
Square Jigsaw Puzzle Solver Literature Review 

Prepared by: Zayd Hammoudeh 

(zayd.hammoudeh@sjsu.edu) 

1 

mailto:zayd.hammoudeh@sjsu.edu


Introduction 

• “Jigsaw Puzzle Problem” 

– Problem Statement: Reconstruct an image from a set of 
image pieces 

– Problem Complexity: NP-Complete (via the set partition 
problem) when the pairwise affinity of pieces is unreliable [1] 

 

• Problem Formulation: Set of square, non-overlapping pieces 

– “Type 1” (also know as “jig swap”) Puzzle: Has fixed, known 
orientation of pieces [19] 

– Type 2 Puzzles: Correct rotation of pieces is unknown [19] 

 

• A Key Difference with Standard Jigsaw Puzzle Solving: The 
source image you are trying to reconstruct is unknown. 

2 



Square Jigsaw Puzzle Example 

 

 

 

 

 

 

 

 

• Source image (left) is divided into 81 (9x9) uniform, square 
pieces (center).  The goal is to organize the pieces to 
reconstruct the source image (right). 

 

3 



Jigsaw Puzzle Solver Applicability 

• Possible and existing applications of the jigsaw puzzle 
problem include: 

– Computer Forensics: Reconstructing deleted JPEG, block-based 
images [2] 

– Document Investigation: Reconstruct shredded documents [3] 

– Bioinformatics: DNA/RNA modelling and reconstruction [4] 

– Archeology: Reconstruction of damaged relics [5] 

– Audio Processing: Voice descrambling [6] 

 

4 



Additional Variants of Problem 

Some of the possible variants to the jigsaw puzzle problem 
include: 

• Missing pieces 

• Extra pieces 

• Three dimensional puzzles 

• Unknown puzzle dimension 

• Multiple puzzles mixed into a single set of pieces. 

 

5 



Quantifying Piece to Piece Similarity 

6 



Pairwise Affinity 

• Definition: Quantifies the similarity/compatibility between two pieces.   
 

• Between two pieces 𝑥𝑖 and 𝑥𝑗, there are 4 pairwise affinity values when 

rotation is not allowed and  16 when rotation is allowed. 
 

• Metrics of particular interest in the literature are divided into two 

categories. 

– Boundary/Edge Based: 

• Normalized and Unnormalized Dissimilarity-based Compatibility 

• Mahalanobis Gradient Distance [12] 

• Prediction-based Compatibility 

 

– Statistical based using the entire piece and its statistical properties [14] 

7 



Dissimilarity-Based Compatibility 

• Proposed in Cho et. al. [7] 

 

• Uses the LAB (lightness and a/b color opponent dimensions), which is three (3) dimensions. 

 

• Given two pieces 𝑥𝑖 and 𝑥𝑗 that are size 𝐾 pixels by K pixels, then the left-right (𝐿𝑅) dissimilarity 

(where 𝑥𝑗 is to the right of 𝑥𝑖) is: 
 

𝐷𝐿𝑅 𝑥𝑖 , 𝑥𝑗 =   𝑥𝑖 𝑙, 𝐾, 𝑑 − 𝑥𝑗 𝑙, 1, 𝑑
2

3

𝑑=1

𝐾

𝑙=1

 

 

Where 𝑥𝑚 𝑟, 𝑐, 𝑑  is value for the pixel in row 𝑟 and column 𝑐 of piece 𝑥𝑚 at dimension 𝑑. 

 

• Disadvantage of this Approach:  

– Severely penalizes boundary differences between pieces which do occur in actual images [10]. 

– It is common that actual image does not the minimum dissimilarity.  Hence, this “better than perfect 
score” where the solved solution has a lower score than the original is a type of overfitting  [9]. 

 

 

8 



𝑳𝒑
𝒒

 Dissimilarity-Based Compatibility 

• Proposed by Pomeranz et. al. in [10].  Generalizes the 

dissimilarity metric from [7] with the 𝐿𝑝
𝑞

 norm. 
 

𝐷𝑝,𝑞 𝑥𝑖 , 𝑥𝑗 =   𝑥𝑖 𝑙, 𝐾, 𝑑 − 𝑥𝑗 𝑙, 1, 𝑑
𝑝

3

𝑑=1

𝐾

𝑙=1

𝑞
𝑝

 

  

 Hence, [7]’s metric is essentially the 𝐿2
2 norm. 

 

• While 𝑞 has no effect on the piece pairwise classification 

accuracy, [10] observed it had an effect on their solver’s 

performance 

 
9 



Prediction-Based Compatibility 

• The dissimilarity based approach measured the difference between two 
pieces.   

– Prediction based attempts to predict the boundary pixel value of the neighboring 
piece. 

 

• First-Order Example:  

– Use the last two pixels of each piece to predict the neighboring piece’s value. 

 

– Gradient between two right edge pixels for piece 𝑥𝑖 in row 𝑙 for dimension 𝑑: 
 

𝑥𝑖 𝑙, 𝐾, 𝑑 − 𝑥𝑖(𝑙, 𝐾 − 1, 𝑑) 

 

– Gradient between two left edge pixels for piece 𝑥𝑗 row 𝑙 for dimension 𝑑: 
 

𝑥𝑗 𝑙, 1, 𝑑 − 𝑥𝑖(𝑙, 2, 𝑑) 

10 



Prediction-Based Compatibility (Continued) 

• The two pixel gradient can be combined with the dissimilarity-based compatibility as shown below 

for piece 𝑥𝑖’s right edge: 
 

𝑥𝑖 𝑙, 𝐾, 𝑑 − 𝑥𝑗 𝑙, 1, 𝑑 + 𝑥𝑖 𝑙, 𝐾, 𝑑 − 𝑥𝑖 𝑙, 𝐾 − 1, 𝑑  
 

 which is equivalent to: 

 

2 ∗ 𝑥𝑖 𝑙, 𝐾, 𝑑 − 𝑥𝑖 𝑙, 𝐾 − 1, 𝑑 − 𝑥𝑗 𝑙, 1, 𝑑  
 

• If the 𝐿𝑝
𝑞

 dissimilarity is used, the entire prediction based compatibility for the left-right 

boundary of 𝑥𝑖 and 𝑥𝑗 is: 
 

   2 ∗ 𝑥𝑖 𝑙, 𝐾, 𝑑 − 𝑥𝑖 𝑙, 𝐾 − 1, 𝑑 − 𝑥𝑗 𝑙, 1, 𝑑
𝑝

3

𝑑=1

𝐾

𝑙=1

+ 2 ∗ 𝑥𝑗 𝑙, 1, 𝑑 − 𝑥𝑗 𝑙, 2, 𝑑 − 𝑥𝑖 𝑙, 𝐾, 𝑑
𝑝
 

𝑞
𝑝

 

 

• Advantage of this Approach: Incorporates a predictor of the pairwise change which may better 

estimate pairwise affinity. 

 

11 



Accuracy Comparison of the Compatibility Metrics  

Puzzle Size Dissimilarity-Based 𝑳𝟑/𝟏𝟎
𝟏/𝟏𝟔

 Prediction-Based 

432 Pieces 78% 86% 86% 

540 Pieces 76% 85% 88% 

805 Pieces 74% 84% 86% 

• Pomeranz et. al. in [10] compared the accuracy of the three compatibility 

metrics on 20 images in a test dataset. 

 

• Using the 𝐿𝑝
𝑞

 norm resulted in a 7% to 10% improvement in selecting 

the correct neighbor. 

 

• The impact of using the prediction-technique varied from no change up to 

a 3% improvement. 

Comparison of Pairwise Similarity Metric Accuracy 

12 



Asymmetric Dissimilarity 

• Proposed by Paikin and Tal [20] and consists of a two parts. 
 

• The previous definitions of pairwise affinity have been 

symmetrically similar such that: 
 

𝐷 𝑝𝑖 , 𝑝𝑗 , 𝑟𝑖𝑔ℎ𝑡 = 𝐷(𝑝𝑗 , 𝑝𝑖 , 𝑙𝑒𝑓𝑡) 
 

• [20] proposes using an asymmetric dissimilarity such that equality 

in the above equation does not hold. 
 

• Part #1: Paikin and Tal use a one sided, 𝐿1 version of Pomeranz et. 

al.’s prediction based distance as shown below: 
 

𝐷 𝑥𝑖 , 𝑥𝑗 , 𝑟𝑖𝑔ℎ𝑡 =    2 ∗ 𝑥𝑖 𝑙, 𝐾, 𝑑 − 𝑥𝑖 𝑙, 𝐾 − 1, 𝑑 − 𝑥𝑗 𝑙, 1, 𝑑

3

𝑑=1

𝐾

𝑙=1

 

13 



Benefits of Asymmetric Dissimilarity 

• Three times faster due to the elimination of the exponent 
(80% of runtime is in distance calculations) 

– Additional speedup can be gained if when the asymmetric 
dissimilarity is sufficiently large (i.e. no chance of a pairing), the 
calculation is stopped and the distance set to infinity. 

 

• Number of correct “best buddies” increased 

 

• Number of incorrect decreased 

 

• Using the benchmark in [17], the number of correctly solved 
puzzles increased from 25 to 37. 

14 



Confident Compatibility 

• In smooth areas, every piece has a small dissimilarity to every other piece in the region. 

– Hence, having a small dissimilarity by itself does not tell the full story. 
 

• Part #2: If a piece’s dissimilarity to its closest neighbor is far less than the distance to 
second closest neighbor, then we can have higher confidence they are actually neighbors. 

– Paikin and Tal use that as the basis for their confident compatibility measure. 
 

𝐶 𝑝𝑖 , 𝑝𝑗 , 𝑟 = 1 −
𝐷 𝑝𝑖 , 𝑝𝑗 , 𝑟

𝑠𝑒𝑐𝑜𝑛𝑑𝐷 𝑝𝑖 , 𝑟
 

 

• 𝑟 – Spatial relationship (e.g. left, right, top bottom) between pieces 𝑝𝑖  and 𝑝𝑗  

• 𝐷 𝑝𝑖 , 𝑝𝑗 , 𝑟  - Asymmetric dissimilarity between pieces 𝑝𝑖  and 𝑝𝑗  

• 𝑠𝑒𝑐𝑜𝑛𝑑𝐷(𝑝𝑖 , 𝑟) – Second best similarity between piece 𝑝𝑖  and all other pieces with 
relation 𝑟 
 

• Goal: Maximize the value of 𝐶(𝑝𝑖 , 𝑝𝑗 , 𝑟). 

 

 

 

 

 

15 



Quantifying Solution Quality 

16 



Measuring Solution Quality 

• Problem Statement: There is no uniform technique for grading 

the final output of a square jigsaw puzzle solver. 

 

• Two Divergent Approaches: 

– Performance Metrics: Use the original image to grade solution 

quality. 

• Direct Comparison [7] 

• Neighbor Comparison [7] 

 

– Estimation Metrics: Evaluates the quality of a solution without 

reference to the original image [10].  

• “Best Buddies” Ratio 

17 



Performance Metrics 

• Summary: Evaluate the performance of a jigsaw puzzle solver 

against the original (correct) image. 
 

• Cho et. al. proposed three performance metrics, but only two are 

generally relevant. They are: 

– Direct Comparison Method: Most naïve approach.  The ratio of the  

number of pieces in their correct locations versus the total number of 

pieces. 

• Disadvantage: Susceptible to shifts 

 

– Neighbor Comparison Method: For each piece, calculate the fraction 

of its four neighbors that are correct.  The total accuracy is the 

average neighbor accuracy of all pieces. 

18 



“Best Buddies” 

Definition: Two pieces are best buddies if they are more similar to each other on their respective sides 
than they are two any other pieces [10]. 
 

Hence, two pieces, 𝑥𝑖 and 𝑥𝑗, are said to be “best buddies” for a spatial relationship 𝑅. if and only if, 

two conditions hold: 
 

∀𝑥𝑘 ∈ 𝑃𝑎𝑡𝑐ℎ𝑒𝑠 , 𝐶 𝑥𝑖 , 𝑥𝑗 , 𝑟1 ≥ 𝐶 𝑥𝑖 , 𝑥𝑘 , 𝑟1  

 

∀𝑥𝑘 ∈ 𝑃𝑎𝑡𝑐ℎ𝑒𝑠 , 𝐶 𝑥𝑗 , 𝑥𝑖 , 𝑟2 ≥ 𝐶(𝑥𝑗 , 𝑥𝑘 , 𝑟2) 

 

Where: 

• 𝐶(𝑥𝑖 , 𝑥𝑗 , 𝑅1) – Compatibility between pieces 𝑥𝑖 and 𝑥𝑗 on side 𝑅𝑖 of 𝑥𝑖 

• {𝑃𝑎𝑡𝑐ℎ𝑒𝑠} – Set of all pieces in the puzzle 

• 𝑟1 – Spatial relationship (e.g. top, bottom, left, right) of 𝑥𝑖 where 𝑥𝑗 will be placed assuming no 

rotation. 

• 𝑟2 - Given 𝑥𝑖 and 𝑟1, this represents the complementary side of 𝑥𝑗.  For example if 𝑟1 is “left”, then 

𝑟2 would be “right” 
 

19 



“Best Buddies” Estimation Metric 

• Definition: Ratio of the number of neighbors who are said to be “best buddies” to 

the total number of best-buddy neighbors [10]. 
 

• Correlation between the “Best Buddies” Estimation Metric and Cho et. al.’s two 

performance metrics: 

– Direct Comparison Metric: Little to no correlation since direct comparison method is not 

based on pairwise accuracy. 
 

– Neighbor Comparison Metric: Stronger correlation  Graph below is for 20 images tested 

10 times each (for 200 total points) 

Scatterplot of “Best Buddy” Metric 

versus Neighbor Comparison Metric 
20 



Existing Jigsaw Puzzle Solver Approaches 

• Dynamic Programming and the “Hungarian” Procedure [13] 

• Patch Transform using a Low Resolution “Solution Image” [8] 

• “Dense and Noisy” or “Sparse and Accurate” with Loopy Belief 

Propagation [7] 

• Particle Filter-Based Solver [11] 

• Greedy Algorithm [10] 

• Genetic Algorithm [9] 

• Loop Constraint Solver [19] 

 

21 



Cho et. al. – The Patch Transform and its 
Application to Image Editing (2008) 

22 



Patch Transform 

• Introduced by Cho et. al. in [8] 
 

• Overview of the Patch Transform: Segment a source image into a 

set of non-overlapping “patches” and rearrange these patches and 

reorganize the image in the “patch” domain. 

– Intended Usage: Image editing 
 

• “Inverse” Patch Transform: Reconstruct an image from a set of 

patches.  This requires two components: 

– A patch compatibility function 

– An algorithm that places all patches 
 

• Uses a provided low resolution image as part of the patch 

placement algorithm. 

23 



Markov Random Field 

• Use a Markov Random Field (MRF) to enforce three rules: 

– Adjacent pieces should fit plausibly together 

– A patch should “never” (or in the loosened case “seldomly”) be reused. 

– User constraints (e.g. board size) on patch placement. 
 

• Consider each possible patch location as a node in the MRF.  The key 
notation definitions: 

– 𝑥𝑖 – Undetermined state for the node 𝑖𝑡ℎ in the MRF. 

– 𝜓𝑖,𝑗(𝑘, 𝑙) – Compatibility between patches 𝑘 and 𝑙 at adjacent MRF 

locations 𝑖 and 𝑗 

– 𝑋 – Vector of 𝑁 determined patch indices, 𝑥𝑖 

– 𝑌 – Low resolution version of the original image. 

24 



Maximizing the Patch Assignment Probability 

For a given patch assignment 𝑋, the probability of that assignment is defined as: 
 

𝑃 𝑋 =
1

𝑍
 𝜙𝑖 𝑥𝑖  𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ∗ 𝐸(𝑥)

𝑗∈𝜁 𝑖𝑖

 

 

• 𝑖 : 𝑖𝑡ℎ node in the MRF/board 

• 𝑁 : Number of nodes in the MRF/board. 

• 𝜙𝑖 𝑥𝑖 : User constraints (e.g. board size) 

• 𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗 : Patch to patch compatibility 

• 𝜁 𝑖  : Markov blanket of node 𝑖 

• 𝐸 𝑋  : Exclusion term that discourages patches being used more than once. 

• 𝑍 : Normalization term to ensure ∫ 𝑃 𝑋  𝑑𝑋 = 1 

25 



Loopy Belief Propagation Solver 

• Maximizes the preceding probability function using loopy 
belief propagation. 

 

• Susceptible to local maxima so random restarts may be 
performed. 

 

• Segue Question: What if I do not have access to a low 
resolution version of the original image?  Can I make one or 
use a substitute? 

26 



Cho et. al. – A Probabilistic  
Jigsaw Puzzle Solver (2010) 

27 



“Dense and Noisy” Estimation 

• Proposed by Cho et. al. in [7] in 2010. 

 

• Review: In Cho et. al.’s work in [8], they assumed access to a 
correct, low resolution version of the original image. 

– In many real world applications, such a low resolution image is 
not available. 

 

• Solution: Estimate a low resolution image from a “bag of 
patches.”  The simplified procedure is: 

– Creating a histogram of the bag of patches 

– “Estimate” a low resolution version by comparing the histogram 
to a set of 𝐾 centroids with predefined low resolution images. 

 

 28 



“Dense and Noisy” Clustering  
and Histogram Generation 

• Training Set: 8.5M patches from 15,000 images. 

– Patch Size: 7px by 7px by 3 (LAB) for 147 total, original 
dimensions.  This dimensionality is reduced via PCA. 

 

• Clustering the Patches 

– Step #1: Cluster each image’s patches into 𝐿 (e.g. 20) centroids. 

– Step #2: Re-cluster the 𝐿 centroids from all images into 𝑁 (e.g. 
200) centroids.  

 

• Creating the Histogram: For a given image, assign each patch 
to its closest centroid.   

29 



“Dense and Noisy” – Generating the Low Res. Image 

• Theoretical Motivation: Different colors are more likely to be 
at different places in an image. 

– Example: Blue (sky) is more likely to be towards the top of the 
image while brown (soil) tends to be in the image foreground. 

 

• Mapping Bins to the Image: Use the training set to generate 
probability density maps for each histogram bin. 

 

• Use the Histogram to Create the Low Resolution Image: Use 
a trained, linear regression function to map the “bag of 
patches” histogram to the training images (i.e. use prior 
knowledge). 

30 



“Dense and Noisy” Results 

• Summary: Patch histogram can “coarsely predict” a low 
resolution of the original image. 

– Possible Explanation: There is enough “structural regularity” in 
images that a bag of patches provides spatial information. 

 

• Patch Rank Map: For each pixel in the low resolution images, 
patches are ranked from least likely to most likely to reside in 
that location. 

– Ideal Case: The set of patches that map to the low resolution 
will have the best rank (i.e. 1) 

 

– Worst Case: The matching set of patches will have rank 𝑁 
(where 𝑁 is the number of patches in the image). 

31 



“Dense and Noisy” End to End Example 

Worst Results  

Confused  

snow for sky 

Best Results 

32 



“Sparse and Accurate” 

• Proposed by Cho et. al. in [7]  

 

• Common Human Approach to Solving Puzzles: “Outside-in” 

– Find the puzzle’s four corner pieces. 

– Build from the corner pieces until all four sections converge. 

 

• “Sparse and accurate” is based off the “outside-in” technique. 

– Definition on an “Anchor Patch”: A puzzle patch that is placed in its correct 

location and orientation. 

– Summary of the Approach: Place a set of 𝑁 anchor patches and then solve the 

puzzle. 

 

• Two most important criteria of anchor patches 

– Quantity 

– Uniform Spatial Distribution of the Anchors 

33 



Pomeranz et. al. – A Fully Automated 
Greedy Square Jigsaw Puzzle Solver (2011) 

34 



Generalized Greedy Algorithm 

• Proposed by Pomeranz et. al. in [10] in 2011. 
 

• Goal: Provide a computational framework for handling square jigsaw 

puzzles in reasonable time that does not rely on any prior knowledge or 

human intervention. 
 

• Solver divides the puzzle reconstruction into three subproblems: 

– Placement: Given a single piece or partially-placed set of pieces, place 

the remaining pieces. 
 

– Segmentation: Given a fully-placed board, segment the board into 

trusted subcomponents that are believed to be placed correctly. 
 

– Shifting: Given a set the trusted segments, relocate entire segments 

and individual pieces to improve solution quality. 

 

 

 

35 



Overview of the Greedy Placement Phase 

• Given a partially assembled board (either a single piece or set of pieces), continue 

applying the greedy choice until all pieces are placed. 
 

• Overview of the Greedy Choice: 

– Board dimensions are known in advance and fixed 
 

– Board locations with a higher number of occupied neighbors are preferred as the choice of 

the next piece is more informed. 
 

– Piece selection criteria: 

• Primary Criteria: Prefer a “best buddy” first. 

• Secondary Criteria: If no or multiple pieces satisfy the primary criteria, select the piece with the 

highest compatibility score. 

 

• Question: Why is a placer not enough?  

• Answer: A greedy placer works solely on local information.  To get the best results, we 

must also look at the entire global solution. 

36 



Segmenter Phase 

• Definition of “Segments”: Areas of the puzzle that are (or 
“are believed to be”) assembled correctly. 

 

• Procedure: Using random seeds and a segmentation 
predicate based on the “best buddies” metric, grow the 
segments via “region growing segmentation algorithm” 
described in [15]. 

 

• Accuracy of the Segmenter: 99.7% 

37 



Pomeranz’s Complete Algorithm 

• Step #1: Select a single puzzle piece as the seed to placement 

phase. 

• Step #2: Perform the placement phase around the seed. 

• Step #3: Use the segmenter to partition the board. 

• Step #4: Calculate the “best buddies” ratio.  If you are at a 

local maximum, stop. 

• Step #5: Select the largest segment from step #3 and use it as 

the seed of the placement phase.  Return to step #2. 

– Performing this step is similar to shifting the largest segment. 

38 



Sholomon et. al. – A Genetic Algorithm-Based 
Solved for Very Large Jigsaw Puzzles (2013) 

39 



Genetic Algorithm (GA) Solver 

• Proposed by Sholomon et. al. in 2013 [9]. 

– A genetic algorithm puzzle solver was first proposed in [16] in 
2002. 

 

• Genetic Algorithm Review 

– Based off the biological theory of natural selection. 

– GAs are divided into a series of stages 

• Random generation of initial population 

• Successor selection 

• Reproduction 

• Mutation 

– Requires a “fitness function” that measures solution quality. 

 

 
40 



Sholomon’s GA Implementation 

• Puzzle Type: 1 (pieces have known orientation) 

• Chromosome (Solution) Representation: 𝑁 by 𝑀 matrix where each cell represents one patch in 
the puzzle. 

• Population Size: 1,000 

• Number of Generations: 100 

• Number of Restarts: 10  

• Successor Selection Algorithm: Roulette Wheel 

• Elitism: Always pass the four best solutions to the next generation 

• Culling: None 

• Mutation Rate: 5% 

• Fitness Function: Sum of the 𝐿2 dissimilarity of all pieces in the puzzle 

• Color Space: LAB 

41 



GA Crossover 

• Takes two “highly fit” parents and returns one child. 

– Non-trivial as the crossover must ensure there are no 
duplicate/missing pieces in the solution. 

 

• Correctly assembled segments may be at incorrect absolute 
locations.  Hence, the crossover must allow for “position 
independence”, which is the ability to shift segments. 

 

• Sholomon et. al.’s Approach: Kernel-growing. 

42 



Sholomon’s Kernel Growing Algorithm 

• Start with a single puzzle piece that is “floating” in the board such that the puzzle 

can grow in any direction. 
 

– Boundary size (i.e. length by width) is fixed and known. 
 

• Piece Placement Algorithm: When deciding on the next piece to place, the 

algorithm iterates through up to three phases. 
 

– Phase #1: In an available boundary location, place the piece where both parents agree 

on the neighbor. 
 

– Phase #2: Place a “best buddy” that exists in one of the parents. 
 

– Phase #3: Select a location randomly and pick the piece with the best pairwise affinity. 
 

– If in any phase there is a tie, the tie is broken randomly. 
 

– After a piece is placed, the placement algorithm returns to phase #1 for the next piece. 
 

– Once a piece is placed, it can never be reused. 

43 



Kernel Growing with Mutation 

• Mutations in genetic algorithms are used to improve the 
quality of the final solution via increased population diversity. 

 

• Sholomon’s Mutation Strategy: During the first and third 
phase of placement, place a piece at random with some low 
probability (e.g. 5%) 

44 



A Possible Benchmark 

• Sholomon et. al. provide three large puzzle datasets as well as 
their results for comparative benchmarking [17]. 

– Dataset Puzzle Sizes: 5,015, 10,375, and 22,834 

 

• Unfortunately the website seems to no longer exist.  I will 
separately send an email to the authors about why the 
removed the content. 

 

• Used as a benchmark in [20]. 

45 



Algorithm Runtime Comparison 

# of Pieces Sholomon et. al. Pomeranz et. al. 

432 48.3s 1.2min 

540 64.1s 1.9min 

805 116.2s 5.1min 

2,360 17.60min N/A 

3,300 30.24min N/A 

5,015 61.06min N/A 

10,375 3.21hr N/A 

22,834 13.19hr N/A 

Comparison of the Algorithm Execution Time  

for Sholomon et. al. and Pomeranz et. al. 

To improve execution time, Sholomon et. al. precompute and store all pairwise 

dissimilarity values. 

46 



Son et. al. – Solving Square Jigsaw Puzzles 
with Loop Constraints (2014) 

47 



Solving Jigsaw Puzzles with Loop Constraints 

• Proposed by Son et. al. in [19]. 

 

• Best buddies can be viewed as a loop of two pieces that agree 

on one boundary. 

– Son et. al. propose using a larger loop of 4 pieces (2x2) that agree 

on four boundaries. 

 

• Other work on the puzzle problem has either ignored or 

explicitly avoided cycles [12]. 

– By using cycles, you are able to achieve a type of outlier 

rejection. 

 

 

 

 

48 



Small Loops 

• Notation:  

– 𝑆𝐿𝑖 – Small loop of size 𝑖 by 𝑖 pieces. 

– 𝑆𝐿𝑁 – Maximum size of  a small loop. 

 

• The term “small loop” is used to emphasize that the algorithm 
focuses on the shortest possible cycle at each stage.    Benefits of 
shorter loops include: 

– Longer loops are less likely to be made of entirely correct pairwise 
matches. 

– The number (i.e. permutations) of different cycles increases 
exponentially with the length of the cycle. 

– Longer loops can be constructed by assembling multiple smaller loops. 

 

• Smaller loops are merged to form larger loops. 

– Example: Four 2x2 loops are merged to form one 3x3 loop. 
49 



Representing Pieces and Puzzles 

• Each piece in the puzzle is represented by a complex number. 
 

– Real Component: A unique piece ID between 1 and the total 
number of pieces in the board. 

 

– Imaginary Component: A whole number in the set {0, 1, 2, 3} 
with the number representing the number of counter clockwise 
piece rotations. 

• For type 1 puzzles, there is no imaginary component. 

 

• Structures (e.g. small loops, even the entire puzzle) are 
represented as complex value matricies. 

 

50 



Relationships between the Complex Matrices 

• If two complex-valued matrices, 𝑈 and 𝑉, do not share at least two of the 
same ID pieces in complementary locations, they are considered unrelated 
(𝑈||𝑉). 
 

• If 𝑈 and 𝑉 that share at least two of the same ID pieces, they can be 
considered geometrically consistent (𝑈~𝑉). 
 

• Types of geometric conflicts that make two matrices, 𝑈 and 𝑉, 
geometrically inconsistent (𝑈 ⊥ 𝑉) are: 

– Overlap with different complex numbers (i.e. ID or rotation) 

– Existing of the same ID (real) in a non-shared region. 
 

• If two matrices, 𝑈 and 𝑉, are geometrically consistent, they can be 
merged (𝑈⊕ 𝑉). 

51 



Managing Piece-wise Computations 

• If for a given pair of pieces the distance is above some 
threshold, the two pieces are consider not pair worthy and 
ignored with respect to each other. 

 

– Each piece will have a maximum number (e.g. 10) of pair worthy 
neighbors. 

 

• Pairwise compatibility is stored in a 𝐾 by 𝐾 by 16 matrix (𝑀) 
where 𝐾 is the number of pieces and 16 represents the 
number of possible rotations for each piece in a Type-2 
puzzle. 

– If 𝑀 𝑥, 𝑦, 𝑧 = 1, then pieces 𝑥 and 𝑦 are compatible with 
configuration (rotation and side) 𝑧. 

 

 

 

 

52 



Creating Larger Small Loops 

• Larger “small loops” are build iteratively. 

 

• In the first iteration, 𝑆𝐿2 (i.e. two piece by two piece) loops 
are formed.   
– Consistency between all loops is them check. 

 

• In the next iteration, four consistent 𝑆𝐿2 loops can be merged 
to form 𝑆𝐿3 loops.   

 

• Hence, the algorithm constructs 𝑆𝐿𝑖  loops using 𝑆𝐿𝑖−1 loops. 

 

• This process continues until no higher order loops can be built 
and some highest order loop (𝑆𝐿𝑁) is found. 

53 



Managing Structure-Wise Computations 

• Ω𝑖 = {𝜔𝑖1, 𝜔𝑖2, … , 𝑤𝑖𝐾𝑖
} represents all of the 𝑆𝐿𝑖  dimension 

structures 

– Similar to what was done for piece-wise compatibility, 
structure-wise compatibility is stored in a 𝐾𝑖  by 𝐾𝑖  by 16 matrix 
(where 𝐾𝑖  is the number of structures of dimension 𝑆𝐿𝑖). 

 

• Structures that are consistent and overlap on more than two 
pieces are merged.   

– If two structures both align at a given location, the one with the 
superior pairwise matching is prefered. 

54 



Paikin and Tal – Solving Multiple Square 
Jigsaw Puzzles with Missing Pieces (2015) 

55 



Managing Missing Pieces and Multiple Puzzles 

• Proposed by Paikin and Tal in [20].   

 

• Inspired by Pomeranz et. al.’s greedy algorithm [10] with 
three additional requirements: 

– New Requirement #1: A modified compatibility function 

– New Requirement #2: Superior initial seed selection. 

– New Requirement #3: Rather than making the “best”/ “closest 
matching” selection at each iteration, make the selection with 
the lowest chance of erring regardless of location. 

• This makes their algorithm deterministic eliminating the need for 
restarts. 

 

• Accuracy: 97.7% on dataset in [17] 

 
56 



Puzzle Problem Requirements 

Paikan’s & Tal’s jigsaw puzzle problem definition (as enumerated 

below) is the most difficult presented to date.   

 

• Size of the puzzle(s) is unknown and may be different 

• Orientation of the pieces is unknown 

• Pieces may missing 

• Input may contain pieces from multiple puzzles 

 

Only Input to the Algorithm: Number of puzzles to be solved. 

 

 

 

57 



Overview of Paikin and Tal’s Algorithm 

• Similar to Pomeranz et. al., Paikin and Tal use a greedy 
strategy.   

 

• With greedy algorithms, early suboptimal decisions can lead 
to major divergences in the future.   

– To reduce the likelihood such poor decisions, Paikin and Tal’s 
algorithm focuses on delaying potentially poor decisions. 

 

• Phase #1: Calculate and store all piece to piece the confident 
compatibility values. 

 

 

 

 
58 



Phase #2 – Initial Piece Selection 

• Previous work by [9] and [10] selected a random piece as the seed for 
their placer 

– This spawns the need to run their algorithms multiple times to get better 
results. 

 

• Paikin and Tal select the most distinctive piece in the most distinctive 
region as their algorithm’s initial seed.  
 

• Picking the Most Distinctive Piece: Select as the initial seed the piece that 
has four best buddies as its neighbors and whose neighbors also have four 
best buddies. 

– This approach helps ensure both the piece and region are distinctive 

– Note: Best buddies is defined based off the confident compatibility unlike 
how it is defined in Pomeranz et. al. [10].  

59 



Phase #2 – Mutual Compatibility 

• If multiple pieces satisfy the “most distinctive” piece criteria, then select the piece with 

the “strongest” best buddies in all four directions. 

 

• Paikin and Tal’s approach: Maximize the mutual compatibility with all four neighbors. 

 

𝐶 𝑝𝑖 , 𝑝𝑗 , 𝑟1 = 𝐶 𝑝𝑗 , 𝑝𝑖 , 𝑟2 =
𝐶 𝑝𝑖 , 𝑝𝑗 , 𝑟1 + 𝐶(𝑝𝑗 , 𝑝𝑖 , 𝑟2)

2
 

 

• 𝐶 𝑝𝑖 , 𝑝𝑗 , 𝑟1  – Mutual compatibility between pieces 𝑝𝑖  and 𝑝𝑗  for spatial relation 𝑟1 

• 𝐶 𝑝𝑖 , 𝑝𝑗 , 𝑟1  - Confident dissimilarity between pieces 𝑝𝑗  and 𝑝𝑖  for spatial relation 𝑟1 

• 𝑟2 - Complementary spatial relationship with 𝑟1.  For example, if 𝑟1 is “right”, then 𝑟2 is 

“left”. 

60 



Phase #3: Basic Placement Algorithm 

While there are unplaced pieces 

 

    if the pool is not empty 

          Extract the best candidate from the pool 

    else 

        Recalculate the compatibility function 

        Find the best neighbors (not best buddies) 

     

    Place the above best piece. 

 

    Add the best buddies of the placed piece to 
the pool 

61 



Phase #3: Placement Overview 

• If the placement pool is not empty, then the “best candidate” 
is defined as the one in the pool with the highest mutual 
compatibility. 

– Unlike best buddies which used asymmetric dissimilarity, the 
greedy placer uses mutual compatibility. 
 

• If the pool is empty, the mutual compatibility values are 
recalculated using only the unplaced pieces and the border 
pieces in the puzzle.   

– The piece with the highest mutual compatibility is then placed 
onto the board 

– The newly placed piece’s best buddies (if any) are placed into 
the pool. 

62 



Phase #3: Handling Multiple Puzzles 

• Other than the pieces themselves, the only input into Paikin 

and Tal’s algorithm is the number of puzzles 
 

• Modified Approach for Multiple Boards: When the mutual 

compatibility between placed and unplaced pieces drops 

below a specified threshold (e.g. 0.5), the candidate pool is 

cleared, and a new puzzle is started. 

– The seed of the new puzzle uses the same approach that was 

used for the first puzzle. 

– New puzzles can be created up to the specified input number. 

– Placement goes on simultaneously across all puzzles. 

63 



Phase #3: Handling Missing Pieces 

• Unlike previous attempts at the problem, Paikin and Tal never 

specifically try to fill a particular slot in the puzzle. 

 

• Rather Paikin and Tal always try to fill the slot in which they 

have the most confidence. 

 

• This allows their algorithm to handle missing puzzle pieces. 

64 



Puzzle Piece Size 

65 



Comparison of Piece Sizes 

Reference Piece Size 

Cho et. al. (2010) 7px by 7px 

Pomeranz et. al. (2010) 28px by 28px 

Sholomon et. al. (2013) 28px by 28px 

Wu (SJSU Thesis) [20] 25px by 25px 

66 



List of References 

[1] Erik D. Demaine and Martin L. Demaine, “Jigsaw Puzzles, Edge Matching, and 
Polyomino Packing: Connections and Complexity”, Graphs and Combinatorics, 
volume 23 (Supplement), June 2007, pages 195–208.  
 

[2] Simson L. Garfinkel. 2010. Digital forensics research: The next 10 years. Digital 
Investigation 7 (August 2010), S64-S73.  

[3] Liangjia Zhu, Zongtan Zhou, and Dewen Hu. 2008. Globally Consistent 
Reconstruction of Ripped-Up Documents. IEEE Trans. Pattern Anal. Mach. 
Intell. 30, 1 (January 2008), 1-13.  
 

[4] Marande, W., and Burger, G. 2007. Mitochondrial DNA as a genomic jigsaw 
puzzle. Science 318-415. 
 

[5] Benedict J. Brown, Corey Toler-Franklin, Diego Nehab, Michael Burns, David 
Dobkin, Andreas Vlachopoulos, Christos Doumas, Szymon Rusinkiewicz, and 
Tim Weyrich. 2008. A system for high-volume acquisition and matching of 
fresco fragments: reassembling Theran wall paintings. In ACM SIGGRAPH 2008 
papers (SIGGRAPH '08).  

67 



List of References (Continued) 

[6] Yu-Xiang Zhao, Mu-Chun Su, Zhong-Lie Chou, and Jonathan Lee. 2007. A 
puzzle solver and its application in speech descrambling. In Proceedings of the 
2007 annual Conference on International Conference on Computer 
Engineering and Applications (CEA'07), 171-176. 
 

[7] Cho, Taeg Sang, Avidan, Shai and Freeman, William T. "A probabilistic image 
jigsaw puzzle solver." Proc. IEEE Conf. Computer Vision and Pattern 
Recognition, 2010. 
 

[8] Cho, Taeg Sang, Avidan, Shai and Freeman, William T.  "The Patch Transform 
and Its Applications to Image Editing," Proc. IEEE Conf. Computer Vision and 
Pattern Recognition, 2008. 
 

[9] Sholomon, D.; David, O. E.; and Netanyahu, “A genetic algorithm-based solver 
for very large jigsaw puzzles”. Proc. IEEE Conference on Computer Vision and 
Pattern Recognition, 2013. 
 

[10] Pomeranz, D.; Shemesh, M. & Ben-Shahar, O “A fully automated greedy 
square jigsaw puzzle solver,” Proc. IEEE Conf. Computer Vision and Pattern 
Recognition,  2011. 

68 



List of References (Continued) 

[11] Xingwei Yang, N. Adluru, and L. J. Latecki. 2011. Particle filter with state 
permutations for solving image jigsaw puzzles. In Proceedings of the 2011 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR '11). 2873-
2880.  
 

[12] A. Gallagher, "Jigsaw Puzzles with Pieces of Unknown Orientation," IEEE 
Conference on Computer Vision and Pattern Recognition 2012. 
 

[13] N. Alajlan. Solving square jigsaw puzzles using dynamic programming and the 
Hungarian procedure. American Journal of Applied Sciences, 2009 
 

[14] Ture R. Nielsen, Peter Drewsen, and Klaus Hansen. 2008. Solving jigsaw 
puzzles using image features. Pattern Recognition Letters. 29, 14 (October 
2008), 1924-1933. 
 

[15] Ioannis Pitas. 2000. Digital Image Processing Algorithms and Applications (1st 
ed.). John Wiley & Sons, Inc., New York, NY, USA. 

69 



List of References (Continued) 

[16] F. Toyama, Y. Fujiki, K. Shoji, and J. Miyamichi. Assembly 
of puzzles using a genetic algorithm. In IEEE Int. Conf. on 
Pattern Recognition, volume 4, pages 389–392, 2002. 
 

[17] D. Sholomon, O. David, and N. Netanyahu. Datasets of larger images and GA-
based solver’s results on these and other sets. 
http://www.cs.biu.ac.il/∼nathan/Jigsaw. 
 

[18] Wu, Fengjiao, "Using Probabilistic Graphical Models to Solve NP-complete 
Puzzle Problems" (2015). Master's Projects. Paper 389. 
 

[19] Kilho Son, James Hays, David B. Cooper. Solving Square Jigsaw Puzzles with 
Loop Constraints. ECCV (6) 2014: 32-46. 2013. 
 

[20] Genady Paikin, Ayellet Tal. Solving multiple square jigsaw puzzles with missing 
pieces. CVPR 2015: 4832-4839 

70 


