
AN OPEN-SOURCE DIRECT MESSAGING AND
ENHANCED RECOMMENDATION SYSTEM FOR YIOOP

BY
ANIRUDDHA MALLYA

TABLE OF CONTENTS
 Purpose

 History of Direct Messaging

 Design & Implementation for Direct Messaging System

 History of Recommendation System

 Yioop’s Recommendation System

 Enhancing Yioop’s Recommendation System with Hash2Vec

 Conclusion

PURPOSE
Yioop is an open-source implementation that acts as a search engine and web portal.

As a web portal it lacks features like Direct messaging (DM), in this project we add this feature
to Yioop.

Yioop also uses a recommendation system that uses Term Frequency – Inverse Document
Frequency which makes use of user’s viewing history to recommend relevant threads and
groups.

We further extend this functionality by using Hash2Vec to improve the recommendation in
Yioop.

INTRODUCTION.

 Topics of discussion:
1. Direct Messaging (DM)
2. Recommendation System

DM is a type of technology that allows one to chat online with other users in real time over
any type of computer network like the Internet.

 In a recommendation system, users are given suggestions as to which news articles to browse,
which movies to watch, etc. so we can potentially find the information most relevant to us with
little effort.

Yioop makes use of a such a recommender system.

HISTORY OF DM.

 In the 80s, Internet relay chat allowed users to connect to networks with client software to chat
with groups in real time.

 In the 90s, AOL messenger used the Oscar protocol and was the first to introduce the Buddy
List system and Yahoo Messenger used the YMSG protocol.

 Facebook’s Messenger and WhatsApp both use the XMPP protocol both follow the client
server architecture. Both use end to end encryption however messages sent in WhatsApp are
transient.

XMPP is widely used as an instant messaging protocol, and it uses bidirectional streams over
synchronous http (BOSH), we instead went ahead with an AJAX style implementation which can
support long polling, the primary feature of BOSH.

DESIGN FOR DIRECT
MESSAGING
 The following tables: USERS, USER_GROUP, GROUP_ITEM and SOCIAL_GROUPS were deemed
relevant for implementing the DM system in Yioop.

DESIGN FOR DIRECT
MESSAGING.

When a new user is introduced into the Yioop environment
and that user logs in for the first time a Personal group is
created.

 The SOCIAL_GROUPS table manages the group
information for a particular user.

Allow users to connect with other users through a drop-
down option.

SOCIAL_GROUPS Table

IMPLEMENTATION FOR
DIRECT MESSAGING
 There are three uses cases for this problem statement ,
i.e., handling the logic for when a user has no friends,
when one user sends a friend request while the other
user has not accepted the connection request and finally
when both users have accepted the connection requests
from each other.

Yioop follows the Model-View-Controller (MVC) model
all the logic must be handled by the controller.

USE CASE 1

When a user has no connections , i.e., no
friends.

We do this by checking if a user has any
friends—equated to threads—as part of
their “Personal” group.

USE CASE 2.

When a user sends the connection request to a different
user2 and the connection has not connected with user2
then the connection is handled by prompting the user to
wait for the connection to connect with user2.

 First the user gives the connection access to their
“Personal” group, this handled in the backend database
using the USER_GROUP table.

USER_GROUP Table

USE CASE 3

 Final use case three, when both users are connected to
each other which is indicated by the USER_GROUP table
as shown earlier, we then must store the chat between any
two users, to do so we user the GROUP_ITEM table.

Since we are dealing with two “Personal” groups of the
two users “texting” each other we had to save the “text”
for both the groups

GROUP_ITEM Table

EXPERIMENTS FOR DM

 To get an idea of the performance of this implementation we did some load tests on the Yioop
backend database.

 To simulate multiple users, we created a program that created instances of multiple insertions.

 These insertions are meant to also simulate the transactions that take place when users send messages
to each other.

We timed the programs, and the latency information was captured in terms of seconds on the same
local machine.

EXPERIMENTS FOR DM .

 The error bar is 3 standard deviations
from the mean.

We can see that as the number of users
increases the time taken by multiple users
for “text” insertions also increases.

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

200 KB 1 MB 2 MB 3 MB 4MB
D

at
a

La
te

nc
y

(in
 s

ec
s)

Volume of Data Sent

3 Users

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

200 KB 1 MB 2 MB 3 MB 4MB

D
at

a
La

te
nc

y
(in

 s
ec

s)

Volume of Data Sent

2 users

EXPERIMENTS FOR DM

0

5000

10000

15000

20000

25000

200 KB 1 MB 2 MB 3 MB 4MB

D
at

a
La

te
nc

y
(in

 s
ec

s)

Volume of Data Sent

10 Users

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

200 KB 1 MB 2 MB 3 MB 4MB
D

at
a

La
te

nc
y

(in
 s

ec
s)

Volume of Data Sent

15 Users

0.0

750.0

1500.0

2250.0

3000.0

3750.0

4500.0

5250.0

200 KB 1 MB 2 MB 3 MB 4MB

D
at

a
La

te
nc

y
(in

 s
ec

s)

Volume of Data Sent

5 Users

CHALLENGES WITH DM.

 The first experiment we tried was creating a "Personal" group in one click for all existing
users, but, since there were several different tables that needed to be changed, this
proved to be challenging to handle.

A second challenge was to manage the title view of the "Personal" group which displayed
a user's full “username” and “user_id” on different webpages using SOCIAL_GROUPS
table, such as all the groups they are a part of or the menu bar.

 The third challenge was to get two different web pages to display on the same page,
since it’s based on the existing group display functionality, we had to essentially combine
the design for the two separate pages into one page.

HISTORY OF RECOMMENDATION SYSTEMS.

 The basics of recommender systems were founded by researches into cognition science and
information retrieval, and its first manifestation was the Usenet communication system created
by Duke University in the second half of the 1970s.

 The first known such solution was the computer librarian Grundy, which first interviewed users
about their preferences and then recommended books to them considering this information.

Since then two very different directions of recommender systems have evolved over time:
collaborative filtering and content-based filtering.

 The former attempts to map (profile) the taste of users and offers content to them that users
with similar preferences liked.

 The content-based filtering is about knowing the dimensions of the entity to be recommended.

YIOOP’S RECOMMENDATION SYSTEM.

When an information retrieval system like a search engine scores a document as relevant if it contains
the terms in the user's search query it fails to consider the number of occurrences of the query words in
the document while weighing a document's relevance.

Now, term frequency and inverse document frequency are designed to weigh the documents while taking
into consideration the frequency of terms.

A word's performance in TF-IDF is determined by how many documents it appears in compared to how
often it appears in that document.

TERM FREQUENCY (TF).

 The term frequency in documents refers to the number of
times a word appears in a document. As an example, let's
look at the three documents below and try to understand
how the term frequency calculation is done.

Document 1: Baguette a bread type can be made with the
dry yeast or the fresh yeast.
Document 2: Toasted bread has a tasty pairing with the
salted butter.
Document 3: You can make the beer from a dry yeast or a
distiller yeast.

 Let us assume that a user has entered a query q: bread
pairing. We can sample Term frequency Table for
Document 3.

INVERSE DOCUMENT FREQUENCY (IDF)
We consider all words in a document equally
important when we calculate the term frequency.

But it overlooks the effect of a few words common
to almost all documents.

Some words like a, an, the, etc., are in almost all the
documents, while others are in only a few, in this
situation, the logarithm is helpful.

 Let us look at how IDF is calculated for user’s query
“pairing”, Total document available in corpus (N) =
3, Number of documents containing term ‘t’ (Nt) = 1,

Sample IDF Table

TF * IDF TO CALCULATE WEIGHTS

We have TF and IDF of words in given corpus, the next step is to multiply these two quantities to
find out the frequently occurring words in a document and inseminate the influence of their
frequency in the surrounding documents.

 Looking at our example below, in Doc. 1 the word “bread” has normalized term frequency of 1
and IDF of 0.18 so the weight assigned to for that term is 1 x 0.18 = 0.18.

COSINE SIMILARITY
Using TF-IDF Weights, we can find the similarity between the user query and each of the
documents.

 The cosine similarity is a measure of the importance of a document to a user.

 Formula used,

RECOMMENDING THREADS AND GROUPS IN YIOOP
Yioop initially would recommend threads using a baseline predictor typically implemented
using a “rating” system, however since the rating/voting system was not informative enough in
Yioop, a user’s view of thread was used.

 This ended up suggesting mostly the popular threads and so TD-IDF was introduced to improve
the recommendations.

Currently “Wiki” pages are excluded, moving ahead we will have to also exclude entries
created for chats between users in the GROUP_ITEM Table.

TF FOR THREADS

A BoW is created by iterating over each
thread’s “title” and “description” as
mentioned earlier and the log frequency
for each word in the BoW is taken to
reduce the impact of a large title or
description in the table.

Here, ‘term_id” is generated using the
‘crc32’ hash value of the word.

ITEM_TERM_FREQUENCY Table

TF FOR USERS

 A log of the user history is stored in the
ITEM_IMPRESSION table for each thread viewed by
a user.

 The bag of words created in the earlier step is used
to determine the importance of a word to each user.

 Using the ITEM_TERM_FREQUENCY table, we sum up
the count for each word in different threads to
determine how many times a user has seen the word.

 Next count of word occurrences that user has seen is
stored using it’s log value in the
USER_TERM_FREQUENCY table.

USER_TERM_FREQUENCY Table

IDF FOR THREADS & USERS
 To get the IDF for each word in the bag of words, the number of times it appeared in each
thread, versus the corpus of all threads is calculated. This was done using the
ITEM_TERM_FREQUENCY table. The formula is as follows:

 The inverse document frequency for words with respect to users using the
USER_TERM_FREQUENCY table is calculated. If there are words, that are not being viewed by
anyone, add 1.

TF-IDF WEIGHTS FOR THREADS
AND USERS
 TF is multiplied by IDF for every word with respect to
users and threads.

 The significance of a word to a thread is measured and
stored in the ITEM_TERM_WEIGHTS Table.

Also, the significance of a word to a user is measured and
stored in USER_TERM_WEIGHTS Table.

USER_TERM_WEIGHTS Table

ITEM_TERM_WEIGHTS Table

THREAD AND USER COSINE SIMILARITY.

Based on cosine similarity between users
and threads, threads that are closest to
each user's taste are determined.

 Finally, users are recommended the top
three similar threads.

 “item_type” is used to distinguish between
a thread and group recommendation,
value 2 indicates it’s a thread and 3
indicates it’s a group.

ITEM_RECOMMENDATION Table

GROUP RECOMMENDATIONS.

 In addition to suggesting threads based on user interests,
the Yioops recommender also suggests groups that a user
might be interested in and are not members off.

Recommendations are made using thread titles and
descriptions since the group names in Yioop are very
generic and don't explain what the group is about.

Users are recommended the top three similar groups as
shown in the table to the right.

ITEM_RECOMMENDATION Table

ENHANCING YIOOP’S RECOMMENDATION SYSTEM
We have seen how the recommendation system in Yioop works and how TF-IDF is used to give
user’s recommendations that are closer to their tastes based on their thread viewing history.

 TD-IDF only considers a word’s relevance in user query to a document and returns the most
relevant documents based on the word from the entire available corpus.

However, it fails to consider the “user word” in context to other words surroundings it.

One way to enhance the currently established recommendation system would be to provide
context to the words of interest in the entire corpus using the concept of word embeddings,
particularly we will look at Hash2Vec.

WORD EMBEDDINGS
At its core, it is simply a method of associating words using vectors.

 The skip-gram model and Continuous Bag of Words (CBOW) are mainly used to represent
words as vectors in Neural models.

However, say, we use a CBOW model for a million words it makes a co-occurrence matrix of
size million by million giving it a space complexity of O(n2) and it also have an expensive
training time to process all million words in their vectorized forms.

We decided to try a Hash2Vec model that does create vectors in a non-neural way, i.e.,
without any training models but instead uses a hashing technique and has a space complexity
of O(nk), n= number of words and k = some fixed dimensionality and can be small.

HASH2VEC.

When converting a variable-length inputs
into fixed-length outputs using some
mathematical function, the process is known
as hashing.

As a mathematical function, a hash function
processes input and converts it into a value
that can be used.

A good hash function minimizes collisions
and produces a result that fits in our table
size.

 In order to solve the collision problem
effectively, the hash function should run with
a minimum computing time.

HASH2VEC.

Using a deterministic approach, Hash2vec creates vectors from words in a low-dimensional
space.

 This methodology was developed because the traditional method of creating vectors to
represent each word in a low-dimensional space needed a lot of training when it was applied
to neural networks.

Using the Hash2Vec method, however, does not require any training, it merely attempts to derive
a word hash from a context window. This process is called hashing with context.

When the same word appears in the corpus again, it updates its existing hash value.

DESIGN OF HASH2VEC
We create a tuple such that for every term in our BoW, we take 5 words before the term and
5 words after the term, here the value 5 is selected arbitrarily.

We then calculate the distance of the words from our ‘term’ of interest using the formula,
(𝑒𝑒−𝑥𝑥)2, where x = (position of word from ‘term’/standard deviation of range (-n, n)), here n =
5.

 The idea here is when calculating distance of word from ‘term’ we get a value between the
range (0,1) as vectors are normalized and the closer the value to 1 the closer it’s position is to
the ‘term’ in the corpus.

We calculate the hash value of the words to hash to the appropriate position in the vector of
length 200 defined for each term in the BoW. The hash function takes the first 4 bytes of the
md5 hash value of the word then we take the integer value of those 4 bytes.

IMPLEMENTATION OF HASH2VEC

 We then iterate over each newline in the corpus and do so
for all words which we called as the ‘term’ of interest earlier.

 Essentially the vector for each word in our BoW acts as a
kind of definition for the word based on its context in a
sentence.

 The different hash positions store its definition in different
contexts.

 In order to find the most similar words we take the cosine
similarity of our ‘term’ of interest vector and each word
vector in the BoW.

 Then we filter out the words with the highest cosine similarity
to the ‘term’ of interest. Now, we store this in a table called
Hash2Vec HASH2VEC Table

HASH2VEC TABLE

We see “Term1” refers to our “term” of interest stored as
an integer, “Term2” are the words most like the “term” of
interest using the Hash2Vec score.

Now in the USER_TERM_WEIGHTS_HASH2VEC table we
update the TF-IDF weights by first multiplying the
Hash2Vec score of the similar words and adding it to the
original TF-IDF score, this is done for all the similar words
user has seen , i.e., present in the table on top.

We can see the cosine similarity changes from the original
recommendation table vs the enhanced recommendation
table in the figure at the bottom.

HASH2VEC Table

COMPARING OLD VS NEW RECOMMENDER SYSTEM.

 Looking at the recommendations between the
tables, they retrieve the threads titled “Happy
New Year! August 2019 I did a couple 75-million-
page crawls …..” and “Post your solutions tot the
Feb 17 In-Class Exercise to this thread. Best,
Chris”.

We can see that the first thread is a general
update about the Yioop platform and the second
thread is about an in-class exercise which the user
may be more interested in.

On observing this thread we see that words like
“post”, “in-class” etc. all have the word “solution”
as a similar word, hence the context seems to be
preserved as intended and provides relevant
thread recommendations.

Old recommendation system

New recommendation system

EXPERIMENTS
To judge the accuracy of the hash2vec implemented recommendation system we use precision
and recall. Precision for the first ‘k’ results is given by,

where Rel = is all the relevant documents in this case ‘threads and Res = the total thread count
returned by the recommendation system. Recall for first ‘k’ results is given by,

We observed the results for 10 users both in the current recommendation system and the
hash2vec implemented system.

EXPERIMENTS
 We can see that the hash2vec implemented
recommendation system has at least the same
precision and recall as the current
recommendation system and in some instances
gives preforms higher precision and recall.

 The current recommender system has an avg. F1
measure of 0.005714825 and the Hash2Vec
system has a measure of 0.00915971, showing
an increase of 0.003444885 or 60. 28%.

 Additionally, we noted that since Yioop is
configured to recommend the top three most
similar threads and groups to users for some of
the users the current recommendation system
could not satisfy that criteria and showed fewer
suggestions.

CONCLUSION
We studied the internal working of Yioop to determine the tables that we are of interest to us
to be enable us to develop the DM system.

 For old and new users, we developed a "Personal" group in Yioop to facilitate quick
communication.

We used AJAX to interact with the database and fetch messages instantly. The experiments we
performed shows the database latency vs volume of data sent by multiple users increases
roughly linearly in time.

CONCLUSION
We studied Yioop’s current recommendation system that suggests threads and groups which
may be of interest to users using the user’s viewing history and engagements in Yioop.

Next, we implemented a Hash2Vec that uses the similarity between words to improve the
recommender system in Yioop.

Based on the experiments we performed on the Hash2Vec system we see an improvement of
60.28% in the avg. F1 measure and we can observe that the performance is on power with
the current recommendation system in Yioop or in some instances Hash2Vec performs better by
either giving higher accuracy or more recommendations.

REFERENCES
[1] “Seek Quarry”, Retrieved November 26, 2021, Available at: https://www.seekquarry.com/.

[2] “Yioop”, Retrieved November 26, 2021, Available at: https://www.yioop.com/.

[3] Akinbi, A., Ojie, E. Forensic analysis of open-source XMPP/Jabber multi-client instant messaging apps on Android smartphones. SN
Appl. Sci. 3, 430 (2021), https://doi.org/10.1007/s42452-021-04431-9.

[4] Carlos A. Gomez-Uribe and Neil Hunt. 2016. The Netflix Recommender System: Algorithms, Business Value, and Innovation. ACM
Trans. Manage. Inf. Syst. 6, 4, Article 13 (January 2016), 19 pages. DOI:https://doi.org/10.1145/2843948.

[5] Ramos, J, "Using TF-IDF to Determine Word Relevance in Document Queries.", Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1424andrep=rep1andtype=pdf

[6] R.B. Jennings, E.M. Nahum, D.P. Olshefski, D. Saha, S. Zon-Yin, C. Waters, "A Study of Internet Instant Messaging and Chat Protocols.",
IEEE Network 20.4, 2006, pp. 16-21, doi: 10.1109/MNET.2006.1668399.

[7] Mikolov, T., Yih, W. T., Zweig, G.: Linguistic Regularities in Continuous Space Word Representations. In HLT-NAACL, 746–751 (2013).

[8]] Luis Argerich, Matias J. Cano, and Joaquin Torre Zaffaroni: Hash2Vec: Feature Hashing for Word Embeddings(2016).

[9] Nikolaj Cholakov. 2008. On some drawbacks of the PHP platform. In Proceedings of the 9th International Conference on Computer
Systems and Technologies and Workshop for PhD Students in Computing (CompSysTech '08). Association for Computing Machinery, New
York, NY, USA, Article 12, II.7–2. DOI:https://doi- org.libaccess.sjlibrary.org/10.1145/1500879.1500894.

REFERENCES
[10] “Translate Microsoft”, Retrieved November 26, 2021, Available: https://www.microsoft.com/en-
us/translator/.

[11] “Hash Function” , Retrieved November 26, 2021, Available: https://en.wikipedia.org/wiki/Hash_function

[12] Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish Chandra. 2018. Retrieval
on source code: a neural code search. In Proceedings of the 2nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages (MAPL 2018). Association for Computing Machinery, New York,
NY, USA, 31–41. DOI:https://doi.org/10.1145/3211346.3211353

[13] Donald Metzler, Yi Tay, Dara Bahri, and Marc Najork. 2021. Rethinking search: making domain experts out
of dilettantes. SIGIR Forum 55, 1, Article 13 (June 2021), 27 pages.
DOI:https://doi.org/10.1145/3476415.3476428.

[14] Gaikwad, N, “Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia Corpus”,
San Jose State University, May 2020.

	� An Open-Source Direct Messaging and Enhanced Recommendation System for Yioop��by�Aniruddha Mallya
	Table of Contents
	purpose
	Introduction.
	History of DM.
	Design for Direct messaging
	Design for Direct messaging.
	Implementation for Direct messaging
	USE Case 1
	USE Case 2.
	Use case 3
	Experiments for dm
	Experiments for dm .
	Experiments for dm
	Challenges with DM.
	History of Recommendation systems.
	YIOOP’S RECOMMENDATION SYSTEM.
	Term Frequency (tf).
	Inverse Document frequency (IDF)
	TF * IDF to Calculate Weights
	Cosine Similarity
	Recommending Threads and Groups in Yioop
	TF for Threads
	TF for Users
	IDF for Threads & USers
	TF-IDF weights for Threads and Users
	Thread and User Cosine Similarity.
	Group Recommendations.
	ENHANCING YIOOP’S RECOMMENDATION SYSTEM
	Word Embeddings
	Hash2vec.
	Hash2vec.
	Design of Hash2Vec
	Implementation of Hash2Vec
	HASH2VEC Table
	Comparing old vs new recommender system.
	Experiments
	Experiments
	Conclusion
	Conclusion
	References
	References

