
Playing	Atari	with	Deep	
Reinforcement	Learning



RL	Challenges

• Reward	signal	is	often	sparse,	noisy	and	delayed

• Huge	amount	of	possible	states

• Data	distribution	changes	as	the	algorithm	learns	new	behaviors



RL	Challenges

• Reward	signal	is	often	sparse,	noisy	and	delayed

• Huge	amount	of	possible	states

• Data	distribution	changes	as	the	algorithm	learns	new	behaviors

Q-Learning	 (Temporal	 Difference)



RL	Challenges

• Reward	signal	is	often	sparse,	noisy	and	delayed

• Huge	amount	of	possible	states

• Data	distribution	changes	as	the	algorithm	learns	new	behaviors

Q-Learning	 (Temporal	 Difference)

Use	CNN	 to	learn	the	 underlying	 distribution



RL	Challenges

• Reward	signal	is	often	sparse,	noisy	and	delayed

• Huge	amount	of	possible	states

• Data	distribution	changes	as	the	algorithm	learns	new	behaviors

Q-Learning	 (Temporal	 Difference)

Use	CNN	 to	learn	the	 underlying	 distribution

Experience	 Replay



Modelling	the	Network
Loss	 function:

Target	value	 at	iteration	i:

Optimize	 the	loss	 function	 by	stochastic	 gradient	descent



Experience	Replay

• Instead	of	updating	weights	using	only	the	current	iteration,	we	
sample	a	random	mini-batch	of	previous	iterations.	These	are	stored	
in	memory	data-set	D.

• After	performing	gradient	descent	on	this	mini-batch,	we	execute	an	
action	according	to	ε-greedy	policy.	I.	e.,	choose	the	greedy	strategy							
a	=	maxa Q(s,a; θ),	with	probability	1-ε and	choose	a	random	action	
with	probability	ε



e.g.	Append	 last	5	iterations	 to	s1



Network	architecture

84x84x4	 pixels

16 8x8 filters
with	 stride	 4

32	4x4	filters	
with	 stride	2

256	 fully	 -
connected
rectifier	 units

An	output	 for	
every	 valid	 action



References

• [2013]	"Playing	Atari	with	Deep	Reinforcement	Learning”


