Playing Atari with Deep
Reinforcement Learning
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Modelling the Network

Loss function:

L;(0;) = ]Es,a,wp(.) [(yz —Q (s, a; 91'))2]

Target value at iteration i:
Y = Ege|r+ymaxy Q(s',a";0;-1)]s,al

Optimize the loss function by stochastic gradient descent



Experience Replay

* Instead of updating weights using only the current iteration, we
sample a random mini-batch of previous iterations. These are stored
in memory data-set D.

» After performing gradient descent on this mini-batch, we execute an
action according to e-greedy policy. |. e., choose the greedy strategy
a = max, Q(s,a; 6), with probability 1-€ and choose a random action
with probability €



Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N e.g. Append last 5 iterations to s,
Initialize action-value function () with random weights /
for episode = 1, M do

Initialise sequence s; = {7} and preprocessed sequenced ¢1 = ¢(s1)
fort =1,7 do

With probability e select a random action a;

otherwise select a; = max, Q*(¢(s¢), a;0)

Execute action a; in emulator and observe reward r; and image x; 1

Set s¢+1 = S¢, at, r¢41 and preprocess ¢ 1 = O(S¢41)

Store transition (th, A, Tt ¢t—|—l) in D

Sample random minibatch of transitions (¢, a;,r;, ¢;4+1) from D

T for terminal ¢, 4
Set y; = J , Pj+
’ rj + v maxy Q(¢j+1,a’;0) for non-terminal ¢
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation
end for

end for




Network architecture
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