Playing Atari with Deep Reinforcement Learning
RL Challenges

• Reward signal is often sparse, noisy and delayed

• Huge amount of possible states

• Data distribution changes as the algorithm learns new behaviors
RL Challenges

• Reward signal is often sparse, noisy and delayed

• Huge amount of possible states

• Data distribution changes as the algorithm learns new behaviors
RL Challenges

- Reward signal is often sparse, noisy and delayed
- Huge amount of possible states
- Data distribution changes as the algorithm learns new behaviors

Q-Learning (Temporal Difference)

Use CNN to learn the underlying distribution
RL Challenges

- Reward signal is often sparse, noisy and delayed
 - Q-Learning (Temporal Difference)
 - Use CNN to learn the underlying distribution

- Huge amount of possible states

- Data distribution changes as the algorithm learns new behaviors
 - Experience Replay
Modelling the Network

Loss function:

\[L_i(\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[(y_i - Q(s, a; \theta_i))^2 \right] \]

Target value at iteration i:

\[y_i = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) \right] | s, a \]

Optimize the loss function by stochastic gradient descent
Experience Replay

• Instead of updating weights using only the current iteration, we sample a random mini-batch of previous iterations. These are stored in memory data-set D.

• After performing gradient descent on this mini-batch, we execute an action according to ϵ-greedy policy. I. e., choose the greedy strategy $a = \max_a Q(s,a; \theta)$, with probability $1-\epsilon$ and choose a random action with probability ϵ
Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights

for episode = 1, M do
 Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$
 for $t = 1, T$ do
 With probability ϵ select a random action a_t
 otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$
 Execute action a_t in emulator and observe reward r_t and image x_{t+1}
 Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
 Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D
 Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D
 Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$
 Perform a gradient descent step on $(y_j - Q(\phi, a_j; \theta))^2$ according to equation 3
 end for
end for
Network architecture

- Input: 84x84x4 pixels
- 16 8x8 filters with stride 4
- 32 4x4 filters with stride 2
- 256 fully-connected rectifier units
- An output for every valid action
References

• [2013] "Playing Atari with Deep Reinforcement Learning"