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PURPOSE
Yioop is an open-source implementation that acts as a search engine and web portal. 

As a web portal it lacks features like Direct messaging (DM), in this project we add this feature 
to Yioop.

Yioop also uses a recommendation system that uses Term Frequency – Inverse Document 
Frequency which makes use of user’s viewing history to recommend relevant threads and 
groups.

We further extend this functionality by using Hash2Vec to improve the recommendation in 
Yioop.



INTRODUCTION.

 Topics of discussion:
1. Direct Messaging (DM)
2. Recommendation System

DM is a type of technology that allows one to chat online with other users in real time over 
any type of computer network like the Internet.

 In a recommendation system, users are given suggestions as to which news articles to browse, 
which  movies to watch, etc. so we can potentially find the information most relevant to us with 
little effort.

Yioop makes use of a such a recommender system.



HISTORY OF DM.

 In the 80s, Internet relay chat allowed users to connect to networks with client software to chat 
with groups in real time.

 In the 90s, AOL messenger used the Oscar protocol and was the first to introduce the Buddy 
List system and Yahoo Messenger used the YMSG protocol.

 Facebook’s Messenger and WhatsApp both use the XMPP protocol both follow the client 
server architecture. Both use end to end encryption however messages sent in WhatsApp are 
transient.

XMPP is widely used as an instant messaging protocol, and it uses bidirectional streams over 
synchronous http (BOSH), we instead went ahead with an AJAX style implementation which can 
support long polling, the primary feature of BOSH.



DESIGN FOR DIRECT 
MESSAGING
 The following tables: USERS, USER_GROUP, GROUP_ITEM and SOCIAL_GROUPS were deemed 
relevant for implementing the DM system in Yioop.



DESIGN FOR DIRECT 
MESSAGING.

When a new user is introduced into the Yioop environment
and that user logs in for the first time a Personal group is 
created.

 The SOCIAL_GROUPS table manages the group 
information for a particular user.

Allow users to connect with other users through a drop-
down option.

SOCIAL_GROUPS Table



IMPLEMENTATION FOR 
DIRECT MESSAGING
 There are three uses cases for this problem statement , 
i.e., handling the logic for when a user has no friends, 
when one user sends a friend request while the other 
user has not accepted the connection request and finally 
when both users have accepted the connection requests 
from each other.

Yioop follows the Model-View-Controller (MVC) model 
all the logic must be handled by the controller.



USE CASE 1

When a user has no connections , i.e., no 
friends. 

We do this by checking if a user has any 
friends—equated to threads—as part of 
their “Personal” group.



USE CASE 2.

When a user sends the connection request to a different 
user2 and the connection has not connected with user2 
then the connection is handled by prompting the user to 
wait for the connection to connect with user2.

 First the user gives the connection access to their 
“Personal” group, this handled in the backend database 
using the USER_GROUP table.

USER_GROUP Table



USE CASE 3

 Final use case three, when both users are connected to 
each other which is indicated by the USER_GROUP table 
as shown earlier, we then must store the chat between any 
two users, to do so we user the GROUP_ITEM table. 

Since we are dealing with two “Personal” groups of the 
two users “texting” each other we had to save the “text” 
for both the groups

GROUP_ITEM Table



EXPERIMENTS FOR DM

 To get an idea of the performance of this implementation we did some load tests on the Yioop 
backend database. 

 To simulate multiple users, we created a program that created instances of multiple insertions.

 These insertions are meant to also simulate the transactions that take place when users send messages 
to each other. 

We timed the programs, and the latency information was captured in terms of seconds on the same 
local machine.



EXPERIMENTS FOR DM .

 The error bar is 3 standard deviations 
from the mean.

We can see that as the number of users 
increases the time taken by multiple users 
for “text” insertions also increases.
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EXPERIMENTS FOR DM
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CHALLENGES WITH DM.

 The first experiment we tried was creating a "Personal" group in one click for all existing 
users, but, since there were several different tables that needed to be changed, this 
proved to be challenging to handle. 

A second challenge was to manage the title view of the "Personal" group which displayed 
a user's full “username” and “user_id” on different webpages using SOCIAL_GROUPS 
table, such as all the groups they are a part of or the menu bar. 

 The third challenge was to get two different web pages to display on the same page, 
since it’s based on the existing group display functionality, we had to essentially combine 
the design for the two separate pages into one page.



HISTORY OF RECOMMENDATION SYSTEMS.

 The basics of recommender systems were founded by researches into cognition science and 
information retrieval, and its first manifestation was the Usenet communication system created 
by Duke University in the second half of the 1970s.

 The first known such solution was the computer librarian Grundy, which first interviewed users 
about their preferences and then recommended books to them considering this information. 

Since then two very different directions of recommender systems have evolved over time: 
collaborative filtering and content-based filtering. 

 The former attempts to map (profile) the taste of users and offers content to them that users 
with similar preferences liked. 

 The content-based filtering is about knowing the dimensions of the entity to be recommended.



YIOOP’S RECOMMENDATION SYSTEM.

When an information retrieval system like a search engine scores a document as relevant if it contains 
the terms in the user's search query it fails to consider the number of occurrences of the query words in 
the document while weighing a document's relevance. 

Now, term frequency and inverse document frequency are designed to weigh the documents while taking 
into consideration the frequency of terms. 

A word's performance in TF-IDF is determined by how many documents it appears in compared to how 
often it appears in that document. 



TERM FREQUENCY (TF).

 The term frequency in documents refers to the number of 
times a word appears in a document. As an example, let's 
look at the three documents below and try to understand 
how the term frequency calculation is done.

Document 1: Baguette a bread type can be made with the 
dry yeast or the fresh yeast. 
Document 2: Toasted bread has a tasty pairing with the 
salted butter. 
Document 3: You can make the beer from a dry yeast or a 
distiller yeast. 

 Let us assume that a user has entered a query q: bread 
pairing. We can sample Term frequency Table for 
Document 3.



INVERSE DOCUMENT FREQUENCY (IDF)
We consider all words in a document equally 
important when we calculate the term frequency. 

But it overlooks the effect of a few words common 
to almost all documents. 

Some words like a, an, the, etc., are in almost all the 
documents, while others are in only a few, in this 
situation, the logarithm is helpful.

 Let us look at how IDF is calculated for user’s query 
“pairing”, Total document available in corpus (N) = 
3, Number of documents containing term ‘t’ (Nt) = 1,

Sample IDF Table



TF * IDF TO CALCULATE WEIGHTS

We have TF and IDF of words in given corpus, the next step is to multiply these two quantities to 
find out the frequently occurring words in a document and inseminate the influence of their 
frequency in the surrounding documents.

 Looking at our example below, in Doc. 1 the word “bread” has normalized term frequency of 1 
and IDF of 0.18 so the weight assigned to for that term is 1 x 0.18 = 0.18.



COSINE SIMILARITY
Using TF-IDF Weights, we can find the similarity between the user query and each of the 
documents. 

 The cosine similarity is a measure of the importance of a document to a user. 

 Formula used,



RECOMMENDING THREADS AND GROUPS IN YIOOP
Yioop initially would recommend threads using a baseline predictor typically implemented 
using a “rating” system, however since the rating/voting system was not informative enough in 
Yioop, a user’s view of thread was used.

 This ended up suggesting mostly the popular threads and so TD-IDF was introduced to improve 
the recommendations.

Currently “Wiki” pages are excluded, moving ahead we will have to also exclude entries 
created for chats between users in the GROUP_ITEM Table.



TF FOR THREADS

A BoW is created by iterating over each 
thread’s “title” and “description” as 
mentioned earlier and the log frequency 
for each word in the BoW is taken to 
reduce the impact of a large title or 
description in the table.

Here, ‘term_id” is generated using the 
‘crc32’ hash value of the word.

ITEM_TERM_FREQUENCY Table



TF FOR USERS

 A log of the user history is stored in the 
ITEM_IMPRESSION table for each thread viewed by 
a user. 

 The bag of words created in the earlier step is used 
to determine the importance of a word to each user. 

 Using the ITEM_TERM_FREQUENCY table, we sum up 
the count for each word in different threads to 
determine how many times a user has seen the word. 

 Next count of word occurrences that user has seen is 
stored using it’s log value in the 
USER_TERM_FREQUENCY table.

USER_TERM_FREQUENCY Table



IDF FOR THREADS & USERS
 To get the IDF for each word in the bag of words, the number of times it appeared in each 
thread, versus the corpus of all threads is calculated. This was done using the 
ITEM_TERM_FREQUENCY table. The formula is as follows:

 The inverse document frequency for words with respect to users using the 
USER_TERM_FREQUENCY table is calculated. If there are words, that are not being viewed by 
anyone, add 1.



TF-IDF WEIGHTS FOR THREADS 
AND USERS
 TF is multiplied by IDF for every word with respect to 
users and threads. 

 The significance of a word to a thread is measured and 
stored in the ITEM_TERM_WEIGHTS Table.

Also, the significance of a word to a user is measured and 
stored in USER_TERM_WEIGHTS Table.

USER_TERM_WEIGHTS Table

ITEM_TERM_WEIGHTS Table



THREAD AND USER COSINE SIMILARITY.

Based on cosine similarity between users 
and threads, threads that are closest to 
each user's taste are determined. 

 Finally, users are recommended the top 
three similar threads.

 “item_type” is used to distinguish between 
a thread and group recommendation, 
value 2 indicates it’s a thread and 3 
indicates it’s a group.

ITEM_RECOMMENDATION Table



GROUP RECOMMENDATIONS.

 In addition to suggesting threads based on user interests, 
the Yioops recommender also suggests groups that a user 
might be interested in and are not members off. 

Recommendations are made using thread titles and 
descriptions since the group names in Yioop are very 
generic and don't explain what the group is about. 

Users are recommended the top three similar groups as 
shown in the table to the right.

ITEM_RECOMMENDATION Table



ENHANCING YIOOP’S RECOMMENDATION SYSTEM
We have seen how the recommendation system in Yioop works and how TF-IDF is used to give 
user’s recommendations that are closer to their tastes based on their thread viewing history.

 TD-IDF only considers a word’s relevance in user query to a document and returns the most 
relevant documents based on the word from the entire available corpus.

However, it fails to consider the “user word” in context to other words surroundings it.

One way to enhance the currently established recommendation system would be to provide 
context to the words of interest in the entire corpus using the concept of word embeddings, 
particularly we will look at Hash2Vec.



WORD EMBEDDINGS
At its core, it is simply a method of associating words using vectors.

 The skip-gram model and Continuous Bag of Words (CBOW) are mainly used to represent 
words as vectors in Neural models.

However, say, we use a CBOW model for a million words it makes a co-occurrence matrix of 
size million by million giving it a space complexity of O(n2) and it also have an expensive 
training time to process all million words in their vectorized forms.

We decided to try a Hash2Vec model that does create vectors in a non-neural way, i.e., 
without any training models but instead uses a hashing technique and has a space complexity 
of O(nk), n= number of words and k = some fixed dimensionality and can be small.



HASH2VEC.

When converting a variable-length inputs 
into fixed-length outputs using some 
mathematical function, the process is known 
as hashing.

As a mathematical function, a hash function 
processes input and converts it into a value 
that can be used.

A good hash function minimizes collisions 
and produces a result that fits in our table 
size. 

 In order to solve the collision problem 
effectively, the hash function should run with 
a minimum computing time.



HASH2VEC.

Using a deterministic approach, Hash2vec creates vectors from words in a low-dimensional 
space.

 This methodology was developed because the traditional method of creating vectors to 
represent each word in a low-dimensional space needed a lot of training when it was applied 
to neural networks.

Using the Hash2Vec method, however, does not require any training, it merely attempts to derive 
a word hash from a context window. This process is called hashing with context.

When the same word appears in the corpus again, it updates its existing hash value.



DESIGN OF HASH2VEC
We create a tuple such that for every term in our BoW, we take 5 words before the term and 
5 words after the term, here the value 5 is selected arbitrarily. 

We then calculate the distance of the words from our ‘term’ of interest using the formula, 
(𝑒𝑒−𝑥𝑥)2, where x = (position of word from ‘term’/standard deviation of range (-n, n)), here n = 
5. 

 The idea here is when calculating distance of word from ‘term’ we get a value between the 
range (0,1) as vectors are normalized and the closer the value to 1 the closer it’s position is to 
the ‘term’ in the corpus.

We calculate the hash value of the words to hash to the appropriate position in the vector of 
length 200 defined for each term in the BoW. The hash function takes the first 4 bytes of the 
md5 hash value of the word then we take the integer value of those 4 bytes.



IMPLEMENTATION OF HASH2VEC

 We then iterate over each newline in the corpus and do so 
for all words which we called as the ‘term’ of interest earlier. 

 Essentially the vector for each word in our BoW acts as a 
kind of definition for the word based on its context in a 
sentence. 

 The different hash positions store its definition in different 
contexts.

 In order to find the most similar words we take the cosine 
similarity of our ‘term’ of interest vector and each word 
vector in the BoW. 

 Then we filter out the words with the highest cosine similarity 
to the ‘term’ of interest. Now, we store this in a table called 
Hash2Vec HASH2VEC Table



HASH2VEC TABLE

We see “Term1” refers to our “term” of interest stored as 
an integer, “Term2” are the words most like the “term” of 
interest using the Hash2Vec score. 

Now in the USER_TERM_WEIGHTS_HASH2VEC table we 
update the TF-IDF weights by first multiplying the 
Hash2Vec score of the similar words and adding it to the 
original TF-IDF score, this is done for all the similar words 
user has seen , i.e., present in the table on top. 

We can see the cosine similarity changes from the original 
recommendation table vs the enhanced recommendation 
table in the figure at the bottom.

HASH2VEC Table



COMPARING OLD VS NEW RECOMMENDER SYSTEM.

 Looking at the recommendations between the 
tables, they retrieve the threads titled “Happy 
New Year! August 2019 I did a couple 75-million-
page crawls …..” and “Post your solutions tot the 
Feb 17 In-Class Exercise to this thread. Best, 
Chris”.

We can see that the first thread is a general 
update about the Yioop platform and the second 
thread is about an in-class exercise which the user 
may be more interested in. 

On observing this thread we see that words like 
“post”, “in-class” etc. all have the word “solution” 
as a similar word, hence the context seems to be 
preserved as intended and provides relevant 
thread recommendations.

Old recommendation system

New recommendation system



EXPERIMENTS
To judge the accuracy of the hash2vec implemented recommendation system we use precision 
and recall. Precision for the first ‘k’ results is given by,

where Rel = is all the relevant documents in this case ‘threads and Res = the total thread count 
returned by the recommendation system. Recall for first ‘k’ results is given by,

We observed the results for 10 users both in the current recommendation system and the 
hash2vec implemented system.



EXPERIMENTS
 We can see that the hash2vec implemented 
recommendation system has at least the same 
precision and recall as the current 
recommendation system and in some instances 
gives preforms higher precision and recall. 

 The current recommender system has an avg. F1 
measure of 0.005714825 and the Hash2Vec 
system has a measure of 0.00915971, showing 
an increase of 0.003444885 or 60. 28%.

 Additionally, we noted that since Yioop is 
configured to recommend the top three most 
similar threads and groups to users for some of 
the users the current recommendation system 
could not satisfy that criteria and showed fewer 
suggestions. 



CONCLUSION
We studied the internal working of Yioop to determine the tables that we are of interest to us 
to be enable us to develop the DM system. 

 For old and new users, we developed a "Personal" group in Yioop to facilitate quick 
communication. 

We used AJAX to interact with the database and fetch messages instantly. The experiments we 
performed shows the database latency vs volume of data sent by multiple users increases 
roughly linearly in time. 



CONCLUSION
We studied Yioop’s current recommendation system that suggests threads and groups which 
may be of interest to users using the user’s viewing history and engagements in Yioop. 

Next, we implemented a Hash2Vec that uses the similarity between words to improve the 
recommender system in Yioop. 

Based on the experiments we performed on the Hash2Vec system we see an improvement of 
60.28% in the avg. F1 measure and we can observe that the performance is on power with 
the current recommendation system in Yioop or in some instances Hash2Vec performs better by 
either giving higher accuracy or more recommendations.
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