Autoencoders

Pratik Prajapati (Pratikkumar.Prajapati@sjsu.edu)
Feb/25/2020
Autoencoders (AEs) Basics

- An artificial neural network that is trained to attempt to copy its input to its output with constrains.
- Unsupervised learning models.
- Types of AEs
 - Undercomplete AEs
 - Regularized AEs
 - Denoising AEs (DAEs)
 - Variational AEs (VAEs)
 - And many more...
Undercomplete AEs

- **Encoder**: encodes the input data by learning features of data
- **Latent Space**: hidden layer which holds the features of the input data in lower dimension.
- **Decoder**: decodes latent space to reconstruct the input image.
Undercomplete AEs (cont.)

- **Loss function**: Typically MSE to make sure reconstructed image is same as input, to make sure encoders learn ‘useful’ latent space. (a.k.a. reconstruction loss)

- **Learning**: \(L(x, g(f(x))) \)

 where, \(x \) = input

 hidden code \(h = f(x) \) is learning objective of encoder

 \(x = g(h) \) is learning objective of decoder

- **Undercomplete**

 - Code dimension is less than the input dimension

- **Overcomplete**

 - Code dimension is more than the input dimension

 - Needs regularization to avoid learning trivial identity function

- AEs can be implemented with plain neurons and also using CNNs (for images)
The problem of AE as Generative model.

“training” data for the autoencoder

encoded data can be decoded without loss if the autoencoder has enough degrees of freedom

without explicit regularisation, some points of the latent space are "meaningless" once decoded

Image source: [4]
Possible solution space

- instead of encoding an input as a single point or vector, we encode it as a distribution over the latent space.

![Diagram showing the process of encoding and decoding in simple autoencoders and variational autoencoders.](Image source: [4])
Variational Autoencoders (VAEs)

- VAE’s aim is to create a new image that is a member of the same class of images but recognizably new.
- Since we want to create new image, it’s not sufficient to minimize just reconstruction loss.
- Total loss = reconstruction loss + variational loss
- Variational loss (Kulback-Leibler divergence):

\[
L_v(\mu, \sigma) = - \sum_i \frac{1}{2} (1 + 2\sigma[i] - \mu[i]^2 - e^{2\sigma[i]})
\]

Image source: [3]
Regularized latent space

[Image source: [4]]
Applications of AEs

- Dimensionality reduction (Lower dimension representation can improve performance of tasks.)
- Information retrieval. E.g. semantic hashing
- Anomaly Detection. E.g. Reconstruction loss gets high for outliers
- Image Processing. E.g. lossy compression, denoising images
- VAEs and its variants are capable to generate new data.
 - new images/videos (DeepFakes)
 - Drug discovery
- Popularity prediction
- Machine Translation
References.