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Value	Iteration

• This	is	what	we	similar	to	what	Q-Learning	does,	the	main	difference	being	that	we	we	
might	not	know	the	actual	expected	reward	and	instead	explore	the	world	and	use	
discounted	rewards	to	model	our	value	function.
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Value	Iteration

• This	is	what	we	similar	to	what	Q-Learning	does,	the	main	difference	being	that	we	we	
might	not	know	the	actual	expected	reward	and	instead	explore	the	world	and	use	
discounted	rewards	to	model	our	value	function.

• Once	we	have	Q(s,a),	we	can	find	optimal	policy	π*	using:



Policy	Iteration
• We	can	directly	optimize	in	the	policy	space.
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Preliminaries
Following	identity	expresses	the	expected	return	of	another	policy	 in	terms	of	
the	advantage	over	π,	accumulated	over	time	steps:

Where	Aπ is	the	advantage	function:

And							is	the	visitation	 frequency	of	states	in	policy	



Preliminaries
To	remove	the	complexity	 due	to										,	following	 local	approximation	 is	introduced:

If	we	have	a	parameterized	 policy	 							,	where	 														is	a	differentiable	 function	of	the	parameter	
vector	 	 ,	then	 	 matches				to	first	order.	 i.e.,

This	implies	 that	a	sufficiently	 small	 step	that	improves	 will	also	improve	 	 ,	but	does	not	give	
us	any	guidance	 on	how	big	of	a	step	to	take.



• To	address	this	issue,	Kakade &	Langford	(2002)	proposed	conservative	
policy	iteration:

where,	

• They	derived	the	following	lower	bound:

Preliminaries



Preliminaries

• Computationally,	this	α-coupling	means	that	if	we	randomly	choose	a	
seed	for	our	random	number	generator,	and	then	we	sample	from	
each	of		π and	πnew after	setting	that	seed,	the	results	will	agree	for	at	
least	fraction	1-α of	seeds.
• Thus	α can	be	considered	as	a	measure	of	disagreement	between	π
and	πnew



Theorem	1
• Previous	result	was	applicable	to	mixture	policies	only.	Schulman	showed	that	
it	can	be	extended	 to	general	stochastic	policies	by	using	a	distance	measure	
called	“Total	Variation”	divergence	between	π	and							as	:

• Let

• They	proved	that	for						 ,	following	result	holds:

for	discrete	probability	 distributions	p;	q



• Note	the	following	relation	between	Total	Variation	&	Kullback–Leibler:

• Thus	bounding	condition	becomes:

Theorem	1



Algorithm	1



Trust	Region	Policy	Optimization

• For	parameterized	policies	with	parameter	vector,	we	are	guaranteed	to	
improve	the	true	objective	by	performing	following	maximization:

• However,	using	the	penalty	coefficient	like	above	results	in	very	small	step	
sizes.	One	way	to	take	larger	steps	in	a	robust	way	is	to	use	a	constraint	on	the	KL	
divergence	between	the	new	policy	and	the	old	policy,	i.e.,	a	trust	region	
constraint:



Trust	Region	Policy	Optimization

• The	constraint	is	bounded	at	every	point	in	state	space,	which	is	not	
practical.	We	can	use	the	following	heuristic	approximation:

• Thus,	the	optimization	problem	becomes:



Trust	Region	Policy	Optimization

• In	terms	of	expectation,	previous	equation	can	be	written	as:

where,	q	denotes	the	sampling	distribution
• This	sampling	distribution	can	be	calculated	in	two	ways:

Ø a)	Single	Path	Method
Ø b)	Vine	Method



Final	Algorithm

• Step	1:	 Use	the	single	path		or	vine		procedures	to	collect	a	set	of	
state-action	pairs	along	with	Monte	Carlo	estimates	of	their	Q	-values
• Step	2:	By	averaging	over	samples,	construct	the	estimated	objective	
and	constraint	in	Equation	(14)
• Step	3:	 Approximately	solve	this	constrained	optimization	problem	to	
update	the	policy’s	parameter	vector


