KIT is a combination of the previous tools that allows for custom index format

creation and more informative queries onWARC file collections. A system with similar function-

ality is the Common Crawl Index server. However, the Common Crawl index is constrained by

the CDX format and does not act upon the original WARC file collection compared to WARC-

KIT.

43

5. Conclusion

Few tools exist to allow users to manage their own WARC files collections. Even fewer

of those tools are created in JavaScript which with NPM has a large open source community of

packages waiting to be explored. ThusWARC-KIT is one of the few applications capable of work-

ing with with WARC files in JavaScript. The separate parts of WARC-KIT such as WARCFilter

can be used as an independent tool to manipulate regular WARC files and their CDX index files.

WARCFilter can also be used to generate webgraph datasets from existing Common Crawl file

collections. The Linear Hash Table database is the first JavaScript on disk document store of it’s

kind. The Linear Hash Table database can also be used independently as a database application

for users that desire a wholly in JavaScript database solution. The overall WARC-KIT application

itself allows users to create informative indices on WARC file records. Users can then query the

database using a GraphQL server.

Future work can be done to improve the various functions of WARC-KIT. For example,

WARCFilter can be improved to allow for the generation of customizable datasets other than

webgraph datasets from Common Crawl’s online WARC file collections. Another improvement

would be the ability to interface with other onlineWARC resources such as the Internet Archive’s

collection. For the Linear Hash Table database, improvements could be made to lessen the per-

formance impact of bucket splitting operations. Another improvement could also be made on the

PackedTableTools format itself, by improving upon the size efficiency of packing values into a bi-

nary string. For WARC-KIT itself, the GraphQL server schema could be improved to handle even

more complex queries. Another improvement is the to have better generation of PackedTable-

Tools formatted objects from WARC records. The additional information from a WARC record

content block can be metadata such a community tags in video WARC records.

WARC-KIT currently stands as one of the few JavaScript applications that lets users work

with their personal WARC file collections. Whether it’s users find use in its standalone compo-

nents or the sum of its applications, it exists as a beneficial tool to assist in the preservation in

the World Wide Web.

44

References

[1] Panchal Akshar. Overlapping Community Detection in Social Networks. San Jose State Uni-

versity, 2021.

[2] CDX and DAT Legend. url: https://archive.org/web/researcher/cdx legend.php (visited on

11/10/2021).

[3] Common Crawl Data. url: https:/ /commoncrawl .org/the- data/get- started/ (visited on

11/14/2021).

[4] Ryan Deschamps, Samantha Fritz, Jimmy Lin, Ian Milligan, and Nick Ruest. “The cost of

a WARC: Analyzing web archives in the cloud”. In: 2019 ACM/IEEE Joint Conference on
Digital Libraries (JCDL). IEEE. 2019, pp. 261–264.

[5] Dynamic hashing technique of Berkeley DB. url: https://titanwolf.org/Network/Articles/
Article?AID=9823fa36-325a-40bc-99bc-8f6e0173be50 (visited on 11/14/2021).

[6] GraphQL. url: https://graphql.org/ (visited on 11/14/2021).

[7] HarperDB. url: https://harperdb.io/ (visited on 11/14/2021).

[8] Bowers J., Stanton C., and Zittrain J. What the ephemerality of the Web means for your
hyperlinks. url: https://www.cjr.org/analysis/linkrot-content-drift-new-york-times.php

(visited on 11/14/2021).

[9] Locutus. url: https://locutus.io/ (visited on 11/14/2021).

[10] Microsoft ODBC. url: https : / / docs .microsoft . com / en - us / sql / odbc /microsoft - open -

database-connectivity-odbc?view=sql-server-ver15 (visited on 11/19/2021).

[11] node-warc: Parse Web Archive (WARC) files or create WARC files. url: https://github.com/

N0taN3rd/node-warc (visited on 11/14/2021).

[12] Node.js About. url: https://nodejs.org/en/about/ (visited on 11/14/2021).

[13] Node.js Hash Performance. url: https : / / github . com/hex7c0 /nodejs - hash - performance

(visited on 11/14/2021).

[14] Node.js:fs-extra. url: https://www.npmjs.com/package/fs-extra (visited on 11/14/2021).

[15] PHP Pack. url: https://www.php.net/manual/en/function.pack.php (visited on 11/13/2021).

[16] PouchDB. url: https://pouchdb.com/ (visited on 11/14/2021).

[17] Paul R.Abehind-the-scenes look at LinkedIn’smobile engineering. 2012. url: https://arstechnica.
com/information-technology/2012/10/a-behind-the-scenes- look-at- linkedins-mobile-

engineering/2/ (visited on 11/15/2021).

45

https://archive.org/web/researcher/cdx_legend.php
https://commoncrawl.org/the-data/get-started/
https://titanwolf.org/Network/Articles/Article?AID=9823fa36-325a-40bc-99bc-8f6e0173be50
https://titanwolf.org/Network/Articles/Article?AID=9823fa36-325a-40bc-99bc-8f6e0173be50
https://graphql.org/
https://harperdb.io/
https://www.cjr.org/analysis/linkrot-content-drift-new-york-times.php
https://locutus.io/
https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc?view=sql-server-ver15
https://github.com/N0taN3rd/node-warc
https://github.com/N0taN3rd/node-warc
https://nodejs.org/en/about/
https://github.com/hex7c0/nodejs-hash-performance
https://www.npmjs.com/package/fs-extra
https://www.php.net/manual/en/function.pack.php
https://pouchdb.com/
https://arstechnica.com/information-technology/2012/10/a-behind-the-scenes-look-at-linkedins-mobile-engineering/2/
https://arstechnica.com/information-technology/2012/10/a-behind-the-scenes-look-at-linkedins-mobile-engineering/2/
https://arstechnica.com/information-technology/2012/10/a-behind-the-scenes-look-at-linkedins-mobile-engineering/2/

[18] Enbody R.J. and Du H.C. “Dynamic hashing schemes”. In: ACM Computing Surveys 20.2
(1998), pp. 850–113.

[19] Remove Node Modules. url: https : / /www.npmjs . com/package/remove- node-modules

(visited on 11/14/2021).

[20] Adi Robertson. Link rot in 2012: keeping track of how web addresses go dead. May 15, 2012.

url: https://www.theverge.com/2012/5/15/3021913/chesapeake-digital-preservation-

group-link-rot-report (visited on 11/10/2021).

[21] RocksDB. url: http://rocksdb.org/ (visited on 11/12/2021).

[22] Nick Ruest, Samantha Fritz, Ryan Deschamps, Jimmy Lin, and Ian Milligan. “From archive

to analysis: accessing web archives at scale through a cloud-based interface”. In: Interna-
tional Journal of Digital Humanities (2021), pp. 1–20.

[23] Nick Ruest, Jimmy Lin, Ian Milligan, and Samantha Fritz. “The archives unleashed project:

technology, process, and community to improve scholarly access to web archives”. In: Pro-
ceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020. 2020, pp. 157–166.

[24] Rust Linear Hash Table implmentation. url: https://github.com/samrat/rust-linhash (visited

on 11/17/2021).

[25] Stanford Web Archiving Tutorials and Resources. url: https://library.stanford.edu/projects/
web-archiving/research-resources/tutorials-and-examples (visited on 11/15/2021).

[26] The CDX File Format (2015). url: https://iipc.github.io/warc-specifications/specifications/
cdx-format/cdx-2015/ (visited on 11/10/2021).

[27] The Internet Archive. url: https://archive.org/about/ (visited on 11/12/2021).

[28] The Rust Programming Language. url: https://www.rust-lang.org/ (visited on 11/17/2021).

[29] Xinyue Wang and Zhiwu Xie. “Web archive analysis using hive and SparkSQL”. In: 2019
ACM/IEEE Joint Conference on Digital Libraries (JCDL). IEEE. 2019, pp. 424–425.

[30] WARCfile dataset. url: https://archive.org/download/testWARCfiles (visited on 11/14/2021).

[31] WARC-KIT Code. url: https : / /www. cs . sjsu . edu / faculty / pollett /masters / Semesters /

Spring21/david/WARC KIT Code.html.

[32] WARC,WebARChive file format. url: https://iipc.github.io/warc-specifications/specifications/
warc-format/warc-1.0/#warc-record-types (visited on 11/10/2021).

[33] WARCFilter github. url: https://github.com/bbdavidbb/warcfilter (visited on 11/14/2021).

[34] Yioop: Open Source Search Engine Software. url: https://www.seekquarry.com/ (visited on

11/10/2021).

46

https://www.npmjs.com/package/remove-node-modules
https://www.theverge.com/2012/5/15/3021913/chesapeake-digital-preservation-group-link-rot-report
https://www.theverge.com/2012/5/15/3021913/chesapeake-digital-preservation-group-link-rot-report
http://rocksdb.org/
https://github.com/samrat/rust-linhash
https://library.stanford.edu/projects/web-archiving/research-resources/tutorials-and-examples
https://library.stanford.edu/projects/web-archiving/research-resources/tutorials-and-examples
https://iipc.github.io/warc-specifications/specifications/cdx-format/cdx-2015/
https://iipc.github.io/warc-specifications/specifications/cdx-format/cdx-2015/
https://archive.org/about/
https://www.rust-lang.org/
https://archive.org/download/testWARCfiles
https://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Spring21/david/WARC_KIT_Code.html
https://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Spring21/david/WARC_KIT_Code.html
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/#warc-record-types
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/#warc-record-types
https://github.com/bbdavidbb/warcfilter
https://www.seekquarry.com/

	Introduction
	Preliminaries
	Warc File Format
	CDX File Format
	WAT and WET Formats
	Linear Hashing
	Node.js
	GraphQL

	Implementation
	WARCFilter
	Node.js Database
	Express Servers
	WARC-KIT

	Experiments
	WARCFilter Experiments
	Database Experiments
	WARC-KIT Experiments

	Conclusion

