Playing Atari with Deep
Reinforcement Learning

RL Challenges

* Reward signal is often sparse, noisy and delayed

* Huge amount of possible states

* Data distribution changes as the algorithm learns new behaviors

RL Challenges

* Reward signal is often sparse, noisy and delayed

Q-Learning (Temporal Difference)

* Huge amount of possible states

* Data distribution changes as the algorithm learns new behaviors

RL Challenges

 Reward signal is often sparse, noisy and delayed

Q-Learning (Temporal Difference)
 Huge amount of possible states

Use CNN to learn the underlying distribution

* Data distribution changes as the algorithm learns new behaviors

RL Challenges

 Reward signal is often sparse, noisy and delayed

Q-Learning (Temporal Difference)
 Huge amount of possible states

Use CNN to learn the underlying distribution

* Data distribution changes as the algorithm learns new behaviors

Experience Replay

Modelling the Network

Loss function:

L;(0;) =]Es,a,wp(.) [(yz —Q (s, a; 91'))2]

Target value at iteration i:
Y = Ege|r+ymaxy Q(s',a";0;-1)]s,al

Optimize the loss function by stochastic gradient descent

Experience Replay

* Instead of updating weights using only the current iteration, we
sample a random mini-batch of previous iterations. These are stored
in memory data-set D.

» After performing gradient descent on this mini-batch, we execute an
action according to e-greedy policy. |. e., choose the greedy strategy
a = max, Q(s,a; 6), with probability 1-€ and choose a random action
with probability €

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N e.g. Append last 5 iterations to s,
Initialize action-value function () with random weights /
for episode = 1, M do

Initialise sequence s; = {7} and preprocessed sequenced ¢1 = ¢(s1)
fort =1,7 do

With probability e select a random action a;

otherwise select a; = max, Q*(¢(s¢), a;0)

Execute action a; in emulator and observe reward r; and image x; 1

Set s¢+1 = S¢, at, r¢41 and preprocess ¢ 1 = O(S¢41)

Store transition (th, A, Tt ¢t—|—l) in D

Sample random minibatch of transitions (¢, a;,r;, ¢;4+1) from D

T for terminal ¢, 4
Set y; = J , Pj+
’ rj + v maxy Q(¢j+1,a’;0) for non-terminal ¢
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation
end for

end for

Network architecture

Convolution Convolution Fully connected
v v v

m
=4
<
8
‘3
3
]
Q
—
@
Q

<
°

[2 /
‘oot] H& /m
“/ a / //
/ o / /
a /
|/ a //
s /e
/ / D“" ///'
g/
o] © = &
A\
\ \ a\\ \\\\
\ @\ \
|\] M\ =
a \ \

o \

\ \
\ \ o \
(e &: \[@
\ 0 \
\ a \
a \

[s] [s]

.Q'Q.Q...‘.‘\VC‘/.........

® 0 0.0 0 0 0 0 000 00 00 00 0 0 00
~ \\ / P

® 0 0.0 0 0 0 00

"AAARARAENR |
+l+0+0+0+0+0+0+ ™ & N2 > 15
CLEEEEELE -

— ~ \

84x84x4 pixels

| |

16 8x8 filters 32 4x4 filters 256 fully - An output for
with stride 4 with stride 2 connected every valid action
rectifier units

References

* [2013] "Playing Atari with Deep Reinforcement Learning”

