
A WebRTC Video Chat Implementation
Within the Yioop Search Engine

Yangcha K. Ho

5/20/2019

“You Raise me up”

Ø When I am down, and, oh, my soul, so weary
…

Ø You raise me up, so I can stand on mountains
You raise me up to walk on stormy seas
I am strong when I am on your shoulders

Ø …
You raise me up to more than I can be

Ø You raise me up, so I can stand on mountains
You raise me up to walk on stormy seas

Ø

This Lyric sums up my words. Thank you for providing me a
solid foundation and being patient with me.

Ø

Table of contents:
Ø A WebRTC Video Chat Implementation Within the Yioop Search Engine

Ø What is WebRTC

Ø What happens before Html5

Ø Video element in HTML5 and example

Ø WebRTC 3 API

Ø Network protocols supporting WebRTC

Ø Walk through example

A WebRTC Video Chat Implementation Within
the Yioop Search Engine

Ø Suppose both Bob and Alice has logged into Yioop.com, and they
want a video chat with each other. Bob is in New York and Alice is
San Jose.

Ø Bob selects Alice from the drop down list.
Ø Both Bob and Alice are connected to the signaling server which sends

messages to each one.
Ø When Bob clicks “call” button to call Alice, the signaling server

informs that Bob wants to call Alice.
Ø Alice must accept the call from Bob.

What is WebRTC ?

Ø Not a single piece of software

It utilizes a collection of technologies such as encryption

algorithm, HTML5, JavaScript APIs, and several network

protocols

Ø The World Wide Web (W3C) standardizes APIs

Ø IETF – standardizes various protocols

Self Help Sites vs This Research Project

Ø May 2011, Google released WebRTC as open source project.

Ø Popular since then and already commercialized: tokbox.com

Ø Many self-help sites to teach WebRTC technology.

Ø They run on one desktop with two browsers sharing the same memory.

They neither use signaling server nor encryption algorithm.

Ø This project runs an encryption algorithm on two different desktops, with

a home made signaling server.

Ø Built in an academic setting, it has all the components comparable to

commercial WebRTC sites.

https://tokbox.com/

Before HTML5

Ø To develop an application with video/audio feature on browser

you had to use Flash, or Silverlight, or A Java applet.

Ø Also need a third party plug in software to make it work.

Ø Also need to implement codecs; divide the frames in smaller

chunks, compress them and do it reverse order in the other end.

Example of HTML5 tag: video tag

Ø <html>
Ø …
Ø <body>
Ø <video id="localVideo" playsinline autoplay muted></video>
Ø <video id="remoteVideo" playsinline autoplay></video>
Ø …
Ø </body>
Ø </html>

WebRTC comes with Three APIs and Other components

Ø The three JavaScript APIs:
• a) getUserMedia() handles video and audio streams
• b) RTCPeerConnection() handles major communication
• c) RTCDataChannel() handles data transfer

Ø Other Components:
Ø Encryption framework, STUN/TURN servers, signaling server, ICE,

SDP, NAT, UDP, TCP.

getUserMedia() API

<video autoplay></video>
<script>
var constraints = { video: true, audio: true, };
Ø if(navigator.getUserMedia) {

navigator.getUserMedia(constraints, mediaOK,
mediaError); }
else { alert('Your browser does not support

getUserMedia API'); }
</script>

Main Components of WebRTC RTCPeerConnection

function start(isCaller) {

Øpc = new RTCPeerConnection(STUN/TURN Parameter);

Øpc.onicecandidate = gotIceCandidate;

Øpc.onaddstream = gotRemoteStream;

Øpc.addStream(localStream); if(isCaller) {

Øpc.createOffer(gotDescription, createOfferError); } }

RTCPeerConnection API – cont.

Øpc = new RTCPeerConnection(STUN/TURN Parameter);
ØThe parameter lists array of STUN and TURN servers for

locating the ICE candidates.
ØGoogle’s free public STUN servers at code.google.com
ØNot many free TURN server and commercial sites available
ØThis project uses a public TURN server at:

https://github.com/pions/turn.

https://github.com/pions/turn

RTCPeerConnection API

Responsible for connecting two peers.

1. pc.onicecandidate = gotIceCandidate;

Ø It initializes a connection, gathers ICE candidates - browser’s public IP

number and port

Ø Three different kinds of information must be exchanged between

them: a) when to start/end, b) IP address, Port number and 3) codecs,

and media types used.

onaddstream() & addStream()

ØThe pc object obtains local and remote media stream

using the getUserMedia() method.

ØThis media steam must be attached to pc object via

onaddstream() method for remote media stream.

addStream()method for local video/audio stream.

pc.createOffer()

ØThe caller pc creates an offer using createOffer().
ØIt creates an SDP offer for a new connection to a remote

peer.
ØIt contains the codecs, encryption methods, and ICE.

Wraps inside RTCSessionDescription(offer) object.
ØIt attaches to pc.setLocalDescription() to send to its

target peer through a signaling server.

https://developer.mozilla.org/en-US/docs/Glossary/SDP

createAnswer()

ØThe callee pc receives an offer in SDP format from the caller.
ØThe callee pc creates a SDP using createAnswer() method.

ØThis SDP is wrapped inside pc.setRemoteDescription().

ØThis process relies on several protocols and supporting
architecture to make the connection takes place.

ØGood place to describe supporting technologies.

What is a signaling Server ?

ØEach browser might be behind some network, but each
needs to find other peer to be connected between them.

ØEach peer needs to figure out other peer’s codecs,
settings, bandwidth, IP address, and its port accessed by
outsider.

ØThey cannot do by themselves, they need a broker which
can connect them.

ØA signaling server does this broker role to establish and
coordinate connection between these two peers.

Signaling Server – cont.

Ø But the connection must be secure.
Ø The original packets in transit not be modifiable if either peer is

attacked. This is one of mandatory WebRTC requirements.

Ø But signaling process is not defined by the WebRTC Spec.
Ø One of the reason: to allow an interoperability among different

protocols.
Ø Application developer has freedom to build a signaling server

Signaling Server – cont.
Ø Use any language or protocols to build a signaling server
Ø This project implemented two signaling servers:
Ø One is written in Node.js using WebSocket for a WebRTC

video chat application.
Ø The other one which is written in PHP with WebSocket runs

inside Yioop.com.
Ø The basic signaling process is the same in both cases - to

exchange messages between two browsers.

Signaling Server – cont.

Ø Commercial signaling servers: Asterisk and OnSip.
Skype uses its own proprietary signaling server.
Google “Hangouts”, is free, but you must download its software.

Ø When starting the signaling process, the two browsers do not
know each other’s codecs, and media types that are used.

Ø Interactive Connectivity Establishment (ICE) comes to solve
this problem.

ICE Candidate with signaling server

Ø Each ICE candidate contains its IP address and its port number.
Ø As soon as the two peers agree upon ICE candidates, they

exchange the video stream and data.

Ø They continue exchanging ICE candidates,
hoping to find better options until the current session ends.

Ø This project codes each ICE candidate with a JSON string
message of type "candidate,”.

ICE and SDP

Ø The caller, (Alice), finishes gathering ICE candidates and
creates an offer in Session Description Protocol (SDP) format,
to initiate the call to the other party.

Ø Bob creates an answer in an SDP format in response to the
offer from Alice.

Ø This paper writes signaling server using WebSocket to
transmit offer messages with the type " webrtcmessage.”

WebRTC protocol stack

Signal Server needs SDP

ØA signal server plays a very important role in exchanging
audio and video streams between two peers, but it
cannot work alone.

ØIt needs support from several other underlying
protocols and SDP is one of them.

SDP

Ø To share media-based data with the other peers over a network.

Ø SDP includes the name, purpose of the session, the media type,
protocols, codec and its settings, timing, etc. and it is a kind of
name card in a business world.

Ø When the pc object starts collecting ICE candidates, an SDP is
created.

SDP – cont.

ØThe SDP has been around since the late 1990s for media-based
connections such as phones before it is used in WebRTC.

ØThe SDP has a text-based format.

ØIt has a set of key-value pairs.
Ø Example: “<key>=<value>\n”.

ØIt uses mnemonic names such as shown below.

Example of SDP
v = 0
o = mhandley2890844526 2890842807 IN IP4 126.16.64.4
s = SDP Seminar
i = A Seminar on the session description protocol
u = http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
e = mjh@isi.edu(Mark Handley)
c = IN IP4 224.2.17.12/127
t = 2873397496 2873404696
a = recvonly
m = audio 49170 RTP/AVP 0
m = video 51372 RTP/AVP 31
m = application 32416udp wb
a = orient:portrait

WebRTC video chat application with the SDP
Ø Alice creates new objects from Signaling Server and RTCPeerConnection.
Ø Call them signalServer and pc respectfully.

Ø Alice attaches getUserMedia() method pc.

Ø Alice creates SDP (offer) and attaches it to a local description() method.

Ø Alice sends this SDP offer to remote peer via signalServer.

Ø Bob, the recipient, returns an answer in an SDP format wrapped in a
remote description method using signalServer.

Ø Both peers have established connection – see the figure

Bob calls Alice for Video Chat inside Yioop

UDP (User Datagram Protocol)

Ø To deliver real-time communication in WebRTC.

Ø UDP uses timeliness, offers no promises on reliability, no guarantee, no
orderliness of the data, and delivers each packet to the application the
moment it arrives.

Ø If audio and video streams occasionally lose a few packets, the audio
Ø and video codecs makes up to fill in small data gaps, and users
Ø do not notice any a difference.

Ø WebRTC uses UDP at the transport layer, but UDP does not work alone.
It needs support from other layers of NATs and firewalls.

Network Address Translation (NAT)

Ø A firewall or a router, maps one external IP address to a
computer inside a private network.

Ø Allows several local devices can be connected to one public IP
address to conserve the IPv4 address.

Ø When a device on the local network tries to send packets to
outside, the NAT translates the IP address to match the
external address.

Ø NAT devices also screens outside calls coming inside for
security.

NAT example

Session Traversal Utilities for NAT (STUN)

Ø STUN server is to find out what your a public IP address is.

Ø WebRTC uses a STUN server to determine its public IP address, and the
ICE framework which finds a suitable STUN server during connection
establishment.

Ø STUN servers are free: https://gist.github.com/zziuni/3741933.

Ø STUN servers may not work in some cases due to network security or
NAT device types.

Ø Then it relies on TURN server.

https://gist.github.com/zziuni/3741933

Example of STUN server

Traversal Using Relays around NAT (TURN)
server

Ø Responsible for transmitting audio/video/data streaming.
Ø Most of the time, the STUN server is good enough,

Ø If it fails, a TURN server comes in to relay the media data.

Ø RTCPeerConnection.icecandidate() method establishes a
connection between peers over STUN/TURN servers.

Ø It requires a high bandwidth, not free, and incurs cost.

An Example of STUN/TURN servers

Interactive Connectivity Establishment (ICE)

Ø Signaling server has been set up, then it uses ICE to get around
with NATs and try to find the best option to connect peers.

Ø ICE tries to find the host address by querying its operating
system.

Ø If this search does not work due to NAT device, then ICE relies
on a STUN server to obtains its target external address.

Ø If this still fails, it resorts to a TURN server as a last solution.

WebRTC Security
Ø There are many opportunities that media streams in transit could to leak .

Ø It can happen during peer-to-peer communication or peer-to-server
communication, with a third party acting as a MiM.

Ø Encryption is a mandatory in WebRTC.

Ø The encryption technology must satisfy these requirements :
Ø If messages are stolen in transit, they must not be readable.
Ø Must utilize the highest bandwidth possible between the clients;
Ø and the Datagram Transport Layer Security (DTLS) fits the bill.

Ø

Datagram Transport Layer Security(DTLS)

ØA simple and easy-to-use protocol.
ØIt works with the UDP transport layer.
ØIt is modeled after the TLS protocol.

ØEncryption protocols are based on datatype:
Ø Data sent over RTCDataChannel is secured using

DTLS.
Ø Media streams are encrypted using the Secure Real-

Time Transport Protocol (SRTP).

WebRTC protocol stack

RTCDataChannel

ØTransfers data directly from one peer to another.

It supports strings, binary types, Blob, and ArrayBuffer.

ØResembles to the WebSocket API, users use the same

programming model.

ØThis paper does not use the RTCDataChannel, so

discussion on RTCDataChannel is limited to this much.

WebRTC video Chat inside Yioop.com

WebRTC video Chat inside Yioop.com - cont.

Ø When a user logs on to the Yioop, which opens
the WebSocket connection to the signaling server.

Ø Once the connection has been made, the signaling server sends
Yioop a list of all users who is are currently online and
keeps the list until the web page closes.

Ø When user logs off, the signaling server knows that the user
becomes offline.

Ø Bob logs on to Yioop, and selects Alice from the drop down list
provided that Alice has already logged in.

Ø Both Bob and Alice are connected to the signaling server via the
WebSocket protocol, and the signaling server sends messages to
each one.

Ø When Bob selects Alice, Yioop sends a message to the signaling
server and informs that Bob wants to call Alice.

Ø At the same time, the signaling server sends the message to Bob.

WebRTC video Chat inside Yioop.com - cont.

Ø Yioop shows the green circle, indicating another user is calling
him; callers exchange WebRTC data and establish the call.

Ø We put a WebSocket server into the signaling server and
WebSocket client part into the Yioop page.

Ø This application is written in PHP, runs on the server, and
listens to WebSocket connections on the TCP port 2002.

WebRTC video Chat inside Yioop.com - cont.

A snap shot of relationship with Yioop and WebSockets

Conclusion

Ø WebRTC inside Yioop.com can be used in lieu of your cell phone
as long as you log on Yioop.com.

Ø This technology can be utilized for online class.

Ø We could extend this feature to make a conference call as a next
step.

