Playing Atari with Deep Reinforcement Learning

• Reward signal is often sparse, noisy and delayed

• Huge amount of possible states

• Data distribution changes as the algorithm learns new behaviors

• Reward signal is often sparse, noisy and delayed

Q-Learning (Temporal Difference)

• Huge amount of possible states

• Data distribution changes as the algorithm learns new behaviors

• Reward signal is often sparse, noisy and delayed

Q-Learning (Temporal Difference)

Huge amount of possible states -

Use CNN to learn the underlying distribution

• Data distribution changes as the algorithm learns new behaviors

• Reward signal is often sparse, noisy and delayed

Q-Learning (Temporal Difference)

Huge amount of possible states -

Use CNN to learn the underlying distribution

• Data distribution changes as the algorithm learns new behaviors

Experience Replay

Modelling the Network

Loss function:

$$L_{i}(\theta_{i}) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[\left(y_{i} - Q\left(s,a;\theta_{i}\right) \right)^{2} \right]$$

Target value at iteration i:

$$y_i = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a \right]$$

Optimize the loss function by stochastic gradient descent

Experience Replay

- Instead of updating weights using only the current iteration, we sample a random mini-batch of previous iterations. These are stored in memory data-set D.
- After performing gradient descent on this mini-batch, we execute an action according to ε -greedy policy. I. e., choose the greedy strategy a = max_a Q(s,a; θ), with probability 1- ε and choose a random action with probability ε

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity N e.g. Append last 5 iterations to s_1 Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1. T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

Network architecture

References

• [2013] "Playing Atari with Deep Reinforcement Learning"