
Relevance Ranking for 
Vertical Search Engines



Web Searching

• Current challenge: finding relevant results for targeted and specific 
queries

• Searches that are focused on few specific areas:
• For example, if you’re planning a trip, you may want results about airplane 

itineraries, baggage checking policies, traffic leading to airports, etc..

• General search engines don’t have any way to narrow in on domain-
specific information

• Vertical search engines, which focus on one “vertical slice” of the 
internet, can be useful in gathering more in-depth information for a 
given domain

• Also allows advertisers to provide more targeted ads for a user



Vertical Search Engines

• Vertical search engines work by leveraging domain knowledge, as well 
as focusing on specific user tasks

• One core component is relevance ranking, which is sorting results in 
the order that is most likely relevant to the query

• There are also two classes of vertical search engines: single domain 
ranking and multidomain ranking

• Single domain ranking is focused on one specific vertical, such as 
news or medical domains

• Multidomain ranking involves multiple verticals to get aggregated 
vertical ranking, multiaspect ranking, and cross-vertical ranking



Learning-to-rank approach

• Learning-to-rank(LTR) algorithms have been successful in optimizing loss 
functions based off editorial annotations

• Typically the process goes like this:
• Collect URL-query pairs
• Ask editors to score the pairs with a relevance grade (perfect, excellent, good, fair, bad)
• Apply a LTR algorithm to train on data

• To evaluate, we use discounted cumulated gain(DCG)

where n = number of documents,
Gi is the relevance grade for that document,
Zn is some normalization factor

• This penalizes documents that appear later, but not by too much



Combining Relevance and Freshness

• Aside from just relevance, we also want to introduce a freshness grade to 
our URL-query pairs, especially for news searches

• Similar to relevance, we have different grades of freshness:
very fresh(+1), fresh(0), a bit outdated(-1), and totally outdated(-2)

• The idea is that using the freshness grade, we can either promote or 
demote the relevancy grade

• We also introduce an evaluation metric for freshness based off of DCG,

• However this requires human editors to keep track of news and provide the 
actual relevance and freshness judgements



Joint Relevance and Freshness Learning(JRFL)
• We want to create a model that combines the relevance and freshness for 

a given query and the actual clicked news article, making use of 
clickthroughs

• We assume that the user’s “score”, Yni ,for this URL-query pair can be 
estimated by the linear combination of the relevance and freshness scores

• Let : 
• N different queries
• M different URL-query pairs, such that (Uni ≺ Unj), in which Uni is clicked but Unj is not
• XR

ni and XF
ni as the relevance and freshness features for Uni under query Qn

• SR
ni and SF

ni are the corresponding relevance and freshness scores for this URL given 
by the relevance model gR(XR

ni) and freshness model gF(XF
ni)

• αQ
n as the relative emphasis on freshness aspect estimated by the query model 

fQ(XQ
n ), so αQ

n = fQ(XQ
n ). To make things easier, we enforce 0 ≤ αQ

n ≤ 1.



The optimization problem

• For a given set of click logs, we want 
to determine the models gR(XR

ni), 
gF(XF

ni), f
Q(XQ

n ) which explain the 
most pairwise preferences

• We can put this in the form of a 
constrained optimization problem

• C is some tradeoff parameter 
between model complexity and 
training error. Set to 5 by the 
authors.

• ξnij are nonnegative slack variables 
that are introduced to account for 
noise



Relevance, freshness, and query models

• In order to work with the optimization problem, we also need to 
define the models used for the relevance, freshness, and query

• The book chooses to use linear models:

• We can plug this back into our previous equation to get our final JRFL 
model 



Final JRLF model

• Due to the associative property of linear functions, we can actually divide 
the problem into two separate subproblems: the freshness/relevance 
model estimation and the query model estimation

• Additionally we can use coordinate descent to solve both of them





Temporal freshness features (URL part)

• Aside from the usual text matching features which are used for 
relevance, we also need temporal features for the freshness of the 
URL and query models

• For the URL freshness, we have:
• Publication age – the publication timestamp of the document

• Story age – using regex to extract dates from the document and using the one 
with the smallest gap to the query date 

• Story coverage – represents the amount of new content that has not been 
mentioned previously

• Relative age – the relative age of the document within the list of returned 
results



Temporal freshness features (query part)

• For query freshness, we have these features:
• Query/user frequency – how often a query is made within a time slot, 

compared with amount of unique users making this query

• Frequency ratio – the relative frequency ratio of a query within two 
consecutive time slots

• Distribution entropy – the distribution of when queries are made; generally 
we expect a lot of queries right after some breaking news

• Average CTR – the average clickthrough rate of a URL over all other URLs 
within a time slot prior to when a query was made

• URL recency – statistics related to the frequency URL-query pair within a fixed 
time period. If the URLs associated to one particular query are fresh, then the 
query is likely to be a breaking news query



Experimentation and Testing

• The book tests the JFRL model on data from Yahoo! News search 
engine over a 2 month period

• A time slot from the previous slide is defined to be 24 hours

• Each of the those features are also linearly scaled within the range 
[-1, 1] for normalization

• Compared against RankSVM and GBRank algorithms, neither of which 
explicitly model relevance or freshness

• To quantitatively compare the retrieval performance, Precision, Mean 
at Precision, and Mean Reciprocal Precision
• In order to convert document scores to be “relevant” or “not relevant”, we 

consider anything with a grade of “good” or above to be “relevant”



Analysis of JRFL

• The first thing tested was to see if the coordinate descent in the JRFL 
model even converges

• Even with different initial states, the model converges , although 
randomizing seems to converge the fastest

• The weight of the temporal features also suggest the following:
• For URL freshness features, the smaller the publication age, story coverage, 

and relative age, the more recent the news article is

• For query freshness features, the bigger the query frequency and URL 
recency, and the smaller the distribution entropy, the more users and news 
reporters are focusing on this event




