

CS 280 Report

Content Management System Detection

in the Yioop Search Engine

By

Charles Bocage

Project Advisor: Dr. Chris Pollett

Department of Computer Science

San José State University

One Washington Square

San José, CA 95112

1

Table of Contents
Introduction ... 2

Deliverable 1: A New GUI Activity ... 3

Deliverable 2: Incorporate CMS Detector into Yioop’s Fetcher .. 5

Deliverable 3: Before and After Adding CMS Detectors Experiment.. 6

Deliverable 4: Submit the Patches .. 8

Conclusion .. 9

References ... 10

2

Introduction

A CMS is a tool “for building and maintaining web applications for many disciplines” (Mooney

& Baenziger, 2007). In other words, a CMS helps organizations stand up web content quickly with

virtually no web programming experience. For example, the Herald Sun, a news source from Australia,

uses a CMS called WordPress. In addition, “WordPress is used by 25.4% of all the websites” (W3Techs,

2015). WordPress offers its users many plugins, themes, site management functionality etcetera for them

to publish content and apply a consistent layout. According to CMS Usage Statistics if I only

targeted the top five sites I would capture 54% of the CMSes on the Internet as shown below:

When a search engine crawls a page, it usually extracts the most important parts to store in the

index. By detecting which CMS a web page, summarizers can better find the most important content. As

the Yioop search engine crawls now, it does not detect which CMS a web page uses. Accurately targeting

the important content will allow the Yioop search engine to produce better summaries of the content it has

crawled. That is because most CMS developed web pages follow a specific pattern to render the page in a

browser. For example, the page content, navigation content, side-bar content etcetera are located in

CMS Usage

WordPress Drupal Adobe CQ Google Search Appliance vBulletin Other

http://www.heraldsun.com.au/
http://trends.builtwith.com/cms

3

HTML tags that are decorated with the same names or attributes despite the content within the tags.

Furthermore, the important content will also be located in an HTML tag that is common to all of its

pages.

This semester I created an abstract CMS detector framework that is flexible enough to detect

virtually any CMS based on users’ input. The Yioop search engine users can configure the CMS detector

settings through a new GUI Activity within the Yioop search engine. The GUI Activity allows users to

add/remove CMS detectors without writing any code. I also produced a before and after fetch duration

comparison and patches Dr. Pollett can include in his subsequent release of the Yioop search engine.

Deliverable 1: A New GUI Activity

The goal of this deliverable was to create a new GUI Activity in the Yioop search engine

to allow users to manage its CMS detector settings. In order to meet this deliverable I needed to

create a place for users to enter the CMS detector settings in the Yioop GUI and update the

database to store the CMS detector settings. First, I modified the appropriate files to enable an

activity called CMS Detectors within the Crawls group. When a user clicks CMS Detectors, the

current settings are shown. I kept the CRUD methodology in mind while I was creating the

interface. Users will be able to create, read, update and delete CMS detectors from the Yioop

search engine. A CMS detector has to have a name and a header regex to be successfully

submitted. The important content XPath value can be empty as it is not required. There is help

documentation also. If a user clicks on the question mark next to the “Add CMS Detector”, a

full description of the CMS detectors page is displayed.

4

Furthermore, to store the CMS detector data, the Yioop search engine’s database has to

be modified. I added information about the new activity in the ACTIVITY,

TRANSLATION_LOCALE, TRANSLATION and ROLE_ACTIVITY tables. I added the name

of the activity to the ACTIVITY table, a translation value to the TRANSLATION table, mapped

the ID from the TRANSLATION table to its entry in the TRANSLATION_LOCALE table and

mapped a role to its entry in the ROLE_ACTIVITY table. I also created one table called

CMS_DETECTORS. The table has 4 columns; TIMESTAMP, NAME, HEADER and

IMPORTANT_CONTENT. The GUI activity mimics this table in its display except the

timestamp column is not shown. The timestamp column is the primary key and is stored as a

hidden value to enable users to edit and delete a CMS detector setting.

Once I had the CMS detector page designed and the database created, I did some stress

testing on the changes. I entered long values into each column to see how the CMS Detector

table would render the information in the GUI. The table stretched beyond the page bounds

causing the data to be unreadable. The data also breached the help content when it was

displayed. To solve this problem, I configured the search.css file to make the table cells wrap the

5

text. Another test I performed was to update the data stored in the database. I noticed when I

attempted to edit a CMS detector setting the data did not display correctly in the input box. After some

debugging, I found that the problem was caused by the value containing quotes. For example, if “1234”

(including the quotes) was stored in the database and the user edits that CMS detector, the GUI would try

to render value=““1234””. This would cause that value to display an empty value, basically value=“”,

even though you can see it in the source of the page. In order to address this problem, I stored the data in

the database HTML encoded. Now the database stores “1234” as "1234" (all other HTML

characters are stored as their HTML encoded values as well) and when rendered a browser coverts it to it

humanly readable equivalent value=“1234”.

Deliverable 2: Incorporate CMS Detector into Yioop’s Fetcher

The goal of this deliverable was to extend Yioop’s fetcher to incorporate the user defined

CMS settings. This is where I took the work I did in CS297 and extended it. In CS297, I came

up with code for two separate detectors. I had one for WordPress and one for Drupal. Each

CMS detector had its own name, unique header regex and important content values. In that

model a detector for each CMS would need to be created to detect new CMSes. This would not

be very easy to manage, so I had to come up with a better idea.

In deliverable 1, I added the ability to store the CMS values needed into the Yioop search

engine’s database. With those values in a location that could be queried for, a universal CMS

detector could be created. The universal CMS detector queries the CMS_DETECTOR table for

the CMSes it is to detect. It loops through each setting until it finds a match. If it does not find a

match, it returns UNKNOWN. Within the HtmlProcessor.php file a checkForCMSContent()

method was added. Before it summarizes the content, the HtmlProcessor.php code calls the

checkForCMSContent() method to see if the content is from a CMS that it recognizes. If the

6

content is from a CMS it is aware of, the important content is return as long as that setting is

populated. If the important content value is empty or it is not aware of the CMS, then the entire

web page is summarized as is. Now every time the fetcher summarizes a document, it has the

best chance of generating a perfect summary.

Deliverable 3: Before and After Adding CMS Detectors Experiment

The goal of this deliverable was to compare summary results before and after adding CMS

detectors. I already proved that detecting the CMS improved summary results in my CS299

research, so I decided to compare the time the fetcher takes to summarize the documents it

crawls. In order to see a noticeable difference there needed to be a substantial amount of CMS

detectors. I wrote some code, when run, would add 239 CMS detectors to the database. I

performed the experiment as follows:

1. Ran ManyDetectors,php to add 239 CMS detectors.

2. Ran a crawl for about an hour

3. Captured the fetcher logs

4. Deleted all but twenty CMS Detectors

5. Ran a crawl for about an hour

6. Captured the Fetcher logs

7. Deleted all CMS detectors

8. Ran a crawl for about an hour

9. Captured the fetcher logs

7

After the experiment was complete I analyzed the results. The results showed that with 239

CMS detectors, document summarization took extremely long. Also with 20 CMS detectors it

took four times as long.

 0 CMS Detectors 20 CMS Detectors 239 CMS Detectors

Max 20.328 23.328 89.125

Min 0.016 0 0.203

Median 0.313 3.219 44.094

Mode 1.909 0.031 0.656

Mean 0.859 4.362 34.652

I ran my findings by Dr. Pollett. He was concerned that I may have a bug in my code

causing the degraded performance. After a short discussion we determined that the culprit is

wither my code loading the head tag inefficiently or an old version of PHP. In my code, for each

document to be summarized, I reload the head tag for each CMS to be detected. I was also using

PHP 5.63. I modified the universal CMS detector to load the head tag once, upgraded my PHP

version and reran on my experiment.

Upgrading my PHP version to 7.05 did not change the time it took the fetcher to

summarize the documents. Dr. Pollett was correct about loading the head tag once. The results

decreased dramatically. The results showed that with 239 CMS detectors it took two seconds on

average. With twenty detectors it took 1 second on average. Since this test went so well, I

decided to include six default CMS detectors. I went with WordPress, Drupal, SiteCore, Joomla,

vBulletin and Yioop.

8

 0 CMS Detectors 20 CMS Detectors 239 CMS Detectors

Max 1.469 2.234 4.141

Min 0 0 0.609

Median 0.0313 1.016 2.445

Mode 0 0 3.609

Mean 0.347 1.032 2.361

Deliverable 4: Submit the Patches

The goal of this deliverable was to create a patch that contains my changes and submit it

to Mantis BT. Since these items were broken into two categories, GUI and database, I needed to

create two patches. I went through the files I modified or created and determined the following

files belonged to the following groups:

CMS Activity Patch Database Patch

PublicHelpPages.php Config.php

AdminController.php Createdb.php

Controller.php UpgradeFunctions.php

CrawlComponent.php ProfileModel.php

search.css

UniversalDetector.php

HtmlProcessor.php

configure.ini

9

CmsModel.php

CmsDetectorsElement.php

CmsDetectorTest.php

ManyDetectorsExperiment.php

Joomla01.txt

SiteCore01.txt

SiteCore02.txt

Yioop01.txt

cms_detector_input.txt

cms_detector_results.txt

vBulletin01.txt

vBulletin02.txt

Once I checked for long lines and cleaned each file I created an issue on the Mantis BT

site and uploaded the patches. There was a problem with one of the files in the CMS Activity

patch. The help documentation I generated was not compatible with the latest version of the

Yioop source code. I cloned the latest version of Yioop, regenerated the help documentation and

uploaded the patch again. This time that patch was accepted and my code changes are now live.

Conclusion

 In conclusion, adding the CMS detector activity required a lot of work to be done. An

activity relies on the database to be modified not just the PHP code that renders the pages. I

came up with a sample GUI page and the database table to support it. Performing load testing

10

proved invaluable to exposing a bug in the code. Although the majority of the websites are

created by a small number of CMSes, a user may want to split them into various versions,

increasing the number of CMS detectors available. If I had not done the load testing to expose

that problem, users may have started to complain as they added more and more detectors. The

work is now complete for the next person to expand Yioop into the land of being a CMS detector

authority.

References
Mooney, S. D., & Baenziger, P. H. (2007, July 31). Extensible open source content management systems

and frameworks: a solution for many needs of a bioinformatics group. Oxford Journals, 9(1), 69-

74. Retrieved December 12, 2015, from http://bib.oxfordjournals.org/content/9/1/69.full

W3Techs. (2015, November 9). Usage of content management systems for websites. Retrieved from

World Wide Web Technology Surveys:

http://w3techs.com/technologies/overview/content_management/all/

