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Introduction 

Reinforcement Learning is a field of Artificial Intelligence that has gained a lot of 

attention in recent years. In July 2017, Silver et.al published a paper [1] and video [2] 

showing a simulated humanoid body trained to navigate through a set of challenging 

terrains, using reinforcement learning. This project will use a similar approach to train a 

simulated humanoid body to climb a rock wall. The process of rock climbing is more 

complex than walking because the viable solution space is much more constrained, but 

the search space is just as large.   

Unlike supervised learning, where we use some training data as input, in 

reinforcement learning we only have access to an environment where each actor or 

agent can perform a set of specific actions. This environment is considered as a MDP 

(Markov Decision Process), where we do not know the states we can visit and also the 

transition function from each state is not known. Each action performed has a reward 

that depends on the new state and previous state. The goal of reinforcement learning is 

to learn this reward function, which is generally referred to as policy π. Using this reward 

function, an agent can choose the actions which leads to best rewards.  

The final goal of this semester is to have learned the fundamentals of 

reinforcement learning and do research on existing literature. Through this, I will have 

developed a baseline architecture of my final project, which I can then tweak and train 

to train the simulation model. 
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I. Deliverable 1: Q-Learning implementation for Tic-Tac-Toe 

The objective of this deliverable was to develop a python module for an agent 

and a bot that uses the Q-Learning technique to train the agent on how to play Tic-Tac-

Toe game. Q-Learning [3] is an off-policy learning algorithm, where we model the value 

function as a Bellman equation, where the reward for performing action a is calculated 

as the instant reward for entering the new state plus the maximum discounted future 

reward that can be obtained in the new state. This equation is solved by creating a table 

of Q-values. This equation is given as: 

! ", $ = 	'( $ + 	γ	+$",-!("/, $/) 
Here, ! is the function that we want to learn. '(  is the instant reward of value of 

performing action $ in state ", γ	is the discount factor, and "′ is the next state. There are 

two scripts in the module: The first Q_Learning_Tic_Tac_Toe.py uses a simple bot to 

train the agent, and the output is a model file that contains the Q-values in a table. The 

second file Tic-Tac-Toe-Player.py uses the model generated by first to play against a 

human player. Value of 2 is taken as 0.1. Training the agent for 50000 games created 

5000 entries in the Q-table on average. Considering there are only 5812 legal states in 

Tic-Tac-Toe, the agent performed very well and won 14 out of 15 games on average. 

    



Rock-Wall Climbing AI 
    
  

3	

II. Deliverable 2: MuJoCo Rock Wall Generator 

The goal of this deliverable was to develop a python script to generate an 

environment in which our humanoid simulation can learn to climb the rock wall. There 

are several libraries and packages available for this purpose that provides the physics 

and simulation capabilities. Out of these two packages: MuJoCo [4] and Bullet Physics 

[5] stand out, mainly due to their compatibility with OpenAI Gym. OpenAI Gym [6] has 

used MuJoCo since its beginning. However, MuJoCo requires a paid license, although it 

is free for students. The support for pybullet was added with introduction of Roboschool 

framework which was supposed to replace Gym, but it has not been updated for almost 

a year. So, we decided to use MuJoCo with student license. The final outcome of this 

deliverable was a python script to generate an xml in MJCF format which can be run via 

the MuJoCo simulator.   

The MJCF file contains an XML tree created by nested body elements. The 

generated world contains a single wall that has different types of rock climbing holds 

placed in a semi-random fashion. The rock wall is specified as a geom element of type 

box within the main body. The rock-climbing holds are specified as geom element of 

type mesh. The mesh files for the holds were obtained from sites like thingverse.com 

[7], where people make these files for 3-D printing. To make the pattern semi-random, 

we use the following method: 

1. Divide the wall into tiles of size 1x1, and traverse the tiles from bottom left to top right. 

2. With 50% probability place a hold at a tile, and shift it along x-axis by 6% on average. 

3. Set y-position of each hold 0.2 distance above the hold below it. 
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To generate the xml file, the etree python library was used. This xml file could then be 

supplied to the MuJoCo simulator to view the result. The figure below shows a sample 

output of the deliverable. 
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III. Deliverable 3: RockClimbEnv Gym Environment 

The objective of this deliverable was to explore the OpenAI gym environment, 

and to develop a gym environment for generating a random rock wall. This OpenAI gym 

environment can then be used to train a humanoid on how to climb the rock wall. One of 

the main benefit of using OpenAI Gym is that it will be much easier for someone else to 

replicate my work and build upon it. The environment is shown in the picture below. 

 

This gym environment provides a framework where we can choose an action for the 

Humanoid. This action is in the form of value for 24 joint motors, each in range [-1, 1]. 

Changing these values enables the movement of humanoid. Actions are drawn 

randomly from the action space. Based on action performed, and resulting new state 

agent is given a reward. This reward depends on the z position of the humanoid body. 
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III. Deliverable 4: DDPG Algorithm 

The goal of this deliverable was to choose a policy gradient algorithm and 

implement it. Algorithms like Q-Learning and DQN (Deep Q-Networks) can work only on 

discrete and low-dimensional action spaces. For this reason, they are not suitable for 

continuous control tasks like robot or humanoid movements, etc. Policy gradient 

methods with deep function approximators have shown remarkable success in 

continuous control tasks. Unlike value-based methods, here we learn and optimize for 

policy function directly. For this deliverable, I implemented the DDPG [8] (Deep 

Deterministic Policy Gradient) policy gradient algorithm. 

DDPG is a model-free, off-policy, actor-critic approach based on the DPG 

(Deterministic Policy Gradient) method. Model-free means that the underlying dynamics 

of the environment are unknown and are learned by exploring. Off-policy means that 

actions are chosen from a behaviour policy that is different from the policy being trained. 

In an actor-critic approach, the actor represents the policy function, and specifies the 

action to be performed given the current state of the environment. The critic represents 

the value function which specifies the resultant reward and produces a signal error to 

criticize the actions made by the actor. The deterministic part comes from the fact that 

we training to learn the Deterministic policy. In algorithms like DQN, we can use 

stochastic policy and learn select the action based on the following eq.: 

$3 = +$",	!∗ ∅(63 , $; 	8) 
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But, this equation is not practical for continuous action spaces. Using a deterministic 

policy allows us to use the equation: 

$3 = 	9(63|8;) 

 

Also, similar to the €–greedy approach used in DQN, a noise process < is used to 

ensure sufficient exploration: 

$3 = 	9 63 8; +	<3 

 

 The complete algorithm is shown below: 
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Conclusion 

During this semester, I have completed the preliminary steps required towards CS298. I 

know what needs to be worked on during next semester. I have developed and explored 

the OpenAI Gym and Baselines libraries, which I will be using to perform the training. I 

have researched the previous work that has been done in this field. In detail, I have 

implemented the Q-Learning and DDPG algorithms, and trained a humanoid simulation 

to take the first step towards walking. Through these, I have gained knowledge and 

exposure to deep reinforcement learning concepts. 

 For next semester, I need to determine how to setup the rewards inside the gym 

environment that I have created. Currently, the reward is based on the z position of the 

humanoid body. However, a better way could be setup incremental reward such that 

goal changes from one hold to another as the humanoid starts climbing. In this way, the 

solution space that needs to be explored can be reduced. Further, I will need to try 

different configurations for the hyper-parameters while training the simulation. Also, 

based on the experiments that I did using the baseline algorithms, I might need to use a 

HPC cluster to do the training. Currently, on my MacBook Pro, it took 3-4 hours for 500 

iterations of DDPG algorithm. After 500 iterations, humanoid only learned to take one 

step. For more complex tasks like rock-climbing, much more training would be required. 
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