Generative adversaridl
networks (GANs)

Pratikkumar.Prajapati@sjsu.edu
Mar/10/2020

Overview

= GANs are networks primarily used to generate new samples from training
samples.

= Very popular for synthesizing photographs, audio, video etc.

= In a 2016 seminar, Yann LeCun described GANs as "the coolest idea in
machine learning in the last twenty years"

Architecture of the network

I Forward propagation (generation and classification) Bl Backward propagation (adversarial training)
o © o O
Lo} (o]
A o © A 9o o
. © 0 o o © 0o __ ©
Pa%% 0 W S ® eooo S > Q:'-eo’ B
o ° GENERATIVE o @ Py 0 o0 DISCRIMINATIVE o @ o 29 o0 ~
@ 0.0 NETWORK ® ° NETWORK ' Q °
o & g <4 | 00 o <= 4= Ooda
0o © - 0
O o]
' > '
Input random The generative network The generated distribution The discriminative network The classification error
variables. is trained to maximise the and the true distribution are is trained to minimise the is the basis metric for the
final classification error. not compared directly. final classification error. training of both networks.

Generative Adversarial Networks representation. The generator takes simple random variables as inputs and
generate new data. The discriminator takes "true” and "generated” data and try to discriminate them, building a
classifier. The goal of the generator is to fool the discriminator (increase the classification error by mixing up as
much as possible generated data with true data) and the goal of the discriminator is to distinguish between true

and generated data. Image source [2]

Criterion

mén max V(D,G) = Epnpi(e) ll0g D(2)] + Ep, (2)[log(1 — D(G(2)))]. (1)

D = discriminator
G = generator

In practice, equation 1 may not provide sufficient gradient for (¢ to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 — D(G(z))) saturates. Rather than training G to minimize
log(1 — D(G(z))) we can train G to maximize log D((G(z)). This objective function results in the
same fixed point of the dynamics of &G and D but provides much stronger gradients early in learning.

€

Intuition on convergence

Y/ / Y/ N/

(a) (b) (c) (d)

. LN .

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(L), blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p, from those of the generative distribution p, (G) (green, solid line). The lower horizontal line is
the domain from which =z is sampled, in this case uniformly. The horizontal line above is part of the domain
of . The upward arrows show how the mapping & = (G/(z) imposes the non-uniform distribution p, on
transformed samples. G contracts in regions of high density and expands in regions of low density of p,. (a)
Consider an adversarial pair near convergence: p, is similar to pgy. and) is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D*(x) =
ﬁ%. (c) After an update to G, gradient of I has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because py; = pgus. The discriminator is unable to differentiate between

the two distributions, i.e. D(x) = %

The GAN Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k£ steps do

e Sample minibatch of m noise samples {z(*), ... 20"} from noise prior p,(z).
e Sample minibatch of m examples {:1:(13’,....,:5[”")} from data generating distribution
pdaia{m)-

e Update the discriminator by ascending its stochastic gradient:

e

ngi ; [lOgD (:r:m) + log (l -D (G (zm)))] .

end for
e Sample minibatch of m noise samples {z'*), ..., 2™} from noise prior Pg(z).
e Update the generator by descending its stochastic gradient:

m

Vgg%ig;log (1— D (G (z{i}))) .

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Sample results from the paper [1]
4
.

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws. not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover. these samples are uncorrelated because the sampling process does not depend on Markov chain

mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 {convolutional discriminator
and “deconvolutional™ generator)

References

= [1] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014.
Generative adversarial networks. CoRR abs/1406.2661

= [2] https:/ /towardsdatascience.com /understanding-generative-adversarial-
networks-gans-cd6e4651a29

