
Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 1

Processing Posting Lists Using OpenCL

By
Radha Kotipalli

Spring 2015

Project Advisor : Dr. Chris Pollett

Department of Computer Science
San José State University

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 2

Contents

Introduction .. 3

Overview of Deliverables .. 5

Deliverable 1: .. 5

Deliverable 2: .. 8

Deliverable 3: .. 12

Deliverable 4: .. 14

Conclusion ... 16

References: ... 17

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 3

Introduction

The main goal of this project is to create a GPU-based, parallel reader of posting lists for Yioop.

Yioop is an open source search engine designed and developed in PHP by Dr. Chris Pollett. We

will be using OpenCL to code for the GPU. We will then do experiments comparing our GPU

posting list handler with the existing mechanism in Yioop.

Search engines use an inverted index to look up for a term all the documents containing that

term. This list of documents is called a posting list. Posting lists are typically stored in a

compressed binary format.

OpenCL (Open Computing Language) provides a platform for parallel programming and GPUs

have hundreds or thousands of processing units rather than one to eight for a typical CPU.

OpenCL provides an effective way to program GPUs and to send and receive data from the CPU

in a system and a GPU. Many posting list operations can be done in parallel. So implementing

posting lists algorithm using OpenCL will likely improve the performance of search engine.

In order to prepare for the actual implementation, I performed few code experiments during this

semester. There were four different deliverables in my CS297 which will help me understand the

requirements involved in the actual implementation of the project, that will be done in CS298.

The first deliverable was to understand different algorithms for index compressions from the

book, " Information retrieval - Implementing and Evaluating Search Engines," by Stefan, B.,

Clarke , C., & Cormack, G. I also wrote a C-program to implement the Huffman encoder and

decoder. The second deliverable was to write a C-program to encode/decode posting lists using

the Simple-9 compression algorithm by taking a word and its index positions. The third

deliverable was to install C++ bindings for Microsoft Visual studio and write a OpenCL program

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 4

to compute the squares of elements of an array. Finally the fourth deliverable was to install PHP

extensions for Windows and write a simple PHP extensions for the hello world program from the

book, "Extending and Embedding PHP," by Golemon, Sara. I will explain those deliverables in

detail in the later sections of this paper.

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 5

Overview of Deliverables

Deliverable 1: Index Compression and Huffman encoder/decoder

This deliverable was to understand the purpose of compression inverted index and various

compression algorithms.

Inverted index consists of two principal components, dictionary and posting lists. Uncompressed

inverted index for a given document can be very large, sometimes even greater than the actual

source itself. Compressed inverted index can provide advantages such as less storage space

requirement, fast query retrieval time, and can accommodate large collections.

Data compression algorithm takes the data and converts into another data which requires fewer

bits to store and transfer. It contains an encoder and a decoder. Encoder converts original data A

into B. Decoders are two types. First one is lossy which takes B and converts into C, where C

can be approximation of A. Examples are JPEG, Mp3. Second one is lossless, which takes B and

converts back to A.

One of the compression algorithms is Huffman coding algorithm. Huffman algorithm calculates

probability of frequency of characters and using that to find the code for each character. It uses

prefix property, no code word is an initial substring of any other code word. Example a-0, b-11,

c-100, d-101.

Huffman Coding Algorithm to build a tree:

• Generate probability of occurrences of each character

• Create each individual node with the probability

• Find two minimum nodes and combined them into one node with sum of their probabilities

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 6

• Two minimum nodes become left and right nodes.

• Repeat it until ends with a single node

I have implemented this algorithm by assuming that the document contains only the characters

whose ASCII values are from 32 -126 i.e from space to '~'. For a given input text file my

program creates a Huffman-tree, a code for each symbol/character and copy them to a output

file. The first 8 bits in the output file contains the starting address of the actual encoded

documentation, followed by the Huffman-tree and then the encoded input file. This format

makes decoding easy because the output file contains the codes of each symbol/character that has

been used in encoding so the output file itself is sufficient to decode without using any auxiliary

code.

Example: input.txt contains following text

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 7

Posting lists can be very large and each element occurs only single time. So standard

compression methods like Huffman coding is not feasible. Several other algorithms are available

to compress the posting lists such as γ-codes, Golomb/Rice codes, byte-aligned codes, and word-

aligned codes. The index positions in the posting lists can be replaced with Δ-values,

transformed into an equivalent sequence of difference between consecutive elements, so that

elements can be smaller and can be encoded using fewer bits.

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 8

Deliverable 2: Compressing Posting List Using Simple-9 Algorithm

The purpose of this deliverable was to write a C-program to encode/decode posting lists using

Simple-9 compression algorithm, which is almost same algorithm used in Yioop to create its

posting lists.

Generally compressed posting list is stored using an integral number 16-bit, 32-bit, or 64-bit

machine words. Instead of storing each Δ-value in a separate 32-bit, word-aligned code

compression algorithm allows you to store several consecutive values as a single 32-bit. Simple-

9 is one of the examples of word-aligned code compression algorithm,

Simple-9 inspects the Δ-values in a posting sequence and tries to squeeze as many of them as

possible into a 32 bit machine word. In this 32 bit, 4 bits are reserved for a selector, which tells

how many Δ-values of equal size have been inserted in the remaining 28 bits. There are nine

different ways of dividing then into chunks of equal size.

Selector 0 1 2 3 4 5 6 7 9

Number of Δ's 1 2 3 4 5 7 9 14 28

Bits per Δ 28 14 9 7 5 4 3 2 1

Unused bits per

word

0 0 1 0 3 0 1 0 0

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 9

Example: Input Word: "The" 1624 1650 1876 1972 2356

Δ-values : 1624 25 225 95 383 [Δ-value: [1650 -1624 -1] = 25, ...]

The above indexes can be saved as 1624 and 25 together as two 14-bits each; 225, 95, and 383

together as three 9-bits each, and one unused bit at the end.

Encoding: In my program I have written a method which takes a maximum of 28 Δ-values,

Since we can insert a maximum of 28 different Δ-values (if they are 1 bit each), at a time and

returns its appropriate selector value.

/*
 This method finds the selector that can be used to store the bits
*/
int selector(int linkCount, int cnt[])
 {
 //Number of possible inserted value in 28-bits
 int counter[8]={28,14,9,7,5,4,3,2};
 //Maximum number of bits
 int check[8]={1,2,3,4,5,7,9,14};
 int flag=0,i;int simple=0;
 switch(linkCount)
 {
 case 28:i=0;break;
 case 14:i=1;break;
 case 9: i=2;break;
 case 7: i=3;break;
 case 5: i=4;break;
 case 4: i=5;break;
 case 3: i=6;break;
 case 2: i=7;break;
 }
 for(i; i<8;i++)
 {
 flag=0;
 for(int j=0;j<counter[i];j++)
 {
 if(cnt[j]>check[i])
 {
 flag=-1; break;
 }
 }
 if(flag!=-1)
 {
 switch(counter[i])
 {
 case 28: simple=9;break;
 case 14: simple=7;break;
 case 9: simple=6;break;
 case 7: simple=5;break;

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 10

 case 5: simple=4;break;
 case 4: simple=3;break;
 case 3: simple=2;break;
 case 2: simple=1;break;
 }
 return simple;
 }
 }
 return simple;
 }

Using the above selector value to convert the appropriate number of Δ-values into 28 bit chunks

and repeat the process till the end of the list.

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 11

Decoding: I have taken the encoded linked list of 32 bit chunks, found the selector by reading

the first 4 bits and used that selector value to split the remaining 28 bits into equal sizes and

converted it back to the original index positions.

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 12

Deliverable 3: OpenCL Program

The purpose of this deliverable was to install the necessary C++ bindings for Microsoft Visual

studio and write a OpenCL program to compute the squares of each element of an array.

I had installed Intel INDE Starter Edition from https://software.intel.com/en-us/intel-inde.

The Starter Edition provides tools and libraries to develop OpenCL kernels for GPU. Then wrote

a simple OpenCL program, which takes an array and display the squares of its elements.(Took

the sample code from the website http://simpleopencl.blogspot.com/2013/06/tutorial-simple-

start-with-opencl-and-c.html and modified according to my program requirements).

The first step is to get the OpenCL platform, in this case it is Intel. Next step is to get device of

our platform(CPU or GPU). Next step is to create a context, a handle to device and platform.

Next step is the actual OpenCL function simple_square that will calculate the squares of each

element in an array.

// kernel calculates for each element C=A*A
string kernel_code =
 " void kernel simple_add(global const int* A, global int* C){ "
 " C[get_global_id(0)]=A[get_global_id(0)]*A[get_global_id(0)]; "
 " }

Above code calculates square of each element by opening one thread for each element. Here

get_global_id() gets the id of current thread, which can go from 0 to (array size -1).

https://software.intel.com/en-us/intel-inde
http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Spring15/radha/simple_9.cpp
http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Spring15/radha/simple_9.cpp

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 13

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 14

Deliverable 4: PHP Extensions for a Hello World C-Program

The purpose of this deliverable was to install PHP extensions for windows and write a simple

PHP extensions for the hello world program from the book, "Extending and Embedding PHP,"

by Golemon, Sara.

For this deliverable I had built PHP from source as per the steps given at

https://wiki.php.net/internals/windows/stepbystepbuild

After PHP was built, I wrote a simple C-program. This program contains a function called

sample_hello_world(). The code of that function is

PHP_FUNCTION(sample_hello_world)

{

 php_printf("hello world !\n");

}

Code was compiled into a dll library as per the steps given in Chapter 5, "Your First Extension"

from the book "Extending and Embedding PHP". The resulting library was copied to php

extension_dir specified in php.ini file. The following entries are added to the php.ini file.

extension_dir = "C:/php-sdk/phpdev/vc11/x86/php-src/Release_TS/ext/"

 extension=php_sample.dll

The C function can be invoked from PHP as below.

https://wiki.php.net/internals/windows/stepbystepbuild

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 15

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 16

Conclusion

Deliverable 1 and 2 helped me understand the inverted index and posting list's Simple-9

compression algorithm. OpenCL allows writing parallel programs in C-language and can exploit

the power of threads of GPU. Yioop is a PHP based search engine. Custom PHP extensions will

provide a way to invoke from PHP programs written in C. Deliverable 3 covered a simple

OpenCL example and Deliverable 4 covered a simple PHP extension. All the four deliverables

which were explained in previous sections will help me with my CS298 project implementation.

Processing Posting Lists Using OpenCL CS297 Report

San Jose State University Page: 17

References:

1. Stefan, B., Clarke , C., Cormack, G. (2010). Information retrieval - Implementing and
Evaluating Search Engines . Cambridge, Massachusetts: MIT Press.

2. Golemon, Sara. Extending and Embedding PHP. Indianapolis, Ind.: Sams, 2006. Print.

	Introduction
	Overview of Deliverables
	Conclusion
	References:

