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1 Introduction

Jigsaw puzzles were first introduced in the 1760s when they were made
from wood; their name derives from the jigsaws that were used to carve the
wooden pieces. The 1930s saw the introduction of the modern jigsaw puzzle
where an image was printed on a cardboard sheet that was cut into a set of
interlocking pieces [1, 2]. Although jigsaw puzzles had been solved by children
for two centuries, it was not until 1964 that the first automated jigsaw puzzle
solver was proposed by Freeman & Gardner [3]. While an automated jigsaw
puzzle solver may seem trivial, the problem has been shown by Altman [4] and
Demaine & Demaine [5] to be strongly NP-complete when pairwise compatibility
between pieces is not a reliable metric for determining adjacency.

Jig swap puzzles are a specific type of jigsaw puzzle where all pieces are
equally sized, non-overlapping squares. Jig swap puzzles are substantially more
challenging to solve since piece shape cannot be considered when determining
affinity between pieces. Rather, only the image information on each individual
piece is used when solving the puzzle.

Solving a jigsaw puzzle simplifies to reconstructing an object from a set of
component pieces. As such, techniques developed for jigsaw puzzles can be
generalized to many practical problems. Examples where jigsaw puzzle solving
strategies have been used include: reassembly of archaeological artifacts [6, 7],
forensic analysis of deleted files [8], image editing [9], reconstruction of shredded
documents [10], DNA fragment reassembly [11], and speech descrambling [12]. In
most of these practical applications, the original, also known as “ground-truth,”
input is unknown. This significantly increases the difficulty of the problem as
the structure of the complete solution must be determined solely from the bag
of component pieces.

This thesis proposes an improved jig swap puzzle solver that is able to solve
multiple puzzles simultaneously. What is more, it defines a set of new metrics
for measuring the quality of outputs of such solvers. Lastly, this thesis proposes
enhancements to existing techniques to improve solver performance on computer
generated images.
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2 Previous Work

Computational jigsaw puzzle solvers have been studied since the 1960s when
Freeman & Gardner proposed a solver that relied only on piece shape and could
puzzles with up to nine pieces [3]. Since then, the focus of research has gradually
shifted from traditional jigsaw puzzles to jig swap puzzles.

Cho et al. [13] proposed in 2010 one of the first modern computational jig
swap puzzle solvers; their approach relied on a graphical model built around a
set of one or more “anchor piece(s),” which are pieces whose position is fixed in
the correct location before the solver began. Cho et al.’s solver required that
the user specify the puzzle’s actual dimensions. Future solvers would improve
on Cho et al.’s results while simultaneously reducing the amount of information
(beyond the set of pieces) passed to the solver.

A significant contribution of Cho et al. is that they were first to use the
LAB (Lightness and the A/B opponent color dimensions) colorspace to encode
image pixels. LAB was selected due to its property of normalizing the lightness
and color variation across all three pixel dimensions. Cho et al. also proposed a
measure for quantifying the pairwise distance between two puzzle pieces that
became the basis of most of the future work (see Section 3).

Pomeranz et al. [14] proposed an iterative, greedy jig swap puzzle solver
in 2011. Their solver did not rely on anchor pieces, and the only information
passed to the solver were the pieces, their orientation, and the size of the
puzzle. Pomeranz et al. also generalized and improved on Cho et al.’s piece
pairwise distance measure by proposing a “predictive distance measure.” Finally,
Pomeranz et al. introduced the concept of “best buddies,” which are any two
pieces that are more similar to each other than they are to any other piece. Best
buddies have served as both an estimation metric for the quality of solver result
as well as the foundation of some solvers’ placers [15].

An additional key contribution of Pomeranz et al. is the creation of three
image benchmarks. The first benchmark is comprised of twenty 805 piece images;
the sizes of the images in the second and third benchmarks are 2,360 and 3,300
pieces respectively.

In 2012, Gallagher [16] formally categorized jig swap puzzles into four primary
types. The following is Gallagher’s proposed terminology; his nomenclature is
used throughout this thesis.

• Type 1 Puzzle: The dimensions of the puzzle (i.e., the width and height
of the ground-truth image in number of pixels) is known. The orientation of
each piece is also known, which means that there are exactly four pairwise
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relationships between any two pieces. A single anchor piece, with a known,
correct, location is required with additional anchor pieces being optional.
This type of puzzle is used by [13, 14].

• Type 2 Puzzle: This is an extension of a Type 1 puzzle, where pieces may
be rotated in 90◦ increments (e.g., 0◦, 90◦, 180◦, or 270◦); in comparison
to a Type 1 puzzle, this change alone increases the number of possible
solutions by a factor of 4n, where n is the number of puzzle pieces. What is
more, no piece locations are known in advance; this change eliminates the
use of anchor piece(s). Lastly, the dimensions of the ground-truth image
may be unknown.

• Type 3 Puzzle: All puzzle piece locations are known and only the rotation
of the pieces is unknown. This is the least computationally complex of the
puzzle variants and is generally considered the least interesting. Type 3
puzzles are not explored as part of this thesis.

• Mixed-Bag Puzzles: The input set of pieces are from multiple puzzles,
or there are extra pieces in the input set that belong to no puzzle. The
solver may output either a single, merged puzzle, or it may separate the
input pieces into disjoint sets that ideally align the set of ground-truth
puzzles. This type of puzzle is the primary focus of this thesis.

Sholomon et al. [17] in 2013 proposed a genetic algorithm based solver for
Type 1 puzzles. By moving away from the greedy approach used by Pomeranz
et al., Sholomon et al.’s approach is more immune to suboptimal decisions early
in the placement process. Sholomon et al.’s algorithm is able to solve puzzles
of significantly larger size than previous techniques (e.g., greater than 23,000
pieces). What is more, Sholomon et al. defined three new large image (e.g.,
5,015, 10,375, and 22,834 piece) benchmarks [18].

Paikin & Tal [15] published in 2015 a greedy solver that handles both Type 1
and Type 2 puzzles, even if those puzzles are missing pieces. What is more, their
algorithm is one of the first to support solving Mixed-Bag Puzzles. Paikin &
Tal’s algorithm is used as the basis for much of this thesis and is discussed in
significant depth in Section 5.
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3 Puzzle Piece Pairwise Affinity

All jigsaw puzzle solvers require a means to measure the congruity of individ-
ual puzzle pieces. Pairwise affinity quantifies the similarity between the sides
of two puzzle pieces. D(xi, sa, xj , sb) and C(xi, sa, xj , sb) represent the distance
and compatibility (i.e., similarity) respectively between side sa of puzzle piece
xi and side sb of puzzle piece xj .

3.1 Cho et al. Pairwise Affinity

As mentioned in Section 2, Cho et al. [13] proposed one of earliest edge-based
pairwise affinity measures for two puzzle pieces. Equation (1) defines the distance
between the right side, R, of piece xi and the left side, L, of piece xj using Cho
et al.’s approach. Note that K is both the width and height of a puzzle piece in
number of pixels.1

D(xi, R, xj , L) =

K∑
k=1

3∑
d=1

(xi(k,K, d)− xj(k, 1, d))2 (1)

Since the LAB colorspace has three dimensions (e.g., lightness and A/B
opponent color dimensions), d ranges between 1 and 3. xi(k,K, d) represents
the LAB value in dimension “d” for the pixel in row “k” and column “K” in
puzzle piece xi. Hence, Equation (1) is the sum of the squares of the pixel value
differences between the right side of piece xi and the left side of piece xj .

3.2 Pomeranz et al. Pairwise Affinity

One of the disadvantages of Cho et al.’s metric is that it simply squares the
difference between the pieces’ pixel values. In some cases, solver performance
may improve if a different exponent is used. Pomeranz et al. in [14] generalize
Equation (1) using the (Lp)

q norm as shown in Equation (2).2

D(xi, R, xj , L) =

( K∑
k=1

3∑
d=1

(|xi(k,K, d)− xj(k, 1, d)|)p
) q

p

(2)

Equation (2) is identical to that of Cho et al. when p and q are equal to 2.
1Cho et al. used 7 for K.
2Pomeranz et al. used 28 for K. This has since become the standard.
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Another disadvantage of the metric proposed by Cho et al. is that it only
considers border pixels. Hence, if there is a gradient in the ground-truth image,
two pieces may appear artificially dissimilar. To address this issue, Pomeranz et
al. proposed predictive compatibility; Equation (3) is the predictive compatibility
between the right side, R, of piece xi and the left side, L, of piece xj .

C(xi, R, xj , L) =

K∑
k=1

3∑
d=1

[
([2xi(k,K, d)− xi(k,K − 1, d)]− xj(k, 1, d))p

−([2xj(k, 1, d)− xj(k, 2, d)]− xi(k,K, d))p
] q

p

(3)

By including in Equation (3) the difference between the column of pixels
adjacent to each edge (e.g., xi(k,K−1, d) and xj(k, 2, d)), predictive compatibility
adjusts for local gradients across puzzle pieces.

3.3 Paikin & Tal Pairwise Affinity

Paikin & Tal in [15] used Pomeranz et al.’s predictive compatibility as the
foundation of their asymmetric distance measure, which is shown in Equation (4);
it is referred to “asymmetric” since unlike Equation (3), Paikin & Tal’s approach
only considers the gradient on one side of the image (i.e., xi(k,K − 1, d)).

D(xi, R, xj , L) =

K∑
k=1

3∑
d=1

‖[2xi(k,K, d)− xi(k,K − 1, d)]− xj(k, 1, d)‖ (4)

Paikin & Tal set p and q from Equation (2) equal to 1 as it both only increased
the accuracy of their solver and significantly reduced the computational time.
It is important to note that since this distance is asymmetric, in most cases
D(xi, R, xj , L) does not equal D(xj , L, xi, R).

Pomeranz et al.’s metric in Equation (3) only considers the relationship
between two individual pieces when determining pairwise compatibility. In
images or areas of images with little variation (e.g., a cloudless sky), non-
adjacent puzzle pieces may have artificially low pairwise distances. Paikin &
Tal’s asymmetric compatibility, shown in Equation (5), corrects for this. Note
that secondD(xi, R) is the second best asymmetric distance between the right
side of piece xi and all other pieces’ sides.
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Figure 1: A Computer Manipulated Image with Misleadingly High Asymmetric
Compatibility due to a White Background

C(xi, R, xj , L) = 1− D(xi, R, xj , L)

secondD(xi, R)
(5)

By normalizing compatibility with respect to the second best distance, pair-
ings that have uniquely high compatibility are boosted, and speciously high
compatibility pairings from areas of the image with low variation are penalized.

3.4 An Improved Asymmetric Compatibility

It is expected that images generated from an analog input (e.g., photographs),
will have some degree of natural variation due to differences in brightness, the
object itself, and the image capture sensor. In contrast, such variation can be
trivially removed in images or parts of images that are computer generated or
manipulated.

Figure 1 shows a berry in front of a white background; note that the puzzles
pieces along the edge of the image and in the background have all white borders.
Hence, regardless of which of the three previously described metrics is used,
the distance between all of these pieces’ sides is zero. However, Equation (5) is
undefined when secondD(xi, sa) is equal to zero. Therefore, to better handle
computer generated images, this thesis proposes a revised definition of asymmetric
compatibility shown in Equation (6).

C(xi, sa, xj , sb) =

{
1− D(xi,sa,xj ,sb)

secondD(xi,sa)
secondD(xi, sa) 6= 0

−α secondD(xi, sa) = 0
(6)

Note that α is a tunable, penalty factor representing low compatibility.
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3.5 Best Buddies

Inter-piece distance and compatibility can be used to define specific, useful
relationships between pieces. For example, Pomeranz et al. define that two
pieces, xi and xj are “best buddies” on their respective sides sa and sb if and
only if they are more compatible (i.e., similar) to each other than they are to
any other piece. This is shown formally in Equation (7). The definition of best
buddies is identical irrespective of the compatibility function used.

∀xk∀sc, C(xi, sa, xj , sb) ≥ C(xi, sa, xk, sc)

and

∀xk∀sc, C(xj , sb, xi, sa) ≥ C(xj , sb, xk, sc)

(7)

xk is any puzzle piece from the set of input pieces, and sc is one of the four sides
of xk.

It is relatively rare that two pieces are best buddies and are not actually
neighbors [15]. When considering all sides of a piece, it is rarer still that a
piece has more non-neighbor best buddies than neighbor best buddies. These
attributes make best buddies a critical tool for many solvers.

3.5.1 Unique Best Buddies

It is relatively unlikely that in an photograph there will be a meaningful
number pieces that have multiple best buddies on the same side. However,
similar to the phenomenon described in Section 3.4, multiple best buddies may
occur in computer generated or computer manipulated images. In such cases,
best buddies become a far less discerning tool for determining piece adjacency.
This thesis addresses this by modifying the definition of best buddies as shown
in Equation (8).

∀xk 6= xj∀sc, C(xi, sa, xj , sb) > C(xi, sa, xk, sc)

and

∀xk 6= xi∀sc, C(xj , sb, xi, sa) > C(xj , sb, xk, sc)

(8)

Rather than relying on best buddies being “greater than or equal” to all other
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(a) Original Image (b) Best Buddy Visualization

Figure 2: Visualization of Best Buddies in an Image

No Best
Buddy

Non-Adjacent
Best Buddy

Adjacent Best
Buddy

No Piece
Present

Table 1: Color Scheme for Puzzles Piece Sides in Best Buddy Visualizations

pieces as in Equation (7), the modified requirement is that pairings must be
strictly “greater than.” Hence, best buddy pairings are exclusive.

3.5.2 Visualizing Best Buddies

There is currently no standard for visualizing an image’s best buddies. This
thesis proposes such a standard for the first time. As a nomenclature, any best
buddies that are neighbors in the ground-truth image are referred to as “adjacent
best buddies” while any best buddies that are not neighbors are referred to as
“non-adjacent best buddies.”

In a jig swap puzzle, a piece may have best buddies on up to four sides (since
the pieces are square). As such, each piece in the best buddy visualization is
divided into four isosceles triangles; the base of each triangle is along the side of
the puzzle piece whose best buddy is being represented. A puzzle piece’s four
isosceles triangles all share a common, non-base vertex at the piece’s center.

Figure 2 shows an image and its best buddy visualization. The color scheme
used to denote the different best buddy relationships is shown in Table 1.
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3.5.3 Interior and Exterior Best Buddies

In previous research, all best buddies (in particular best buddy errors) were
treated the same. However, non-adjacent best buddies are expected to naturally
occur more along pieces that are on the puzzle’s edge or that are next to a
missing piece since those pieces lack a true neighbor; this causes those pieces
to couple with unrelated pieces at a higher rate. For example, in Figure 2, the
image has 4 interior and 14 exterior non-adjacent best buddies despite there
being 16-times more interior sides.

When using best buddy accuracy as an estimation metric, this thesis differ-
entiates between interior and exterior best buddy errors by giving interior best
buddy errors a higher weight.
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4 Quantifying the Quality of a Solver Output

Modern jig swap puzzle solvers are not able to perfectly reconstruct the
ground-truth input in most cases. As such, quantifiable metrics are required
to objectively compare the quality of outputs from different solvers. Cho et al.
[13] defined two such metrics namely: direct accuracy and neighbor accuracy.
These metrics have been used by others including [14, 15, 16, 17, 19]. This
section describes the existing quality metrics, their weaknesses, and proposes
enhancements to these metrics to make them more meaningful for Type 2 and
Mixed-Bag puzzles.

In the final subsection, tools developed as part of this thesis to visualize the
solver output quality are discussed.

4.1 Direct Accuracy

Direct accuracy is a relatively naïve quality; it is defined as the fraction of
pieces placed in the same location in the ground-truth (i.e., original) and solved
image with respect to the total number of pieces. Equation (9) shows the formal
definition of direct accuracy (DA), where n is the total number of pieces and c
is the number of pieces placed in their original (i.e., correct) location.

DA =
c

n
(9)

Direct accuracy is vulnerable to shifts in the solved image where even a
few misplaced pieces can cause a significant decrease in accuracy. As shown
in Section 4.1.2, this can be particularly true when the ground-truth image’s
dimensions are not known by the solver.

This thesis proposes two new direct accuracy metrics namely: Enhanced
Direct Accuracy Score (EDAS) and Shiftable Enhanced Direct Accuracy Score
(SEDAS). They are described in the following two subsections; the complementary
relationship between EDAS and SEDAS is described in the third subsection.

4.1.1 Enhanced Direct Accuracy Score

The standard direct accuracy metric does not account for the possibility that
there may be pieces from multiple puzzles in the same solver output. For a given
a puzzle Pi in the set of input puzzles P (where Pi ∈ P ) and a set of solved
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puzzles S where Sj is in S, Enhanced Direct Accuracy Score (EDAS) is defined
as shown in Equation (10).

EDASPi
= argmax

Sj∈S

ci,j
ni +

∑
k 6=i(mk,j)

(10)

cij is the number of pieces from input puzzle Pi correctly placed (with no rotation
for Type 2 puzzles) in solved puzzle Sj while ni is the number of pieces in puzzle
Pi. mk,j is the number of pieces from an input puzzle Pk (where k 6= i) that are
also in Sj .

When solving only a single puzzle, EDAS and standard direct accuracy as
defined Equation (9) are equivalent. When solving multiple puzzles simultane-
ously, EDAS necessarily marks as incorrect any pieces from Pi that are not in
Sj by dividing by ni. What is more, the summation of mk,j in EDAS is used to
penalize for any puzzle pieces not from Pi. Combined, these two factors enable
EDAS to penalize for both extra and misplaced pieces.

It is important to note that EDAS is a score and not a measure of accuracy.
While its value is bounded between 0 and 1 (inclusive), it is not specifically
defined as the number of correct placements divided by the total number of
placements since the denominator of Equation (10) is greater than or equal to
the number of pieces in both Pi and Sj .

4.1.2 Shiftable Enhanced Direct Accuracy Score

As mentioned previously, the direct accuracy decreases if there are shifts in
the solved image. In many cases such, direct accuracy is overly punitive.

Figure 3 shows a ground-truth image and an actual solver output when the
puzzle boundaries were not fixed. Note that only a single piece is misplaced;
this shifted all other pieces to the right one location causing the direct accuracy
to drop to zero. Had this same piece been misplaced along either the right or
bottom side of the image, the direct accuracy would have been largely unaffected.
The fact that direct accuracy can give such vastly differing results for essentially
the same error shows that direct accuracy has a serious flaw. This thesis
proposes Shiftable Enhanced Direct Accuracy Score (SEDAS) to address the
often misleadingly punitive nature of direct accuracy.

Let dmin be the Manhattan distance between the upper left corner of the
solved image and the nearest placed puzzle piece. Also let L be the set of
all puzzle piece locations within distance dmin of the upper left corner of the
image. Given that l is a location in L that is used as the reference point for
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(a) Ground-Truth Image (b) Solver Output

Figure 3: Solver Output where a Single Misplaced Piece Catastrophically Affects
the Direct Accuracy

determining the absolute location of all pieces, then SEDAS is defined as shown
in Equation (11).

SEDASPi
= argmax

l∈L

(
argmax

Sj∈S

ci,j,l
ni +

∑
k 6=i(mk,j)

)
(11)

In the standard definition of direct accuracy proposed by Cho et al., l is fixed
at the upper left corner of the image. In contrast, SEDAS shifts this reference
point within a radius of the upper left corner of the image in order to find a
more meaningful value for direct accuracy.

Rather than defining SEDAS based off the distance dmin, an alternative
approach is to use the point anywhere in the image that maximizes Equation (11).
However, that approach can be significantly more computationally complex in
particular in large puzzles with several thousand pieces. Hence, this thesis’
approach balances finding a meaningful direct accuracy score with computational
efficiency.

4.1.3 The Necessity to Use Both EDAS and SEDAS

While EDAS can be misleadingly punitive, it cannot be wholly replaced by
SEDAS. Rather, EDAS and SEDAS serve complementary roles. First, EDAS
must necessarily be calculated as part of SEDAS since the upper left corner
location is inherently a member of the set L. Hence, there is no additional time
required to calculate EDAS. What is more, by continuing to use EDAS along
with SEDAS, some shifts in the solved image may be quantified; this would not
be possible if SEDAS was used alone.
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4.2 Neighbor Accuracy

Cho et al. [13] defined neighbor accuracy as the ratio of the number of puzzle
piece sides adjacent to the same piece’s side in both the ground-truth and solved
image versus the total number of puzzle piece sides. Formally, let q be the
number of sides each piece has (i.e., four in a jig swap puzzle) and n be the
number of pieces. If a is the number of puzzle piece sides adjacent in both the
ground-truth and solved images, then the neighbor accuracy, NA, is defined as
shown in Equation (12).

NA =
a

n q
(12)

Unlike direct accuracy, neighbor accuracy is largely unaffected by shifts
in the solved image since it considers only a piece’s neighbors and not its
absolute location. However, the standard definition of neighbor accuracy cannot
encompass the case where pieces from multiple input puzzles may be present in
the same solver output.

4.2.1 Enhanced Neighbor Accuracy Score

Enhanced Neighbor Accuracy Score (ENAS) improves the neighbor accuracy
metric by providing a framework to quantify the quality of Mixed-Bag solver
outputs.

Let ni be the number of puzzles pieces in the input puzzle Pi and ai,j be the
number of puzzle piece sides adjacent in Pi and Sj . If mk,j is the number of
puzzle pieces from an input puzzle Pk (where k 6= i) in Sj , then the ENAS for
Pi is defined as shown in Equation (13).

ENASPi = argmax
Sj∈S

ai,j
q (ni +

∑
k 6=i(mk,j)

(13)

In the same fashion as the technique described for EDAS in Section 4.1.1,
ENAS divides by the number of pieces ni in input puzzle Pi. By doing so, it
effectively marks as incorrect any pieces from Pi that are not in Sj . What is
more, by including a summation of all mk,j in the denominator of (13), ENAS
marks as incorrect any pieces not from Pi that are in Sj . The combination of
these two factors allows ENAS to account for extra and misplaced pieces.
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4.3 Visualizing Solver Output Quality

In images with thousands of pieces, it is often difficult to visually determine
the location of individual pieces that are incorrectly placed. What is more, visual
tools help developers quickly detect and fix latent bugs.

The following two subsections describe the tools developed as part of this
thesis for visualizing direct accuracy and neighbor accuracy.

4.3.1 Visualizing EDAS and SEDAS

In standard direct accuracy, EDAS, and SEDAS, each puzzle piece is assigned
a single value (i.e., correct or incorrect). Due to that, the direct accuracy
visualization represents each puzzle by a square filled with a solid color. One
additional refinement used in this thesis is to subdivide the “incorrect” placements
into a set of subcategories; they are (in order of precedence): wrong puzzle,
wrong location, and wrong rotation. Table 2 shows the colors assigned to puzzle
pieces depending on their direct accuracy classification.

Wrong
Puzzle

Wrong
Location

Wrong
Rotation

Correct
Location

No Piece
Present

Table 2: Color Scheme for Puzzles Pieces in Direct Accuracy Visualizations

Figure 4 shows a Type 2 solver output along with the associated EDAS
and SEDAS visualizations. Since four puzzle pieces were erroneously placed
on the left of the image, almost all pieces had the wrong location according
to EDAS; the only exception is a single piece that had the right location but
wrong rotation. In contrast, almost all pieces have the correct location in the
SEDAS representation; note that the piece in the correct location but with wrong
rotation in EDAS has the wrong location in SEDAS.

4.3.2 Visualizing ENAS

The visualization for neighbor accuracy is very similar to the techniques
described in Section 3.5.2 for visualizing best buddies where each puzzle piece is
divided into four equal-sized isosceles triangles (one for each side). The triangles
are assigned colors depending on whether their neighbors in the solver output and
ground-truth image match. The visualization includes a subcategory known as
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(a) Ground-Truth Image (b) Type 2 Solver Output

(c) EDAS Visualization (d) SEDAS Visualization

Figure 4: Example Solver Output Visualizations for EDAS and SEDAS
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(a) Input Image # 1 - Rainforest
House [20]

(b) Input Image # 2 - Building
Exterior [21]

(c) Solver Output (d) ENAS Visualization

Figure 5: Example Solver Output Visualization for ENAS

“wrong puzzle” which is a special case that occurs when solving Mixed-Big puzzles
and some of the pieces in the solved puzzle are not from the puzzle of interest,
Pi. Table 3 defines the colors used to represent the different classifications of
puzzle piece sides in neighbor accuracy visualizations.

Wrong
Puzzle

Wrong
Neighbor

Correct
Neighbor

No Piece
Present

Table 3: Color Scheme for Puzzles Piece Sides in Neighbor Accuracy Visualiza-
tions

Figure 5 shows an actual output when solving a Mixed-Bag puzzle with two
images. Note that that the puzzle of interest Pi is the glass and stone building
while the other puzzle Pk is a rainforest house.

All pieces that came from the rainforest house image are shown as blue
despite being assembled correctly; this is because they are not from the puzzle
of interest. All neighbors from the puzzle of interest (i.e., the glass and stone

16



building) that are placed next to their original neighbor are represented by green
triangles while all incorrect neighbors, such as those bordering the rainforest
house image, are shown with red triangles.
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5 Paikin & Tal Solver

This section reviews the solver proposed by Paikin & Tal [15]; their Java
implementation is not open-source. As such, this section also describes a complete
implementation of their approach that was developed as part of this thesis.

5.1 Overview of Paikin & Tal’s Algorithm

Paikin & Tal’s solver was inspired by the work of Pomeranz et al. in [14].
Paikin & Tal’s uses a deterministic, greedy algorithm that places the puzzle
piece that has the maximum confidence score at each iteration. Paikin & Tal’s
approach is able to handle puzzles of unknown size with missing pieces and
where piece orientation is not known. The only required input to the algorithm
is the expected number puzzles.

Paikin & Tal’s algorithm has three distinct phases namely: inter-puzzle piece
distance calculation, selection of the seed piece, and placement. These stages
are described in the following subsections. The modification required to solve
Mixed-Bag puzzles is described in an additional subsection.

5.1.1 Inter-Puzzle Piece Distance Calculation

The first stage of Paikin & Tal’s algorithm is to calculate the distance
between all pairs of pieces. This is done using the asymmetric distance measure
described in Section 3.3. The distance information is stored in an n by n matrix
(where n is the number of puzzle pieces); after being initially calculated, the
asymmetric distances never need to be recalculated throughout the remainder of
the algorithm’s execution.

As explained in Section 3.3, Paikin & Tal normalize the asymmetric distances
using the asymmetric compatibility function in Equation (5). This has the effect
of amplifying truly unique pairings while penalizing speciously similar pairings
that arise from low variation areas of the ground-truth image. The asymmetric
compatibility is then used to find the best buddies for each piece (if any).

The last step is to calculate the mutual compatibility (C̃) between pairs
of pieces using Equation (14). C(xi, sa, xj , sb) is the asymmetric compatibility
between side sa of piece xi and side sb of piece xj ; C(xj , sb, xi, sa) is defined
similarly. Note that mutual compatibility is symmetric.
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C̃(xi, sa, xj , sb) = C̃(xj , sb, xi, sa) =
C(xi, sa, xj , sb) + C(xj , sb, xi, sa)

2
(14)

5.1.2 Selecting the Seed Piece

Similar to Pomeranz et al., Paikin & Tal use a kernel growing algorithm.
Hence, a single seed piece is selected, and all pieces are placed around that seed.
Since the algorithm is greedy, the selection of a poor seed can have a significant,
deleterious impact on the final solution. Due to this, Paikin & Tal select a seed
piece that is itself “distinctive” and comes from a “distinctive region.”

Paikin & Tal define a seed piece as “distinctive” if it has best buddies on
each of its sides. To ensure that a piece comes from a distinctive region, all
of the seed piece’s best buddies must also have four best buddies. In a puzzle,
there may be multiple pieces that satisfy the “distinctive” piece in a “distinctive
region” criteria; in such cases, ties are broken by selecting the piece that has the
maximum sum of mutual compatibilities with its direct neighbors.

5.1.3 Placement

Paikin & Tal utilize an iterative, greedy placer that places pieces around an
expanding seed. Pseudocode for their placer is shown in Algorithm 1. Placement
continues all pieces have been placed.

Algorithm 1 Paikin & Tal Placer
1: while |UnplacedP ieces| > 0 do
2: if |BestBuddyPool| > 0 then
3: Get best candidate from the BestBuddyPool
4: else
5: Recalculate the asymmetric and mutual compatibility
6: Select piece with the highest asymmetric compatibility
7: Place the best piece
8: Add the best piece’s unplaced best buddies to the BestBuddyPool

The selection of the next (i.e., best) piece to place emphasizes pieces about
which there is the highest confidence of correctness. As mentioned previously,
two pieces are much more likely to be adjacent if they are best buddies. Due
to this, the algorithm keeps a pool of the already placed pieces best buddies;
whenever a new piece is placed, all of that piece’s unplaced best buddies are
added to the BestBuddyPool.
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As long as the BestBuddyPool is not empty, candidates for placement only
come from that pool; the best candidate from the BestBuddyPool is the one
with the maximum mutual compatibility with an open slot in the puzzle. This
rule prioritizes placing the best buddy pairings upon which there is the greatest
confidence.

If the BestBuddyPool is ever empty, the algorithm recalculates the asym-
metric and mutual compatibilities between the unplaced pieces and the open
puzzle slots. The piece that has the maximum asymmetric compatibility with
an open slot is then selected as the next piece for placement.

5.1.4 Solving Mixed-Bag Puzzles

As mentioned in Section 5, the only input to the Paikin & Tal algorithm is
the expected number of puzzles. When solving more than one puzzle at a time,
only a minor change to the placer described in Algorithm 1 is required.

Their algorithm spawns a new puzzle any time the mutual compatibility
between the next piece to place its associated open slot drops below a predefined
threshold3; this rule applies as long the current number of puzzles is less than
the specified number passed to the algorithm. When a new puzzle is spawned,
the BestBuddyPool is cleared, and a seed piece is selected using the approach
previously described in Section 5.1.2. Placement then continues simultaneously
across all puzzles.

5.2 A Python Implementation of Paikin & Tal’s Algo-
rithm

Since no open-source implementation of the Paikin & Tal solver exists, one
was developed as part of this thesis. It is written entirely using Python 2.7 [22].
The following subsections describe the implementation’s two Python packages.

5.2.1 The hammoudeh_puzzle Package

This package is a generic infrastructure that is independent of the solver
used; it consists of two primary classes namely: Puzzle and PuzzlePiece.

The Puzzle class encapsulates all attributes of a puzzle including: an identi-
fication number, dimensions, type (e.g., Type 1, Type 2 - this is an enumerated

3Paikin & Tal use 0.5 as the threshold to spawn new boards
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type: “PuzzleType”), and all associated puzzle pieces. A puzzle can be created
either from an image file or from a set of puzzle pieces. When parsing image
files and exporting a solved puzzle, the Puzzle class uses the OpenCV Python
package [23].

Individual puzzle pieces are represented using the PuzzlePiece class. Each
object of type PuzzlePiece has attributes: identification number, width (in
number of pixels), rotation (via the class PuzzlePieceRotation), the LAB
image information (stored in a NumPy array [24]), and the location in the
puzzle.

Additional features included in the hammoudeh_puzzle package include cal-
culating and visualizing EDAS, SEDAS, and ENAS as well as performing best
buddy analysis on an image.

5.2.2 The paikin_tal_solver Package

The paikin_tal_solver package implements the Paikin & Tal algorithm
described in Section 5.1. The primary interface for the user is through the
PaikinTalSolver class; objects of this type are created using a constructor that
takes as parameters: the expected number of puzzles, a set of PuzzlePiece
objects, a distance function, the puzzle type (via class “PuzzleType”), and
optionally a single set of fixed puzzle dimensions. A PaikinTalSolver object is
composed of a set of component objects, which are described in the following
paragraphs.

An object of type InterPieceDistance calculates the asymmetric distance,
asymmetric compatibility, and mutual compatibility between all pieces. What is
more, since the PaikinTalSolver takes a distance function in its constructor,
the user is able to tune the solver’s performance using different metrics. While
calculating the asymmetric compatibilities, the InterPieceDistance class also
finds each piece’s best buddies; this made the InterPieceDistance class the
natural choice to identify the seed piece(s).

Paikin & Tal do not identify the data structure used to implement the
BestBuddyPool (see Algorithm 1). However, the choice of data structure is
critical as the algorithm must be able to quickly remove the best candidates from
the pool and quickly insert new candidates into the pool. This thesis’ imple-
mentation of the BestBuddyPool relies on a combination three data structures.
They are:

• Dictionary of the Best Buddies in this Pool – This stores the iden-
tification numbers of best buddies currently in the pool. A dictionary was
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used here as it enables new best buddies to be quickly added to the pool
and for placed pieces to be quickly deleted from the pool.

• Dictionary of the Open Slots in the Puzzle – It contains the set of
valid locations where pieces can be placed. As with the previous data
structure, this dictionary enables valid locations to be quickly added and
removed.

• Best Candidate Max Heap – The best candidate is a pairing of a best
buddy from the pool and an open puzzle location. Every time a new best
buddy is added to the pool, pairings between that new pool member and
all open slots are added to the best candidate heap. Similarly, whenever a
new slot in the puzzle is opened, pairings between that new slot and all
best buddies currently in the pool are also added to the heap. A max heap
allows the best candidate to be selected in O(lg(n)) time.

As best buddies are placed and puzzle slots are filled, items in the best buddy
pool will become invalid. However, to reduce overhead, the best candidate heap
is not cleaned after each placement. Rather, as items are popped off the heap,
they are checked for validity. If the heap grows too large (currently set to one
million elements), this thesis’ implementation periodically cleans the entire heap.
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6 Conclusions

Significant progress was made over the course of this semester. Major
accomplishments include: a thorough review of existing solvers, implementing
a jigsaw puzzle solver that improves on state-of-the art techniques, defining
new solution quality metrics, and building visualization tools. Paikin & Tal’s
algorithm has limitations; the following subsection describes some of them in
depth. The final subsection outlines tasks that will be performed in the next
semester (i.e., CS298) to address these limitations.

6.1 Limitations of Paikin & Tal’s Algorithm

Despite being state-of-the-art, Paikin & Tal’s algorithm still has many short-
comings. For example, the user must pass to the solver the expected number of
puzzles. In many real world applications, this may not be known.

Another limitation is that when performing placement, Paikin & Tal’s algo-
rithm only considers a single side of the puzzle piece. While this may only lead
to a handful of poor placements, it is known that a single suboptimal decision in
a greedy algorithm can have serious, negative effects on the final result.

Paikin & Tal’s algorithm also has two significant limitations when spawning
new puzzles. First, whenever a new puzzle is spawned, Paikin & Tal’s algorithm
always use the same approach to choose the seed piece (see Section 5.1.2). This
can lead to significant issues if multiple puzzles are spawned using seed pieces
from the same ground-truth input. What is more, Paikin & Tal spawn a new
puzzle when the mutual compatibility between the best candidate and associated
the open slot falls below a preset threshold. This can cause the algorithm to
prematurely spawn boards which further complicates the process of selecting the
next seed piece since there are more pieces from which to choose.

6.2 Next Semester Tasks to Address the Limitations of
Paikin & Tal’s Algorithm

The focus of the next semester will be to use the existing infrastructure to
improve on Paikin & Tal’s solver. As explained in Section 5.1.3, only a single
side is considered when placing each piece. Rather than using that single side,
the improved placer will prioritize placing pieces that have multiple best buddies
first.

Currently, Paikin & Tal’s algorithm is a single pass algorithm. While this
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has runtime advantages, it significantly restricts the ability of the algorithm
to recover from poor decisions. By making multiple passes, it is expected that
the algorithm selection of seeds for mixed bag puzzles would improve. The
approach that will be implemented in the next semester will be to solve the
puzzle first using Paikin & Tal’s existing technique. The algorithm will then
use the region growing segmentation algorithm previously used by Pomeranz et
al. and described in [25] to select new n seeds, where n is the expected number
of input puzzles; the solver would then be repeated with placement proceeding
across multiple puzzles simultaneously. The algorithm would terminate after
either a specific number of iterations or once the maximum best buddy accuracy
has stabilized.

Another improvement to the solver that will be implemented next semester
is to eliminate the requirement that the user specify the number of input puzzles.
The algorithm will achieve this by running the solver multiple times with different
expected number of input puzzles. The solver will then select the solution with
the maximum best buddy accuracy.

Lastly, the image datasets used by existing solvers are well established and
include [13, 18, 20]; however, these datasets are relatively small and consist
of only about 100 total images. This thesis will widen that dataset to several
hundred images. The images will be from image repositories including [21, 26]
that use the Creative Commons License.
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