PRESENTATION ON RECURRENT CONVOLUTIONAL STRATEGIES FOR FACE MANIPULATION DETECTION IN VIDEOS (ARXIV: 1905.00582)

Pratikkumar.Prajapati@sjsu.edu

Apr/26/2020

OVERVIEW

- The original paper at [1]
- Features: Image + Temporal Information
- Model: CNN + RNN
- Dataset: FaceForensics++ (FF++) [2]
 - 1000 videos = 720 training + 140 validation + 140 test
- Accuracy:
 - AUC of 96.9% DeepFake, LQ
 - AUC of 96.3% FaceSwap, LQ

OVERALL ARCHITECTURE

Figure 1: The overall pipeline is a two step process. The first step detects, crops and aligns faces on a sequence of frames. The second step is manipulation detection with our recurrent convolutional model.

PREPROCESSING

- Uses masks provided by [2] to crop the face region
- Face alignment
 - 1. Landmark-based alignment
 - seven sparse points of the face are used.
 - corners of the eyes, the tip of the nose, and corners of the mouth.
 - 2. Spatial Transformer Network (STN)
 - performs spatial alignment of data with learnable affine transformation parameters.
 - a differentiable module which can be inserted into other CNN models to learn about features and landmarks.

MANIPULATION DETECTION

- Inputs are sequence of frames from the target video
- CNN
 - To learn about features of the image (frame(s) of video)
 - ResNet and DenseNet as backbone
- RNN
 - Uses GRU to exploit temporal discrepancies across frames.
 - Temporal discrepancies are expected to occur in images, since manipulations are performed on a frame-by-frame basis.
- The backbone n/w is first trained on FF++ training split minimizing cross-entropy loss to train to detect real from synthesized faces.
- The backbone is then extended with RNN and re-trained end-to-end.
- Adam optimizer

RNN TRAINING STRATEGIES

- 1. A single RNN on top of final features leant from backbone n/w.
- 2. Multiple RNN at different levels of hierarchy of the backbone net.
 - To utilize micro, meso and macroscopic features

RESULTS OF EXPERIMENTS (1/2)

Manipulation	Frames	FF++ [34]	ResNet50	DenseNet	ResNet50 + Alignment	DenseNet + Alignment	ResNet50 + Alignment + BiDir	DenseNet + Alignment + BiDir
Deepfake	1	93.46	94.8	94.5	96.1	96.4		-
	5		94.6	94.7	96.0	96.7	94.9	96.9
Face2Face	1	89.8	90.25	90.65	89.31	87.18	-	-
	5	-	90.25	89.8	92.4	93.21	93.05	94.35
FaceSwap	1	92.72	91.34	91.04	93.85	96.1	_ 1	- 1
	5		90.95	93.11	95.07	95.8	95.4	96.3

Table 1: Accuracy for manipulation detection across all manipulation types. DenseNet with alignment and bidirectional recurrent network is found to perform best. FF++ [34] is the baseline in these experiments.

RESULTS OF EXPERIMENTS (2/2)

		Variation			
Manipulation	Base	Spatial	Multi		
		Transformer	Recurrence		
Deepfake	96.9	91.7	94.4		
Face2Face	94.35	87.46	89.9		
FaceSwap	96.3	93.2	94.8		

Table 2: Results on using variations to the recurrent convolutional architecture. Both spatial-transformer networks and multi-recurrent networks exhibit a decline in performance.

REFERENCES

[1]. E. Sabir, J. Cheng, A. Jaiswal, W. AbdAlmageed, I. Masi, and P. Natarajan, "Recurrent Convolutional Strategies for Face Manipulation Detection in Videos," in Proc. Conference on Computer Vision and Pattern Recognition Workshops, 2019.

[2]. A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niener. FaceForensics++: Learning to Detect Manipulated Facial Images. *arXiv:1901.08971 [cs]*, Jan. 2019. arXiv: 1901.08971

