
Question Answering System for Yioop

A Project Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements of the Degree

Master of Science

By

Niravkumar Patel

Dec 2015

© 2015

Niravkumar Patel

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

Question Answering System for Yioop

by

Niravkumar Patel

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2015

Dr. Chris Pollett Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Dr. Robert Chun Department of Computer Science

ABSTRACT

QUESTION ANSWERING SYSTEM FOR YIOOP

by Niravkumar Patel

Yioop is an open source search engine developed and managed by Dr.

Christopher Pollett. Currently, Yioop returns the search results of the query in the form of

list of URLs, just like other search engines (Google, Bing, DuckDuckGo, etc.)

This paper created a new module for Yioop. This new module, known as the

Question-Answering (QA) System, takes the search queries in the form of natural

language questions and returns results in the form of a short answer that is appropriate to

the question asked. This feature is achieved by implementing various functionalities of

Natural Language Processing (NLP). By using NLP, the new Question-Answering (QA)

System attempts to extract the necessary information from the query provided by the user

and provides an appropriate answer from the available data.

AKNOWLEDGEMENT

I would like to express my gratitude to everyone who contributed directly or

indirectly towards the completion of this project.

First and foremost, I would like to thank my project advisor, Dr. Christopher

Pollett, for his unending patience and constant guidance towards this project, without

which the success of this project would not have been achievable.

I would also like to extend my thanks to my committee members, Dr. Thomas

Austin and Dr. Robert Chun, for their suggestions and time.

Contents

INTRODUCTION .. 1

BACKGROUND .. 4

2.1 Components of Yioop ... 4

2.1.1 Queue Server .. 5

2.1.2 Fetcher .. 5

2.1.3 Summarizer ... 5

2.1.4 Mini Indexer ... 6

QUESTION ANSWERING (QA) SYSTEM OVERVIEW ... 14

3.1 Representation of a Question Answering (QA) System: .. 14

3.2 Information Extraction approaches and it challenges ... 16

3.2.1 The Bag of Words Approach .. 16

3.2.2 The Triplet Extraction Approach .. 16

DESIGN AND IMPLEMENTATION OF THE QUESTION ANSWERING SYSTEM 20

4.1 Role of the Question Answering (QA) System during crawl time: 20

4.1.1 Major components of the Question Answering (QA) System 22

4.2 Role of Question Answering (QA) System during Query Time: 37

EXPERIMENTS ... 39

5.1 Experiments on a standalone Question Answering (QA) system 39

5.2 Experiments on an integrated Question Answering (QA) system 45

5.2.1 Experiments during crawl time... 46

5.2.2 Experiments during query time .. 48

5.3 Observations after Integration ... 49

CONCLUSION ... 52

REFERENCES ... 53

List of Figures

Fig. 1 Web interface to test Summarizer and Mini Index ... 9

Fig. 2 Generated summary by Summarizer .. 10

Fig. 3 Example of mini Index on the Summary .. 11

Fig. 4 Overview of information flow .. 12

Fig. 5 Generated Parsed Tree .. 28

Fig. 6 Parse tree generated from the complex sentence .. 29

Fig. 7 Triplet Extraction from the Tree ... 34

Fig. 8 Generated Tree from the statement .. 41

Fig. 9 Generated Tree from the statement .. 42

Fig. 10 Generated Tree from the statement .. 43

Fig. 11 Generated Tree from the statement .. 44

Fig. 12 Generated Question Triplet at crawl time ... 47

Fig. 13 Generated Question Triplet from the crawling ... 48

Fig. 14 Results before integration ... 49

Fig. 15 Results after integration .. 50

Fig. 16 Page processing time before/after the integration .. 51

file:///C:/Users/Niravkumar/Desktop/CS298_Report.docx%23_Toc437902854
file:///C:/Users/Niravkumar/Desktop/CS298_Report.docx%23_Toc437902858
file:///C:/Users/Niravkumar/Desktop/CS298_Report.docx%23_Toc437902860

List of Tables

Table 4.1 Part of Speech Tags…………………………………………………………23

1

CHAPTER 1

INTRODUCTION

The World Wide Web (WWW) is an abundant source of information that is

growing every second. However, there are not many techniques that focus on data

retrieval based upon a question provided by the user. This led to the development of the

Question Answering (QA) System. The Question Answering (QA) System is a discipline

under the Computer Science field of Information Retrieval (IR) and Natural Language

Processing (NLP). The Question Answering (QA) System works by building intelligent

systems that generate answers so as to imitate the answers given by a real human being

[1].

Since the World Wide Web contains a huge amount of information which is

growing exponentially every day, this information can be used in answering various

questions. Several methods are followed to enter the information into the World Wide

Web, for example, social media websites (Facebook, Twitter, etc.), information websites

(Wikipedia), and many others. However, very few methods try to provide an answer to

complex question asked by the user. A lot of research and resources have been employed

in order to make this a better experience for the everyday user, with Voice Assisted

Systems (VAS) such as “Siri”& “Cortana”. Such systems are constantly evolving in order

to attain better accuracy and a better user experience. The Question Answering (QA)

System is not a modern concept in the Computer Science domain; rather, it has been the

topic of discussion for several decades. A few examples of such Question Answering

2

(QA) Systems include IBM’s “Watson” [2] and “START” by Boris Katz and associates

of the InfoLab Group at the MIT Computer Science and Artificial Intelligence Laboratory

[3]. However, the best accuracy obtained by any such Question Answering (QA) System

is not more than 70%.

This project aims to add a Question Answering (QA) System to the open source

search engine, Yioop, developed by Dr. Christopher Pollett. Like any other search

engine, Yioop also has a crawler that runs through the URLs on the web, extracts the

information, processes it, and stores it in the Yioop index for later retrieval. The

extraction phase of Yioop involves several components that are employed before storing

the data to the Yioop index. One such important component is the Summarizer. This

component runs as a part of the crawling process and is mainly responsible for limiting

the amount of information, as well as providing the data with much-needed conciseness.

The Summarizer produces a short summary of the data fetched by the crawler, which

might otherwise be too long. The output of the Summarizer, known as the Summaries,

obtained from several documents is used to generate the mini inverted index.

After building the mini inverted index on the summaries, the proposed Question

Answering (QA) System comes into the picture. The Question Answering (QA) System

iterates over all the phrases in the mini inverted index and stores the information in the

form of [SUBJECT-PREDICATE-OBJECT] triplets [4]. These triplets are then stored in

Yioop by appending them to the same mini inverted index. This is used when the user

inputs a query in the form of a question. The Question Answering (QA) System generates

all possible combinations of triplets, based on the types of question that a user can ask.

3

This saves processing time while extracting the query search results, leading to faster

information retrieval.

The Question Answering (QA) System includes a query processing mechanism,

which handles the questions entered by the users. The Question Answering (QA) System

processes the user input, checks if it is in the form of a question, and generates the

Question-Triplet if it identifies the input as a question. This triplet correlates with the list

of triplets mentioned earlier in the mini inverted index that have a list of probable

occurrence positions. This information is further used to form a meaningful answer to the

original question.

Chapter 2 discusses the components used by the Question Answering (QA)

System in various manners. These components are the essential and necessary source of

information for the Question Answering (QA) System. Chapter 3 discusses the detailed

overview of the proposed Question Answering (QA) System, along with the factors

playing an important role in affecting the overall accuracy of the system. Chapter 4 gives

an overview of the design and implementation strategy employed for the QA System. It

also describes about other components used in the Question Answering (QA) System,

such as the Part of Speech tagger, Parse Tree Generation, Triplet Extraction, and

Question Generation. Moreover, this chapter also discusses the method used to look up a

query entered by the user. Chapter 5 discusses the behavior of the Question Answering

(QA) System as a stand-alone system, as well as the system that is integrated with the

Yioop system. Finally, this chapter also discusses areas of possible improvements and

future work.

4

CHAPTER 2

BACKGROUND

This chapter discusses the overview of the processes running in the background as

a part of the crawling process. In order to generate a meaningful response to the user

query, the Question Answering (QA) system tries to understand the question and retrieve

the relevant data from the World Wide Web in an efficient manner. However, this data

include a lot of unnecessary data containing special characters, such as html tags, xml

tags, hyperlinks, meta-data of webpages, and many more. This data is not relevant to the

actual information. All of the above has to be processed in a well-structured and

articulated manner so that the Question Answering (QA) System gets to process the valid

raw information.

One of the prominent features of the Yioop system is that the user can have

control over providing/restricting the source URLs so that the results returned belong to

the domain of the mentioned source. This feature can be accessed, edited and managed

using the Manage Crawler option of the Yioop system’s admin portal.

2.1 Components of Yioop

The crawling process in Yioop has four main components:

1. Queue Server

2. Fetcher

3. Summarizer

5

4. Mini Indexer

2.1.1 Queue Server

The Queue Server is responsible for maintaining the priority order of the URLs to

be processed next in the queue.

2.1.2 Fetcher

The Fetcher of the Yioop System fetches each individual URL from the Queue

Server and downloads all the information from the respective URL. As a part of

information refinement, processes like Stemming and Stop Word Removal are applied to

the downloaded information. Stemming is the process of reducing a word to its origin

[12]. For example, the word “Running” is stemmed from the word “Run,” thus, in the

current process, the Stemmer would convert the word “Running” to “Run.” The Stop

Word removal is a process which removes the most common words from the sentence,

i.e. the, a, which, who, what, is, etc. This processed data is then fetched by the

Summarizer for the next level of its own processes.

2.1.3 Summarizer

The data is ready to be given to the Summarizer once all the basic preprocessing

is completed. The Summarizer gets hold of the <meta> tags of the HTML page. It

appends the contents of the first four <p> and <div> tags, which are further appended

with the contents of the , <td>, <dd>, <dt> and <a> tags until it reaches a maximum

predefined threshold value [HTMLPROCESSOR::MAX_DESCRIPTION_LEN (2000)]

[5]. The order of precedence of the items added is from the tag with the most characters

6

to the tag with the least. The HTML processor can choose to obtain the same result by

using a centroid summarizer. In this case, it removes all the tags and bifurcate the

document into sentences, after which the average sentence vector is calculated while

ignoring the stop words. The sentence vectors comprise the terms and the value for each

term. Here, the value represents the likelihood of the term existing in any sentence of the

document. After this, the distance between the centroid and each sentence is calculated.

The sentences that have the least distance are added to the summary until it reaches the

limit of 2000.

2.1.4 Mini Indexer

The mini inverted index is created from the summary generated by the

Summarizer. The general format of the mini inverted index is as follows:

term_id_1 => ...

term_id_2 =>

term_id_i => ((summary_map_1, (positions in summary 1 that term i appeared)),

(summary_map_2, (positions in summary 2 that term i appeared)),

...)

 ...

The term ID shown above has a size of 20 bytes. The terms might represent a

singular word or several terms or phrases. The first 8 bytes of the MD5 hash of the first

word in the phrase/word are the first 8 bytes of the term ID. The byte, following the first

8 bytes, indicates whether the term is a word or a phrase. If the term is a word, then the

7

remaining bytes are used to identify the page type. However, if it is a phrase, the

remaining bytes encode various length hashes of the remaining words in that phrase. The

summary map provides the offset of the occurrence of the phrase/word in the summary.

The summary is viewed as a single string, combining words extracted from the URL,

appended with the summary title and appended with the summary description to calculate

the position of the term. The number of words is counted from the start of the string.

Phrases start at the position of their first word [5]. For example, two summaries consisting

of only words, no phrases are shown below:

Summary 1:

URL: http://test.yioop.com/

Title: Fox Story

Description: The quick brown fox jumped over the lazy dog.

Summary 2:

URL: http://test.yioop2.com/

Title: Troll Story

Description: Once there was a lazy troll, P&A, who lived on my Discussion board.

http://test.yioop.com/
http://test.yioop2.com/

8

The generated mini-inverted index is as in the below form:

 (

 [test] => ((1, (0)), (2, (0)))

 [yioop] => ((1, (1)))

 [yioop2] => ((2, (1)))

 [fox] => ((1, (2, 7)))

 [stori] => ((1, (3)), (2, (3)))

 [the] => ((1, (4, 10)))

 [quick] => ((1, (5)))

 [brown] => ((1, (6)))

 [jump] => ((1, (8)))

 [over] => ((1, (9)))

 [board] => ((2, (16)))

)

The above representation is the posting list. The terms in this list are known as

postings. These terms are already in the processed form before adding them into the mini-

inverted index. To get the actual summarizer output and the mini index generated from

this summarizer, Yioop has provided a nice web interface. The user can test it in a few

easy steps, as follows:

1. User can login to Yioop as an Admin.

2. After the log in, click on the “Page Option”. (Refer Fig.1)

9

3. In the Crawl section, select “Test Option” from the right pane. (Refer Fig.1)

4. Open any web page, for instance, the

https://en.wikipedia.org/wiki/Barack_Obama page.

5. Right click on the page and select “view source”.

6. Copy the whole source file to the Yioop’s “Test Page” text window and click on

the “Test Process Page”.

7. User will be able to see the output on the same page as below. (Refer Fig. 2 & 3)

Fig. 1 Web interface to test Summarizer and Mini Index

https://en.wikipedia.org/wiki/Barack_Obama

10

Fig. 2 Generated summary by Summarizer

11

Fig. 3 Example of mini Index on the Summary

The Question Answering (QA) system comes into the picture after generating

phrases from summaries. These phrases are statements from the summary. The Question

Answering (QA) system takes all the terms greater than 3 words. It iterates over each

term and applies the Part of Speech tagger to get the context of the statement. After that,

it generates the parse tree out of these tagged terms, which will be further explained in

Chapter 4. This generated tree becomes the input to the triplet extraction process. These

triplets are used to create the Question triplets, which are then stored to the Yioop index.

12

Fig. 4 describes the data flow information from queue server to the Yioop index. It

also mentions the position of the Question Answering (QA) system in the entire process.

Fig. 4 Overview of information flow

As seen in Fig. 4, the Question Answering (QA) System is positioned between the

indexer and the Yioop index. During run time, as soon as the user enters a query, it goes

through a number of predefined processes before the actual index lookup. It also checks

for the control words during this stage. The control words are used to select an index or a

mix to use. Such control words may be m: or i: terms, they can also be other commands

like “raw” and “no.” The raw command tells Yioop what level of grouping to use,

whereas no conveys not to use a standard processing technique. It also checks for the

query semantics. Keywords in the query are matched to this and then rewritten to some

other query terms. For example, a query term existing in the domain name form is

13

rewritten to the meta word form, site: domain. Hence, only the pages from the domain are

returned by the query [5]. It also applies the same stemmer and stop words removal used

at the time of storing the inverted index, at the crawl time.

Yioop builds an iterator object from the resulting terms after executing the above

steps. These terms are used to iterate over summaries and link entries containing all the

terms. The Question Answering (QA) System comes into the picture only when the query

type is a question and converts it to the Question triplet structure. This structure is similar

to the one stored in the inverted index during the crawl process.

14

CHAPTER 3

QUESTION ANSWERING (QA) SYSTEM OVERVIEW

The Question Answering (QA) System will be a feature added to the Yioop

Search Engine that would enable the search engine to respond to a question entered by a

human in natural language. In order to build an efficient and accurate Question

Answering (QA) System, one can take several approaches that can be used to fetch and

store the data from the World Wide Web. One of the main challenges faced while

developing a Question Answering (QA) system is the vast amount of data, leading to data

redundancy, which can affect the accuracy of the Question Answering (QA) system.

Another challenge faced is the variations encountered in the natural language entered by

humans. The fundamental processing of a Question Answering (QA) System starts with

the retrieval of the documents and ends when the sentence is structured into some kind of

a template, along with the relation to that particular structure. This, in the end, can be

used to respond to the query submitted to the search engine in the form of a question. The

following subsections discuss in detail the approaches and the challenges faced by a

developer of the basic Question Answering (QA) system.

3.1 Representation of a Question Answering (QA) System:

One of the major challenges of building such a Question Answering (QA) System

is obtaining high accuracy. The primary reason behind low accuracy is the highly

unstructured information on the World Wide Web. This haphazard structuralism can be

due to linguistic barriers, poor grammatical skills, or even the tone of the text.

15

A good Question Answering (QA) system should be able to interpret and process,

keeping these factors in mind, and it should store valuable information after the removal

of unnecessary redundancies. It is also important to parse the unstructured document and

store it efficiently. Efficient storage has a direct impact during the question lookup stage,

as the user expects the answer to be shown within a fraction of a second. Following are

the features that can lead to an efficient Question Answering (QA) system:

1. A speedy and accurate information retrieval scheme

2. A good and structured passage retrieval method

3. An accurate information extraction method that extracts the information from the

passage statements.

4. An efficient storage of extracted information in an efficient way for a faster

retrieval

5. An efficient way to interpret the user query correctly based on its semantics

The Question Answering (QA) System can be broadly classified into two major phases,

namely:

1. The Pre-Computed Processing

2. The Real-Time Processing

Pre-Computed Processing involves parsing several thousands of HTML or XML

pages and storing the necessary information in the form of triplets.

16

Real-Time Processing involves taking the input from the user in the form of a

question and creating Question Triplets from this. It also responds to the user within a

short span of time by extracting the information from the previously stored information.

3.2 Information Extraction approaches and it challenges

There are several approaches that one can use in order to build a Question

Answering (QA) System. Several are briefly explained below.

3.2.1 The Bag of Words Approach

The Bag of Words approach is one of the most basic approaches used in the

Question Answering (QA) System. Once the query is received from the user, the count of

each term appearing in the query is noted down after stemming and stop words removal

phase. The look up to the inverted index (Posting List) is purely based on the words in the

query. However, this approach can easily fail with even a slight variation in the user

query. An example of this might be the query, “Whom did Oswald kill?” It is imperative

that the user wants to know who was killed by Oswald. However, with the approach of

Bag of Words, the resultant output could be “Ruby killed Oswald” or “Oswald killed

Ruby.” It is difficult to determine which would be the correct output of the query, as the

important terms in the query, i.e. “Oswald” and “Kill” are both present in the resultant

answers as well. Thus, this approach fails in this situation.

3.2.2 The Triplet Extraction Approach

The above approaches discussed in Section 3.2.1 fails to respond to the semantic

variations of the user query. In order to overcome this, a better approach is to understand

17

the dependency between the subject and the object in the sentence. This can be achieved

through a triplet extraction approach. Consider, for example, the sentence “The big man

ate the dog” and the “The big dog ate the man”. Here, the triplet can be formed as [MAN

(Subject), ATE (Predicate), DOG (Object)] for the first sentence while another triplet can

be formed as [DOG (Subject), ATE (Predicate), MAN (Object)] for the second sentence.

Now, in order to guess the question related to either of these sentences, one can replace

either the subject, relation, or object in any of the triplets. For example, if the question

asked is WHO ATE THE DOG? The answer can be easily derived by considering the

question triplet as [WHO (Question), ATE (Predicate), DOG (Object)]. By matching this

with the triplet of the first sentence, i.e. [MAN (Subject), ATE (Predicate), DOG

(Object)], the answer can be derived as “The big man ate the dog.”

An improvement to this approach involves adding the synonyms of the Predicate

in the triplet. For example, consider the sentence, “The first internal combustion engine

was built in 1867.” Here the triplet is formed as [INTERNAL COMBUSTION ENGINE

(Subject), BUILT (Predicate), 1867 (Object)]. Now, the synonyms of the predicate

“built” can be “invent,” “create,” “constructed,” etc. If these synonyms are added to the

list of predicates that can be suitable for this triplet, then this sentence can answer the

question, “When was the internal combustion engine invented?” Without this additional

feature, the Question Answering (QA) System would not have been able to map this

question to its appropriate answer.

The triplet extraction approach is quite useful and is the one being used for this

project. However, as with any other approach, this also has a few flaws. This approach

18

fails when the interpretation of the question is highly vague in nature. For example, if the

query is “Where did the game Croquet originate?” The Question Answering (QA) System

would not be able to provide the user with a definitive answer because the Wikipedia

page for the game of croquet does not give a very definitive sentence answering the

above query. The Wikipedia page for croquet has statements like:

i) The first explanation is that the ancestral game was introduced to Britain

from France during the...

ii) The second theory is that the rules of the modern game of croquet arrived

from Ireland during

This makes it difficult to answer such a question.

A good Question Answering (QA) System needs to take care of the ordering of

the words in the question. For example, “What is Bill Gates’ net worth?” and “What is

the net worth of Bill Gates?” are trying to ask the same question. Similarly, “When was

Whatsapp acquired by Facebook?” and “When did Facebook acquire Whatsapp?” are two

questions with the question words changed. These questions can be easily handled with

the Triplet Extraction Approach [4].

However, the Triplet Extraction Approach fails when the question is directed

towards a person or a thing. For example, if the query is “Who acquired Whatsapp?” the

answer should be Facebook, however, since the Question Answering (QA) System does

not know whether the question is asking for a person’s name or an entity’s name, it fails

to give the correct answer. This problem can be solved by using the labeling technique. In

this technique, the Question Answering (QA) System labels the subject or the object as a

person, thing, entity, or any other category. This labeling technique can be helpful in

19

answering questions such as “Who acquired Whatsapp?” because the system now knows

to look for an entity rather than a person in order to answer this question. Since Facebook

would be labeled as an entity, the system would respond with “Facebook acquired

Whatsapp.”

The Question Answering (QA) System needs to be able to evolve by collecting

responses from the user. This can be done with a mechanism that can store the user

feedback as a “Correct answer” or “Incorrect answer” after the result is returned by the

Question Answering (QA) system. If the user marked the answer as incorrect, then the

system needs to note it down and improve the answer to that query in the future.

The approach used for this project is the Triplet Extraction Approach, which

seemed to be the best approach out of all that were found during the research.

20

CHAPTER 4

DESIGN AND IMPLEMENTATION OF THE QUESTION ANSWERING

SYSTEM

This chapter discusses more about the approach chosen for the Yioop Question

Answering (QA) System. It includes both design and implementation of the approach.

The discussion is divided into two main categories: 1. Role of the Question Answering

(QA) System during the crawl time and 2. Role of the Question Answering (QA) System

during the query execution time. Each part has its own processing components, which

will be discussed in further detail.

4.1 Role of the Question Answering (QA) System during crawl time:

As mentioned in Chapter 2, the primary objective of the crawler is to crawl on the

documents retrieved from the World Wide Web. It downloads the contents of the page,

runs the summarizer on it, and produces concise information in the form of the summary.

This summary is then processed by the mini indexer. It then creates an inverted index

along with the information of an offset or the position of occurrence of words/phrases in

the respective pages. The form of the obtained inverted index has already been discussed

in the section 2.1.4.

The inverted index is accumulated and appended to the Phrased-List. This list

consists of phrases extracted from the summary that contain only the stemmed words.

These phrases do not contain the stop words. Now, there might be several phrases that

have a single or double word as the phrase. There is a check imposed on the word count

21

of a phrase that makes sure that the phrase has at least 3 words. This check is necessary

for the successful creation of a triplet to take place. By definition, a triplet is a

combination of three words wherein the first word is the Subject, the second word is the

Predicate and the third word is the Object. Thus, it becomes obvious that a phrase that has

less than 3 words should not be considered for creating a triplet. The Question Answering

(QA) System preserves the offset information, along with the phrase list created by the

mini indexer. This offset information is assigned to the triplet generated from the

respective statement or phrase. Once the triplet containing the subject, predicate and

object is created, it looks something like this:

[<Subject>, <Predicate>, <Object>]

This triplet is then used to create a question triplet. The creation of Question

Triplet helps to save run time while processing of the query parsing. The generated

question triplets take the following forms:

[<Question>, <Predicate>, <Object>]

[<Subject>, <Question>, <Object>]

[<Subject>, <Predicate>, <Question>]

In order to better understand this, consider the example: “Alice chased the rabbit”

The triplet derived from this piece of information would be:

[Alice (Subject), chased (Predicate), rabbit (Object)]

22

Whereas the question triplets formed using this sentence would be:

[Who (Question), chased (Predicate), rabbit (Object)] Who chased the rabbit?

[Alice (Subject), chased (Predicate), what (Question)] What did Alice chase?

In order to create such question triplets, the sentence goes through four major

components in the system, as shown below.

1) Part of Speech Tagger

2) Parse tree generation

3) Triplet Extraction

4) Question Triplet Generation

As shown above, first and foremost is the Part of Speech tagger, followed by the

Parse Tree Generator, Triplet Extraction, and finally, the Question Statement Generation.

4.1.1 Major components of the Question Answering (QA) System

The following section gives a detailed overview about each component:

Part Of Speech (POS) Tagger

A part-of-speech tagger, or POS-tagger, processes a sequence of words and

attaches a part of speech tag to each word. This process is also called a grammatical

tagging or a word-category distribution. It is based on the relation of the word to its

adjacent words. The ideal POS tagger should handle a complex statement and tag them

with proper tags. However, this creates difficulty. There are numerous cases where the

23

POS tagger fails to tag the words properly, leading to incorrect tagging of words. A POS

tagger has at least 10 tags to start off with, which are described in the table below.

TABLE 4.1 Part of Speech Tags [6]

Tag Part of Speech Example

ADJ Adjective new, good, high, special, big, local

ADP Apposition on, of, at, with, by, into, under

ADV Adverb really, already, still, early, now

CONJ Conjunction and, or, but, if, while, although

DET Determiner, article the, a, some, most, every, no, which

NOUN Noun year, home, costs, time, Africa

NUM Numerical twenty-four, fourth, 1991, 14:24

PRT Particle at, on, out, over per, that, up, with

PRON Pronoun he, their, her, its, my, I, us

VERB Verb is, say, told, given, playing, would

. Punctuation marks . , ; !

X Other ersatz, esprit, dunno, gr8, university

These are some of the basic tags that are used by the POS tagger. However, the

number of tags can go up to 50-150, depending on the complexity of the sentence found

in the information source.

24

There are two basic approaches that are employed for POS tagging:

1. Supervised Tagging

2. Unsupervised tagging

Supervised tagging includes a set of known words that are already mapped to a

particular part of speech. For example, in supervised tagging, “is”, “was”, and “were”

would always be tagged as verbs. The algorithm for this technique was developed by Ken

Church and Steven DeRose [7].

Unsupervised tagging is type of intelligent tagging that tags the words based on

pattern matching. It observes the use of each word and its place in the sentence, then

decides what to tag to each word.

There are several well-known algorithms that are used for POS tagging, such as

Viterbi algorithm [8], Brill Tagger algorithm [9], and Constraint Grammar algorithm [10].

Yioop uses the Brill tagger algorithm for POS tagging. It is considered to be an

inductive method of tagging, which falls under the category of supervised tagging. This

method first assigns the tags to the whole set of triplets that were derived from the data

set. If the query contains the same word as found in the initial triplet, then the word is

directly assigned the tag. If the word is not found in the predefined list, then the word is

given the tag of a Noun during the first attempt. During the second iteration, an attempt is

made to correct the initial tag of a noun based on a set of predefined rules. The iteration

continues till the best results are achieved.

25

For example,

Statement “They refuse to permit us to obtain the refuse permit”, a part of speech

tagger will tag the statement word as [(‘They’, ‘PRP’), (‘refuse’, ‘VBP’), (‘to’, ‘TO’),

(‘permit’, ‘VB’), (‘us’, ‘PRP’), (‘to’, ‘TO’), (‘obtain’, ‘VB’), (‘the’, ‘DT’), (‘refuse’,

‘NN’), (‘permit’, ‘NN’)].

Another statement “Alice chased the rabbit” can be tagged as [(‘Alice’, ‘NP’),

(‘chased’, ‘V’), (‘the’, ‘Det’), (‘rabbit’, ‘N’)] where NP is a proper noun, V is a verb, Det

is a determiner, N is a Noun.

The part of speech tagger helps with recognizing the context at a basic level by

tagging words which can be either an adjective or verb. This information is required for

the Tree generation.

Parse Tree Generation

This component will have the output statement from the POS tagger, which also

has all the tags associated with each word. In order to determine the relationship between

these tags, there are many information chunking techniques available.

In English, most of the statement follows a syntactical structure of Noun Phrase

(NP) + Verb Phrase (VP). To identify and extract the noun phrase from the sentence, the

basic grammar rule followed is (Refer [15] for tag set):

NP: {<DT|JJ|NN.*>+} #extract the sequences of DT, JJ, NN

26

 So for the statement “The little yellow dog barked at the cat”, part of speech

output is: the-DT little-JJ yellow-JJ dog-NN barked-VBD at-IN the-DT cat-NN. Here, by

applying the grammar rule, it is easy to extract the “The little yellow dog” as a noun

phrase for our statement. To cover more in-depth details and a complex structure, we can

also apply one more grammatical step when extracting the Noun phrase: adding the

preposition rule to get the information following the noun phrase. For a Question

Answering (QA) system in Yioop, this rule is considered as a part of the Noun Phrase

only. However, it can be easily expanded by following the grammar given below:

PP: {<IN><NP>} # Extract prepositions followed by NP

In order to discuss the verb phrase extraction, a simple verb phrase follows the

grammatical rule, as below (Refer [15] for tag set):

VP: {<VB.*><NP|PP|CLAUSE>+$} # Extract verbs and noun phrases

As shown above, this rule consists of a verb and a noun phrase. So for the

Question Answering (QA) System in Yioop, it is simplified to (Refer [15] for tag set):

VP: {<VB.*><NP>$} # Extract verbs and noun phrases

Here, a verb will help in identifying the relationship between the subject and the

object. It conveys the dependency between the subject and the object. Identifying the

verb will help the use of synonyms or a chain of words in the future. For example,

consider a statement like “Roman engineers built the first combustion engine.”

27

The output of the part of speech tagger is as follows:

Roman-NNP engineers-NNS built-VBN the-DT first-NNP combustion-NN engine-NN

If we apply the extraction rules presented above, it gives us “built” as the verb in

our Verb phrase. So keeping a chain of synonyms like built -> invented -> manufactured

can help increase the search and lookup quality for the information. Further in Verb

Phrase, the second part will be the Noun Phrase with the same grammar rule presented

above. The extracting process can either be carried out via regular expression or by the

recursive decent parser, which can be represented by a tree structure.

Regular expression can cover most of the cases but might generate errors for

some complex recursive structure of statements. Another approach is to extract using a

recursive decent parser based on the grammar rules presented above. For Yioop, it makes

use of the recursive decent parser. It does so by recursively parsing a statement and

assigning it to the appropriate parent. Each leaf of the node is a word of the statement.

The path to the leaf from the root gives the grammar rule that assigns the word to the

appropriate parent.

The above creates the basic structure of a tree from the sentence and creates the

base for the Triplet Extraction process. In order to create the triplet extraction algorithm

explained in the paper, it requires a parse tree generated from the statement wherein each

leaf node is labeled with a word from the statement. A Treebank is a text corpus where

each sentence belonging to the corpus has a syntactic structure added to it.

28

There is a method of how to construct the tree from the sentence in the paper

titled TRIPLET EXTRACTION FROM SENTENCES [4].

The summary of the set of rules identified and implemented in this Question Answering

(QA) system is as below [11][15].

CLAUSE: {<NP><VP>} # Extract NP, VP

NP: {<DT|JJ|NN.*>+} # Extract sequences of DT, JJ, NN

VP: {<VB.*><NP|PP|CLAUSE>+$} # Extract verbs and their arguments

Consider a simple example statement “Alice chased the rabbit.” Part speech tags

this statement as:

Alice-NNP chased-VBN the-DT rabbit-NN

The tree generated by applying the above set of rules is as below:

Fig. 5 Generated Parsed Tree

29

Another complex example statement that can be covered by the recursive decent

parser is: “A rare black squirrel has become a regular visitor to a suburban garden.” The

generated tree for the statement is as below:

Fig. 6 Parse tree generated from the complex sentence

The advantage of recursive decent parser is the ability to cover complex

statements. It requires a bit of modification to cover special cases. In Yioop, if the tree

generation from the statement fails, it falls back and processes the next phrase in the list.

This helps with discarding the erroneous triplets.

Triplet Extraction from the TREE

This component takes the parsed tree generated above as the input and attempts to

get the triplet in the form of [SUBJECT – RELATION – OBJECT]. The purpose of the

30

triplet extraction is to identify the context in terms of how the subject is related to the

object.

This algorithm follows the same approach presented in the paper [6]. It is broadly

divided into 3 forms. Extracting the Subject from the tree gets the main noun from the

statement. Extracting the Predicate from the tree gets the dependency from the statement.

Extracting the object from the tree gets the object on which the subject depends.

function TRIPLET-EXTRACTION(sentence) returns a solution, or failure

result ← EXTRACT-SUBJECT(NP_subtree)

∪ EXTRACT-PREDICATE(VP_subtree)

∪ EXTRACT-OBJECT(VP_siblings)

 if result ≠ failure then return result

else return failure [4]

31

function EXTRACT-ATTRIBUTES(word) returns a solution, or failure

// search among the word’s siblings

if adjective(word)

result ← all RB siblings

else

if noun(word)

 result ← all DT, PRP$, POS, JJ,

 CD, ADJP, QP, NP siblings

else

if verb(word)

 result ← all ADVP siblings

 // search among the word’s uncles

 if noun(word) or adjective(word)

if uncle = PP

result ← uncle subtree

else

 if verb(word) and (uncle = verb)

 result ← uncle subtree

 if result ≠ failure then return result

 else return failure [4]

function EXTRACT-SUBJECT(NP_subtree) returns a solution, or failure

subject ← first noun found in NP_subtree

subjectAttributes ← EXTRACT-ATTRIBUTES(subject)

 result ← subject ∪subjectAttributes

 if result ≠ failure then return result

 else return failure [4]

32

function EXTRACT-PREDICATE(VP_subtree) returns a solution, or failure

 predicate ← deepest verb found in VP_subtree

 predicateAttributes ← EXTRACT-ATTRIBUTES(predicate)

 result ← predicate ∪predicateAttributes

 if result ≠ failure then return result

 else return failure [4]

function EXTRACT-OBJECT(VP_sbtree) returns a solution, or failure

 siblings ← find NP, PP and ADJP siblings of VP_subtree

 for each value in siblings do

 if value = NP or PP

 object ← first noun in value

 else

 object ← first adjective in value

 objectAttributes ← EXTRACT-ATTRIBUTES(object)

 result ← object ∪objectAttributes

 if result ≠ failure then return result

 else return failure [4]

The above algorithms are explained part by part, as discussed below.

Subject Extraction

In the parse tree generated, we search for the first level of Noun phrase from the

tree to extract the subject, as each statement is assumed to be made up of Noun Phrase +

Verb Phrase. Subject extraction looks only into the Noun Phrase subtree. By reaching the

Noun phrase, the process performs the search to extract all the children of the Noun

Phrase subtree. The main noun can be tagged under the parent having the label NN, NNP,

NNPS, NNS. These labels are based on the grammar rule presented above. While

33

considering a statement in a natural language, the noun can be followed by different

attributes. In our case, it can be of form of determiner, an adjective that complements the

information attached to the noun. This information needs to be stored along with the

actual noun, as it helps increase the match. In some cases, a noun might have a different

context than it should. In those cases, the information in the form of the attributes helps to

identify the context of the statement. In major cases, if the subject is pointed to the

person, it can be used to answer the question asked by “WHO.” For example, when a

statement is like: “Barack Obama is the president of the United States,” a triplet

extraction technique identifies “Barack Obama” as a subject. This subject can be the

answer of an expected question such as: “Who is the president of the United States of

America?”

Predicate Extraction

The goal of the predicate extraction is to determine the relation between the

subject and the object. It portrays how the subject is dependent on the object. This can be

found in the verb phrase subtree of the statement. It looks for the deepest verb descendent

of the verb phrase. This gives the second element of the triplet. They are marked with a

parent that has one of the values from VB, VBD, VBG, VBN, VBP, VBZ. There can be

several attributes attached to the verb as well. These attributes are extracted and stored

along with the predicate. The verb has a minor impact in providing the specific

information, but it plays a major role in sensing the context of the statement. There can be

many instances where a different subject is related to the same object. But to determine

this relationship, the information in the predicate turns out to be a deciding factor.

34

Object Extraction

The third part of the tree generation is the object extraction. Similar to a subject in

deciding the nouns of the statement, the object from the statement also plays a major role,

as discussed below. As mentioned in section 4.1.1, objects are found in the noun phrase

of the verb phrase of the statement as the sentence is divided into a noun phrase and a

verb phrase. The verb phrase is further divided into a verb phrase and a noun phrase. This

noun phrase part is the one that provides the object to the triplet, along with the attributes.

Most of the questions that can be asked by what/where/who can be answered by the

object part. The attributes of the object also hold importance for returning the correct

results. For example, “The bank of the river” and “The bank on the river” have the

attribute values “OF” and “ON” that can change the meaning of the statement.

A complete example of Triplet Extraction

Fig. 7 shows the tree generated from the implementation of the following

sentence: “Alice chased the rabbit.” Part-of-Speech tagger tags this statement as

Fig. 7 Triplet Extraction from the Tree

35

[(“Alice”, NP), (“chased”, V), (“the”, Det), (“rabbit”, N)]. Applying a triplet extraction

algorithm to this, it extracts [ALICE – CHASED – RABBIT] as [SUBJECT-

PREDICATE-OBJECT] triplet.

As previously discussed, the subject, object, and predicate can have attributes. To

make use of these attributes, the Question Answering (QA) System generates two

versions of any triplet. The first one is the RAW triplet, whereas the second is the

FEATURED triplet. The FEATURED triplet contains more information regarding the

triplets, thus, it helps with matching the query accurately. Due to this, during query time,

the FEATURED triplet takes a higher precedence.

For example, consider a statement: “The big man ate the dog.”

Triplet generation generates two variations of triplets as follows:

Raw triplet: [man – ate – dog]

Feature triplet: [the big man - ate – the dog]

Question triplet generation from Triplet

Storing the information on the index is highly dependent on the generation of

questions from the triplet. The question triplet formed is stored in Yioop’s index. The

purpose of generating the Question Triplet is to guess the questions that can be asked by

the user. However, a triplet can be interpreted as various forms of questions. For

example, triplets like “[CHRIS - RUNS – IN THE BACKYARD]” and “[CHRIS –

RUNS -IN THE MORNING]”, would lead to questions such as “Where does Chris run?”

36

And “When does Chris run?” In order to accurately answer such questions, the triplet can

be assigned tags that differentiate them on the basis of time, place, person, etc. Thus, for

the triplets mentioned above, if the OBJECT [IN THE MORNING] is assigned a tag of

time and the OBJECT [IN THE BACKYARD] is assigned the tag of place, it will be

easier to achieve an accurate result.

The Question Answering (QA) system takes a basic approach towards generating

question triplets. The generated triplet has the format of [SUBJECT – PREDICATE -

OBJECT]. The user query, which will be in the form of a question, is expected to have at

least two of the triplet attributes. That is, a question will have either a combination of the

[SUBJECT, PREDICATE] or [SUBJECT, OBJECT] or [PREDICATE, OBJECT].

Consider the statement: “George Washington is the first president of USA.” After

applying POS tagger, parse tree generator, and the triplet extraction on this sentence, the

resulting triplet is [GEORGE WASHINGTON – IS – THE FIRST PRESIDENT OF

USA]. The question triplet generated from the triplet has 3 variations, such as [GEORGE

WASHINGTON – IS - QUE], [GEORGE WASHINGTON – QUE - THE FIRST

PRESIDENT OF USA] and [QUE – IS - THE FIRST PRESIDENT OF USA]. Here,

“QUE” is any identifier that is used to identify the Question tag. Thus, the expected

questions from the statement can be either “Who is the first president of USA?” where

“Who” is the QUE identifier and the question contains the PREDICATE and the

OBJECT, or “Who is George Washington?” which contains the SUBJECT and the

PREDICATE.

37

The question triplet generated above also contains the information of the offset of

the original source statement in the summary. Thus, the above flow can be summarized

as:

1. User asks the question “Who is George Washington?”

2. The query parser converts it to [QUE – IS – THE FIRST PRESIDENT OF

USA].

3. Yioop looks up this triplet in the index.

4. Once a match is found, the source information is returned by using the offset

information.

4.2 Role of Question Answering (QA) System during Query Time:

During query time, the user is expected to ask a question in natural English. At

the time of query parsing, a check has been imposed to identify whether the query entered

by the user is a question or not. Question Answering (QA) system starts the query

processing only if it identifies the input as a question. This identification involves

checking whether a query entered by the user starts with any “WH-” question. If it does

not, then the Question Answering (QA) system query parser is skipped for that query.

The natural language used in the question leads to several forms of the same.

Question Answering (QA) System tries to handle such variations. For example, a simple

question like “Who founded Apple?” can have many variations such as “Who was the

founder of Apple?”, “Who were the founders of Apple?” and many others.

38

In order to process this question, the Question Answering (QA) System applies

the POS tagger. The POS tagger tags the question words like WDT, WP, WP$, or WRB.

As of now, the Question Answering (QA) System handles the WHO question in a

different manner than it does WH+ questions.

39

CHAPTER 5

EXPERIMENTS

This chapter discusses the experiments carried out on the developed Question

Answering System. These experiments were divided into two main parts:

1) Experiments on a standalone Question Answering (QA) system

2) Experiments on an integrated Question Answering (QA) system

5.1 Experiments on a standalone Question Answering (QA) system

The experiments on a standalone Question Answering System give an idea about

the system’s performance under ideal conditions. Here, an assumption is made that the

statements provided to the system are valid.

One of the few experiments carried out on the system is for a simple statement

like “Kim Kardashian is a social media personality.” The Question Answering (QA)

system generates a question triplet, as shown below (Refer Fig. 8). This triplet can be

helpful in answering questions like “Who is Kim Kardashian?” Another such statement

was “Narendra Damodardas Modi is the Prime Minister of India”. The question “Who is

the Prime Minister of India?” can be easily answered by the triplet stored at the Yioop

index that pertains to the statement (Refer Fig. 9). A more complex example statement

like “Chris accepted the position of Vice Chairman of the University” would give the

Predicate as “Accepted.” So, the question “Who accepted the position of vice chairman

of the University?” can be addressed by the triplet generated below (Refer Fig. 10). The

40

same theory applies to the statement “The little yellow dog barked at the cat”. The triplets

were successfully generated (Refer to Fig. 10). Thus, Triplet generation is a process that

is very useful for storing relations and dependencies to the index.

The concept can also be applied to question statements. For example, a question

statement like “Who is Kim Kardashian?” generates the triplet as [KIM KARDASHIAN

– IS – QUE] after query processing. This triplet is the same as the one stored on the

Yioop index.

Example 1:

Kim Kardashian is a social media personality.

Part Of Speech Tagger Output:

Kim–NNP Kardashian–NN is–VBZ a-DT social-JJ media-NNS personality-NN.

41

Generated tree:

Fig. 8 Generated Tree from the statement

Triplet Extracted:

[KIM KARDASHIAN – IS – A SOCIAL MEDIA PERSONALITY]

Question Generated from the statement:

[“QUE”-IS-A SOCIAL MEDIA PERSONALITY]

[KIM KARDASHIAN – “QUE” – A SOCIAL MEDIA PERSONALITY]

[KIM KARDASHIAN – IS – “QUE”]

Example 2:

Narendra Damodardas is the prime minister of India

42

Part of Speech Tagger Output:

Narendra-NN Damodardas-NNS is-VBZ the-DT prime-JJ minister-NN of-IN India-NNP

Generated tree:

Fig. 9 Generated Tree from the statement

Triplet Extracted:

[Narendra Damodardas - is - the prime minister of India]

Question Triplets:

[“QUE” - is - the prime minister of India]

[Narendra Damodardas - “QUE” - the prime minister of India]

[Narendra Damodardas - is - “QUE”]

43

Example 3:

Chris accepted the position of vice chairman of the University

Part of Speech Tagger Output:

Chris-NNP accepted-VBN the-DT position-NN of-IN vice-NN chairman-NN of-IN the-

DT University-NN

Generated tree:

Fig. 10 Generated Tree from the statement

Triplet Extracted:

[CHRIS – ACCEPTED – THE POSITION OF VICE CHAIRMAN]

44

Question Triplets:

[“QUE” – ACCEPTED – THE POSITION OF VICE CHAIRMAN]

[CHRIS – “QUE” – THE POSITION OF VICE CHAIRMAN]

[CHRIS – ACCEPTED – “QUE”]

Example 4:

The little yellow dog barked at the cat

Part Of Speech Tagger Output:

The-DT little-JJ yellow-JJ dog-NN barked-VBD at-IN the-DT cat-NN

Generated Tree:

Fig. 11 Generated Tree from the statement

45

Triplet Extracted:

[THE LITTLE YELLOW DOG – BARKED – AT THE CAT]

Question Triplet:

[“QUE” – BARKED – AT THE CAT]

[THE LITTLE YELLOW DOG – “QUE” – AT THE CAT]

[THE LITTLE YELLOW DOG – BARKED – “QUE”]

Example 5 (Question Statement):

 “Who is Kim Kardashian?”

Part Of Speech Tagger Output:

Who-WP is-VBZ Kim-NNP Kardashian-NN.

Triplet Generated:

[KIM KARDASHIAN – IS - WHO] =>[KIM KARDASHIAN – IS - QUE]

5.2 Experiments on an integrated Question Answering (QA) system

 The experiments carried out after integrating the Question Answering (QA)

System with Yioop are divided into two parts:

1. Experiments during the crawl time

2. Experiments during the query time

46

5.2.1 Experiments during crawl time

 To test the Question Answering system during crawl time, one needs to follow

these steps:

1) Login to Yioop as an admin

2) Open the web interface to test the Mini Indexer through page option, as shown

in Fig. 1.

3) Copy the source of any webpage

4) Click the test process page.

5) Check the section “Words and positions extracted to index from summary” in

the output

The output provides the triplets generated from the summary, along with the

offset information.

Consider an example: the Wikipedia page of “Kunal Nayyar,” which can be found

at https://en.wikipedia.org/wiki/Kunal_Nayyar. Copy the source of the web page to

Yioop’s test page option. After clicking the test source page, the snapshot of the section

in the output is as below:

https://en.wikipedia.org/wiki/Kunal_Nayyar

47

Fig. 12 Generated Question Triplet at crawl time

A few of the triplets generated from the summary include [HE – QQQUE – ST

COLUMBA S SCHOOOL IN NEW DELHI] and [QQQUE – ATTEND – ST

COLUMBA S SCHOOL IN NEW DELHI]. These triplets can be used to answer

questions like, “Who attended St. Columba’s school in New Delhi?” or “Which school

did Kunal Nayyar attend?” The “QQQUE” is the identifier used in the same context of

the QUE tag explained earlier. Take as our next example the web page:

“https://en.wikipedia.org/wiki/Parul_Institute_of_Engineering_and_Technology”. Copy

https://en.wikipedia.org/wiki/Parul_Institute_of_Engineering_and_Technology

48

the source of this webpage. After running the test process page, a list of triplets, along

with offset information, will be provided as below:

Fig. 13 Generated Question Triplet from the crawling

The generated triplets are [PARUL INSTITUT – IS - qqque] and [qqque – IS –

APPROV BY ALL INDIA], along with the offset information.

5.2.2 Experiments during query time

Considering the example of Parul University’s webpage, as mentioned above.

One of the Question Triplets that was stored to the Yioop’s index was [PARUL

49

UNIVERSITY – qqque – LOCAT IN VADODARA]. If the question “Where is Parul

University located?” is asked, Yioop gives the response shown in Fig. 16.

5.3 Observations after Integration

In order to test the system after the integration, start the crawler by specifying urls in the

seed site section located under the Crawl Options. For testing purpose, crawler option is

given a seed site as https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol. The

index is then set after crawling over 451 websites. Fig. 15 shows the existing behavior of

Yioop, which provides a list of urls along with the description as an answer to the

question. Whereas Fig. 16 shows the behavior of Yioop, which provides answer to the

question entered by the user with minor error.

Fig. 14 Results before integration

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

50

Fig. 15 Results after integration

The implication of the integration has its major effect on the performance of the

crawler. The triplet generation process takes place before storing processed data to

Yioop’s index that results in more processing time. The generated triplet from each

document results in more space. Fig. 17 shows the time difference of crawling process for

individual pages.

51

Fig. 16 Page processing time before/after the integration

The approach that is considered uses more space but it does not alter the query

time performance. Question Answering System stores the triplet on Yioop’s index, so

that whenever a question is asked, it looks up directly and provides the answers from the

mapping of the triplets.

52

CHAPTER 6

CONCLUSION

In this project, a new module called the Question Answering System is developed

for Yioop. This module is responsible for storing information in a manner where it can be

later used in answering questions asked by the user. This system employs a different

approach to processing queries written in the form of a question.

 The Question Answering (QA) system processes information available on the

World Wide Web. It tries to handle the variations of natural language in the questions

asked by the user and stores the result in Yioop’s Index. This system also takes care of

any question that may require a specific answer. This system will help Yioop to process

questions asked by the user.

 Currently, the components of the Question Answering system are unable to

handle a wide range of variation in the query. Future work can be done to improve each

component so that the overall efficiency of the system increases.

53

REFERENCES

[1] Question answering. (2015). Retrieved

from http://en.wikipedia.org/wiki/Question_answering

[2] Ibm.com, 'What is IBM Watson?', 2015. [Online]. Available:

http://www.ibm.com/smarterplanet/us/en/ibmwatson/what-is-watson.html.

[Accessed: 30- Nov- 2015].

[3] Start.csail.mit.edu, 'The START Natural Language Question Answering System',

2015. [Online]. Available: http://start.csail.mit.edu/index.php. [Accessed: 30- Nov-

2015].

[4] Rusu, D., Dali, L., Fortuna, B., & Grobelnik, M. &Mladenic, D. (N.D.). Triplet

extraction from sentences, pp. 8-12, 2007.

[5] Seekquarry.com, 'Resources', 2015. [Online]. Available:

https://www.seekquarry.com/p/Resources. [Accessed: 09- Sep- 2015].

[6] Umiacs.umd.edu, 'BrillTagger', 2015. [Online]. Available:

http://www.umiacs.umd.edu/~jimmylin/downloads/brill-

javadoc/edu/mit/csail/brill/BrillTagger.html. [Accessed: 13- Mar- 2015].

[7] S. DeRose, 'Grammatical category disambiguation by statistical optimization',

Computational Linguistics, vol. 14, no. 1, pp. 31-39, 1988.

http://en.wikipedia.org/wiki/Question_answering

54

[8] G. Forney, 'The viterbi algorithm', Proceedings of the IEEE, vol. 61, no. 3, pp. 268-

278, 1973.

[9] Phpir.com, 'Part Of Speech Tagging', 2015. [Online]. Available: http://phpir.com/part-

of-speech-tagging/. [Accessed: 30- Nov- 2015].

[10] N. Lindberg and M. Eineborg, 'Learning Constraint Grammar-style disambiguation

rules using Inductive Logic Programming', Aclweb.org, 2015. [Online]. Available:

http://www.aclweb.org/anthology/P98-2128. [Accessed: 16- Jul- 2015].

[11] Nltk.org, 7. Extracting Information from Text', 2015. [Online]. Available:

http://www.nltk.org/book/ch07.html. [Accessed: 01- Apr- 2015].

[12] Nlp.stanford.edu, 'Stemming and lemmatization', 2015. [Online]. Available:

http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-

1.html. [Accessed: 02- May- 2015].

[13] Katz, B., Lin, J., Loreto, D., Hildebrandt, W., Bilotti, M., Felshin, S., Marton, G.

&Mora, F. (2003). Integrating web-based and corpus-based techniques for question

answering. In proceedings of the twelfth text retrieval conference (pp. 426-435)

[14] C. Manning, 'Text-based Question Answering systems', 2015. [Online]. Available:

http://web.stanford.edu/class/cs224n/handouts/cs224n-QA-2013.pdf. [Accessed: 08-

Sep- 2015]

55

[15] Umiacs.umd.edu, 'BrillTagger', 2015. [Online]. Available:

http://www.umiacs.umd.edu/~jimmylin/downloads/brill-

javadoc/edu/mit/csail/brill/BrillTagger.html. [Accessed: 13- Dec- 2015].

