
INDEX COMPRESSIONINDEX COMPRESSION

INVERTED INDEX

Inverted index consists of two principal

components

�Dictionary�Dictionary

�Posting lists

UNCOMPRESSED INVERTED INDEX

Uncompressed inverted index for a given document can be very

large

COMPRESSED INVERTED INDEX

Advantages of compressed inverted index

�Less storage�Less storage

�Fast query retrieval time

� can index large collections

GENERAL PURPOSE DATA COMPRESSION

Compression algorithm takes the data and converts into

another data which requires fewer bits to store and

transfer.

� Encoder: converts original data A to B
sizeof(A) > sizeof(B)

� Decoder: takes B and converts into C
� lossy: C can be approximation of A (JPEG,MP3)

� lossless: C is exact copy of A

SYMBOLWISE DATA COMPRESSION

� Data compression techniques can treat the

information(M) as sequence of symbols.

� Not all symbols in M appear with the same

frequency

� Symbols can be depend on the previous symbols

ex: ‘q’ and ‘u’

MODELING AND CODING

Symbolwise compression methods work in two phases
�Modeling: a probability distribution M is

computed that maps symbols to their probability of
occurrenceoccurrence

�Coding: symbols in the message M are reencoded
according to a code C

Ex: Huffman algorithm calculates probability of the
frequency of characters and using that to find the
code for each character

BITWISE CODING

� Prefix property: no code word is an initial substring of any

other code word

� a-0, b-11, c-100, d-101

HUFFMAN CODING ALGORITHM

� Generate probability of occurrences of each

character

� Create each individual node with the probability� Create each individual node with the probability

� Find two minimum nodes and combined them into

one node with sum of their probabilities

� Two minimum nodes become left and right nodes.

� Repeat it until ends with a single node

HUFFMAN CODING ALGORITHM

ARITHMETIC CODING

� improve upon the Huffman code for single symbols by taking

pairs of symbols and making the Huffman code for them

� Ex: “aa”, “ab”, “ba”, “bb”,…

CONTD…

� Find the sub intervals of the sequences of symbols and then

find its binary representation and encode the message using

those

� Ex: aaa => [0,0.512) => 0, aab => [0.512, 0.64) => 0.10011, � Ex: aaa => [0,0.512) => 0, aab => [0.512, 0.64) => 0.10011,

aba => [0.64,0.75) => 0.11

� Decodes as soon as it sees 0 to“aaa” .10 to “aab” and so on…

POSTING LISTS

� Majority of data in an inverted index are postings data.

� A posting list consists of a sequence of integers giving the

doc id's of the document that contained a particular word.

L= (3, 7, 11, 23, 29, 37, 41,…)

� List can be very large and each element occurs single time

� Standard compression methods like Huffman

coding is not feasible

COMPRESSING POSTING LISTS: Δ-VALUES

Transformed into an equivalent sequence of difference between
consecutive elements(Δ-values)
Δ (L) = (3, 4, 4, 12, 6, 8, 4, …)

� Elements are smaller and can be encoded using fewer bits.� Elements are smaller and can be encoded using fewer bits.
� Elements can occur multiple times

� Nonparametric Gap Compression : does not consider the
actual Δ-gap distribution (� Codes)

� Parametric Gap Compression : conducts an analysis of some
statistical properties of the list to be compressed
(Golomb/Rice codes)

���� CODES

� Offsets in a posting list: (100000, 100005,100011,...)

� Gap compression: (1: 5, 6...)

� To compress these small numbers: We write (number of bits -1)

we want in unary with 0's, followed by a 1, followed by the we want in unary with 0's, followed by a 1, followed by the

number in binary.

� Unary representation for 1=>0, 2=> 00, 3=>000….

� High-order bit of the binary code for the number is redundant

given that we known the length of the number, so we can drop

this bit to get the actual encoding.

GOLOMB/RICE CODES

� Compress a list whose Δ-values follow a geometric distribution

Pr[Δ=k]=(1−p)k−1p.

� Arbitary Modulus M (Golomb)

� M is a power of 2 (Rice)� M is a power of 2 (Rice)

� Determine an appropriate modulus

� Split each value into two components:
� quotient q(k)

� remainder r(k)

Where q(k)=⌊k−1/M⌋,r(k)=(k−1)mod M

BYTE-ALIGNED CODES

� vByte(variable-byte coding): Splits the binary representation of

each Δvalue into 7-bit chunk + 1 bit continuation flag

L=(1624, 1650,1876,1972, …)

Δ(L) = (1624, 26, 226, 96, 384, …)Δ(L) = (1624, 26, 226, 96, 384, …)

1 1011000 0 0001100 0 0011010 1 1100010 0 0000001 0 1100000 1

0000000 0 0000011…

� 0 at the beginning of the chunk indicates the end of the current

code word. (88+12 * 27 =1624)

WORD-ALIGNED CODES(SIMPLE-9)

� Inspects Δvalues in a postings sequence and insert as

many as possible into a 32-bit.

� Reserve 4 bits for selector

0001 000111001011000 00000000011001 0010 0001 000111001011000 00000000011001 0010

011100001 001011111 101111111 U

REFERENCES

� Stefan, B., Clarke , C., & Cormack, G. (2010). Information

retrieval - Implementing and Evaluating Search Engines .

Cambridge, Massachusetts: MIT Press.

