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ABSTRACT 

 NEURAL NETWORK CAPTCHA CRACKER 

 

               A CAPTCHA (acronym for "Completely Automated Public Turing test to tell Computers 

and Humans Apart") is a type of challenge-response test used to determine whether or not a 

user providing the response is human. In this project, we used a deep neural network 

framework for CAPTCHA recognition. The core idea of the project is to learn a model that 

breaks image-based CAPTCHAs. We used convolutional neural networks and recurrent neural 

networks instead of the conventional methods of CAPTCHA breaking based on segmenting and 

recognizing a CAPTCHA. Our models consist of two convolutional layers to learn image 

features and a recurrent layer to output character sequence. We tried different configurations, 

including wide and narrow layers and deep and shallow networks. We synthetically generated a 

CAPTCHA dataset of varying complexity and used different libraries to avoid overfitting on one 

library. We trained on both fixed-and variable-length CAPTCHAs and were able to get accuracy 

levels of 99.8% and 80%, respectively.  
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CHAPTER 1 

INTRODUCTION 

      

               A ‘Completely Automated Public Turing test to tell Computers and Humans Apart,’ or 

CAPTCHA, is a problem that is very easy for a human to solve, but very difficult for a computer 

to solve. Typically, it involves a task like recognizing a string of characters in an image. In this 

project, we tried to make it easy for a computer to solve a string of character CAPTCHAs. 

 

               CAPTCHAs are ubiquitous on the Internet. They are intuitive for users and are a 

cheap and fast way to secure a site and to ward off spam. A lot of major websites use them for 

security on the Internet. When CAPTCHAs were designed, there were no AI programs that 

could recognize them using computer vision. Recently, deep neural networks have brought 

major advancements in the field of AI and computer vision. They have reached state-of-the-art 

or better performance as compared to other methods in the fields of speech recognition [30], 

computer vision, natural language processing [32], and language translation [33]. We tried using 

deep neural networks to break CAPTCHAs to assess how secure CAPTCHA-based security 

systems are. 

 

              Traditionally, for object/character recognition tasks in computer vision, separate 

modules were created for preprocessing (noise reduction), segmentation (character 

segmentation), and character recognition and sequence generation, where the sequence of 

characters with highest probability was generated. Systems with multiple modules tend to 

behave poorly because each module is optimized independently and errors compound between  
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modules. Our system is trained to learn an end-to-end model, where we solve the entire 

problem in one module.  Deep neural networks have multiple layers, where different layers learn 

features at different levels. Lower level layers learn low-level features, while higher layers learn 

higher-level features. The entire network is trained together so as to align the goals of individual 

layers. In other words, layers co-adapt to learn features that will help optimize for the single big 

goal of CAPTCHA recognition. 

               

              Special purpose neural networks have been studied to solve specific problems. 

Convolutional neural networks have achieved great success with image and video 

understanding and are now heavily used in computer vision. Google used convolutional neural 

networks [4] to process Street View images for detecting home addresses. Recurrent neural 

networks have enabled state-of-the-art performance in sequence processing tasks. Feed 

forward networks take fixed size input and generate fixed size output. Recurrent neural 

networks are used to feed variable length inputs and generate variable length outputs. Google 

used recurrent neural networks, in particular LSTMs, to generate image captions [5]. 

 

               In our project, we combined the idea of two papers [4], [5] and are building a model 

that uses convolutional neural network to learn CAPTCHA image features and then use those 

features in a recurrent neural network to output the sequence of characters in the image. We 

combine both of the networks to get a single deep neural network that performs end-to-end 

CAPTCHA recognition. For our recurrent neural network, we use LSTMs [7], [22] (Long Short 

Term Memory. LSTMs have been around for decades [7], and lately have been used a lot in  
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academia and industry [5], as they solve some of the big issues with training recurrent neural 

networks. 

               

             This report is divided into eight chapters. Chapter 2 gives a literary reviews of 

CAPTCHAs, including what they are and why we need them. Chapter 3 discusses the work 

done in the related field of CAPTCHA recognition and what we planned to do. Chapter 4 covers 

an introduction to neural networks and the various components we used in our project. Chapter 

5 talks about the framework we used for our project. Chapter 6 focuses on the dataset we 

generated for our project. We tried different kinds of models, and the details of these are 

discussed in Chapter 7. Chapter 8 records all the experiments and results we got after training 

the huge dataset. Chapter 9 concludes the report.  
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CHAPTER 2 

 INTRODUCTION TO CAPTCHAs 

 

               Before delving into the models directly, let us discuss what CAPTCHAs are. 

CAPTCHAs were first mentioned in a paper by Moni Naor [1] in 1996. A visual CAPTCHA is 

usually an image with a series of letters or numbers that prompts a user to recognize what 

exactly is written in the image. At present, CAPTCHAs are almost a standard security 

mechanism for defending against malicious and undesirable bot programs on the Internet, such 

as bots that could sign up for thousands of accounts a minute with free email service providers 

and bots that could send out thousands of spam messages each minute. They are very 

annoying and can cause denial of service attacks.  

 

Where is there a need for CAPTCHAs? 

The following are some scenarios in which we need to use CAPTCHAs: 

Online Polling - In case of online polls, bots or computers can vote automatically. We have to 

prevent this. To enforce this, a CAPTCHA can be used to ensure that only humans are polling. 

 

Free Mailing Services - There are many email services that are available for free. However, if 

there are a lot of accounts, it can lead to poor service. Customers would not be served properly. 

Again, CAPTCHAs are useful here. 

 

Dictionary Attack Prevention - CAPTCHAs can also be used to prevent dictionary attacks in 

password systems. One of the ways this could be done is by preventing a computer from  
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iterating through the entire range of possible passwords by requiring it to solve a CAPTCHA 

after a certain number of unsuccessful logins.   

 

Characteristics of a CAPTCHA: 

The important characteristics of a CAPTCHA are: 

● Easy for a user to solve. 

● Difficult for a program or a computer to solve. 

 

              To make it happen, the following standard techniques are used. Normally, characters 

are used to generate CAPTCHAs. The reason why object-based CAPTCHAs are not used in 

CAPTCHAs is because recognition of objects requires prior knowledge of the scene, and 

different regions have different names for objects; therefore, it would not be universal. Instead, 

characters have a unique data set (for example, in the English alphabet, 26 characters and 10 

numeric digits), which is present on keyboards as well, making them easier to understand. 

Hence, they are easy to generate. Figure 1 shows an image-based CAPTCHA in which we used 

the alphabet. 

 

Figure 1: A Sample image-based CAPTCHA [36] 
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             Initially, it was realized that CAPTCHAs could be used for security purposes because 

there were no AI programs that could perform the problem task. CAPTCHAs are based on the 

underlying assumption that it is difficult to solve this AI problem. If computers could be taught to 

decode a CAPTCHA, a difficult AI problem would be solved, which would help in research. It 

was a win-win situation. 

 

              CAPTCHAs were first used by AltaVista to prevent “bots” [29]. The motivation for this 

project was to show that the security methods used in many online systems are not secure and 

are prone to attack by hackers.  
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CHAPTER 3 

RELATED WORK 

 

               Programmatically, breaking CAPTCHAs is not a new concept. For example, Mori and 

Malik [2] have broken EZ-Gimpy (92% success) and Gimpy (33% success), CAPTCHAs with 

sophisticated object recognition algorithms. In comparison to earlier works that were based on 

sophisticated computer vision algorithms, we are planning to train an end-to-end neural network 

system that would extract the features needed for classification with minimal hand tuning. 

Neural networks have shown great results recently in many domains, such as natural language 

processing [32], speech [30], and image processing [4][5]. Neural networks also have brought 

down the entry barrier in training such models, as one does not require deep domain knowledge 

to massage inputs in order to provide the features that a model could learn from. The hidden 

layers in neural networks extract the features that are useful during learning. We will be 

discussing more about neural networks later in the report. 

 

In some of the papers, for example, in paper [3], the following steps were used for character 

recognition in a CAPTCHA: 

1) Preprocessing  

2) Segmentation 

3) Training the model for individual character recognition 

4) Generating sequence with highest probability 
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These steps are very difficult to do because of the following reasons: 

● Segmentation is difficult, as some digits could overlap with other digits. 

● Deformity of digits is also a major concern. For example, a digit “2” can have a larger 

loop or just a cusp. 

● Unknown scale of characters. We do not know how big a character will be, so it is not 

known how big the segmentation boxes should be. 

● Character orientation. Characters could be rotated at arbitrary angles, making 

recognition difficult. 

 

Modules for each of the steps mentioned above are optimized independently, so systems 

combining these modules don’t work well in practice. We can instead learn a deep neural 

network, a single monolithic system for embedding these modules, and train the entire network 

together to make sure that that objectives of all the modules are aligned. We can just provide 

CAPTCHA images to the network and let it learn image features and how to use these features 

for recognition. 

 

               Relevantly, Google has published a research paper in which they used a convolutional 

neural network [4] for detecting home addresses using convolutional neural networks. They 

achieve a 96% accuracy in recognizing complete street numbers. We took the same idea for 

this project to train our dataset with convolutional neural networks. But in their work [4], they  
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fixed the length of the street number in an image unlike CAPTCHAs, in which length could be 

different. To tackle this problem, we propose to use Recurrent Neural Networks, which have 

achieved good results recently, as shown by the “show and tell” [5] paper by Google, where 

they generate a caption (variable length) for a given image.  

 

              The real work in decoding a CAPTCHA is to guess all the words in the CAPTCHA 

correctly. If even one word is wrong, we have to discard the result. Based on the papers [4] and 

[5], a neural network could be helpful in these scenarios. 

 

             Using these ideas, we will use CNNs to learn image features and the RNNs to predict a 

sequence of characters (which could also be variable) in a CAPTCHA. 
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Chapter 4 

INTRODUCTION TO NEURAL NETWORKS 

 

              In our project, we are using neural networks to break CAPTCHAs. Neural networks are 

inspired by the brain. In 1943, McCulloch and Pitts [6] laid the formal foundation for the field of 

artificial neural networks. Because neural networks were computationally expensive and there 

was no good learning algorithm for training the models, they became unpopular in the 1960’s. 

Marvin Minsky and Seymour Papert made this clear in their paper [25]. Another key advance 

that came later was the backpropagation algorithm, which effectively solved the neural network 

problem, given by Werbos [26]. In the early 1980's, researchers showed renewed interest in 

neural networks. From 2005 onwards, they have again become popular, as computers have 

now become fast enough to do large computations. People have also achieved success in 

training neural networks with the SGD (stochastic gradient descent) algorithm, which fortunately 

works, but does not have clear theoretical justification. In addition, neural network models are 

big, and thus require a lot of training data. With the recent advances in Big Data, it has become 

very easy to collect training data. They are the hottest area in the field of machine learning [24]. 

Neural networks work very well with different machine learning problems. 

 

               Neural networks are a type of machine learning algorithm. The basic difference 

between machine learning and conventional programming languages is that in conventional 

programming, a computer has to be explicitly programmed. We ourselves have to write and 

maintain the code. But in case of neural networks, the network adapts itself to the problem 

during training. In conventional programming style, people have to understand the problem well 

and research different approaches. Since a clear solution is often elusive in practical problems,  

 

https://en.wikipedia.org/wiki/Marvin_Minsky
https://en.wikipedia.org/wiki/Seymour_Papert
https://en.wikipedia.org/wiki/Backpropagation
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people tend to use heuristics, which work for some use cases but do not generalize well. But 

with machine learning, we have the model itself learn from the data. Machines tend to learn 

faster (vis a vis core research), so they take less time in solving problems. Machine learning 

algorithms like neural networks also do a good job with generalization. Some of the applications 

of neural networks include facial recognition as used by Facebook to tag photos [27], image 

captioning [5] by Google and etc. 

 

             Neural networks are essentially a bunch of interconnected elements called neurons. 

They are an information processing paradigm which is inspired by biological nervous systems. 

The nervous system contains around 1010 neurons. Figure 2 shows a single neuron.  

 

 
Figure 2: A Biological Neuron [37] 

 

 

Each biological neuron consists of a cell body. It contains lots of dendrites, which bring electrical 

signals into the cell, and an axon, which transmits these signals out of the cell. A neuron fires 

when the collective effect of its inputs reaches a certain threshold. The axons of neurons are 

dependent on each other and can influence the dendrites of another neuron. Similarly, a neural  
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network starts with a model, as in Figure 3. It consists of several inputs and a single output. 

Every input is modified by a weight and multiplied with the input value.  

The neuron combines these weighted inputs and, with the help of the threshold value and 

activation function, determines its output. The objective of the neural network is to transform the 

inputs into a meaningful output.  

 
Figure 3: A Simple Neural Network Model 

(Perceptron) [37] 

 

 

Training Neural Networks 

Backpropagation in Neural Networks 

              Backpropagation is a technique to train neural networks. In this technique, a set of 

input and output pairs are assembled. The input data is then fed into the neural network via the 

input layer. Every neuron in the network processes the input and propagates it to the output 

layer. The output is then compared with the actual output. The difference between them is 

known as the “Error Value”. While training a neural network, we try to minimize this “Error 

Value”.  The connection weights in the network are then adjusted gradually, working backwards 

from the output layer, through the hidden layer, and to the input layer, until the correct output is 

produced. This is the basic idea of Backpropagation. This algorithm was first introduced in the  
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1970s, but the importance of it was not fully appreciated until the publication of a paper in1986 

[28]. 

The steps involved in training a neural network model are: 

● Initialize a model with random weights. 

● Generate output based on the weights. 

● Calculate the difference between the actual output and the achieved output. 

● Adjust weights according to the error and learning rate. 

● Repeat the process until: 

1)  Either we have reached the maximum number of epochs, 

2)  Or error is not decreasing anymore. 

 

Gradient flow in Back Propagation 

Suppose we have a layer with input x and output y, computing: 

y = f(x) 

Define L to be the loss. To perform gradient descent on x, we calculate 𝛿𝑙/𝛿𝑥 and  plug this into 

the following gradient descent equation: 

x = x - (learning rate)* 𝛿𝑙/𝛿𝑥 

To calculate 𝛿𝑙/𝛿𝑥, the backpropagation algorithm uses the derivative chain rule.  

                                                      𝛿𝑙/𝛿𝑥 = 𝛿𝑙/𝛿𝑦*𝛿𝑦/𝛿𝑥 

So from the gradient of y, the gradient of x can be computed. This is the way gradient flows from 

a layer’s output to input. By induction, gradients flow backwards from the top layer to the input 

layer. This is the main idea behind backpropagation. 

 

 

 

http://www.nature.com/nature/journal/v323/n6088/pdf/323533a0.pdf
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Supervised Learning vs. Unsupervised Learning 

 

               Supervised Learning is a kind of learning in which some prior experience or knowledge 

in the machine learning problem is used to determine whether the outputs are correct or not. A 

model that uses this technique adjusts its parameters according to the training examples 

provided. In other words, the training data should be labeled, which would help the network with 

learning the parameters. On the other hand, in unsupervised learning, it learns only from local 

information. It self-organizes the data presented to it and then detects their properties. It divides 

the data into different clusters representing similar patterns. This is particularly useful in 

domains, where instances are checked to match previous scenarios. For example, in credit card 

fraud detection, the pattern of a case can be matched with known fraud patterns. 

               In the case of our CAPTCHA decoder, we classified our problem of CAPTCHA 

recognition as supervised learning, in which training examples have labels assigned to them, so 

that our network can learn how a character in a CAPTCHA may look. 

 

Convolutional Neural Networks 

               In 1995, Yann LeCun Et al. [34] introduced the concept of convolutional neural 

networks  in which they tried to recognize handwritten characters. A Convolutional Neural 

Network (CNN) is a variant of multilayer perceptron. CNN contains many layers, of which some 

could be convolutional layers. A convolutional layer is a layer that applies a convolution filter (a 

great way to process images for certain features). It can be seen as a sliding window function 

applied to input pixel matrix.  
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               In our model, we chose to use CNN for learning image features. One of the main 

advantages of using a Convolutional Neural Network is that it is independent of prior knowledge. 

All the pixel values can be directly inputted into the network, as opposed to handcrafting the 

feature values by performing segmentation and filtering beforehand, as explained earlier. CNNs 

exploit local dependencies in images. A pixel value is more correlated with its neighbors than 

pixels that are farther away. A normal (dense) layer would have tried to learn all the global 

interdependencies. But CNN has local connections that work very well for images. Also, they 

are easier to train, as they have fewer parameters than fully connected networks with the same 

number of hidden units. They share weights in convolutional layers, which means that the same 

filter is used for every pixel in the layer. This leads to a reduction in the required memory size and 

also improves performance. Another advantage is the availability of special purpose hardware 

like GPUs that can perform convolution very cheaply. 

 

             A CNN can contain many convolutional layers followed by fully connected layers. 

Various components of the Convolutional Neural Network that we used in creating our model 

are explained below: 

 

Convolutional layer: 

              Convolutional layer is the core building block of a Convolutional Network. It is the layer 

in which convolution filters are applied on an input image (or multidimensional feature vectors). 

In every convolutional layer in a model, different filters are applied. The same filters are applied 

on all the pixels. Filter application is essentially a convolution operation between input and filter 

(mostly 2D or 3D vectors) vectors. 
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              If input to a convolutional layer is an image of dimensions x*y*z where x is the height, y 

is the width, z is the number of channels in the image, and the layer has k filters, the size of the 

filter is m*n*r, where m, n, and r could be equal or less than x, y and z respectively. Then the 

convolution layer will output a vector of dimensions x*y*k. For translational and rotational 

invariance, max-pooling of the feature for all the generated k feature maps is done using a patch 

of t*t, where t could be any number (usually it is 2 for smaller images to a maximum of 5). 

 

 

   

Figure 4: Convolutional Layer [17] 

 

        If we have multiple convolutional layers, then lower layers learn low-level features and 

higher layers learn high-level features. In particular, the first layer takes care of detecting edges, 

and the following layers can detect different shapes. 

        The weights of a filter remain the same for all the pixels. This helps in reducing the number 

of parameters. For example, if image size id 200*50, filter size is 5*5 and if there are 32 filters,  
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we have only 32*(5*5 +1) (1 for bias) = 832 weights to learn. Otherwise, it would be 

number_of_pixels*number_of_pixels*filters, which would be 200*50*200*50*32 = 3.2 million. 

This is several orders of magnitude larger and is thus intractable to learn. 

 

Maxpool layer 

              The Maxpool layer averages or maxes out feature values. The main function of this 

layer is to reduce the spatial size of the representation in order to reduce the amount of 

parameters and computation, which helps in controlling overfitting. It ensures that same result 

will be seen, even if image features have some small translation or rotation. This feature is 

known as Location Invariance and Compositionality. In case of CAPTCHAs, the digit “2” could 

be anywhere in the image. The network tries to learn what the digit “2” looks like, not where “2” 

is located in the image. In other words, it does not matter where “2” is present. 

 

Dense layer 

             The dense layer is simply a fully connected layer in which all the units in the layer are 

connected with all the units of the input layer. We do not need any special layout to apply in 

such a layer; it can be applied over any array of data. It is a very commonly used layer in neural 

networks.  

 

Drop out 

              Since a fully connected layer has most of the parameters in a network, it is prone to 

overfitting. In order to control this, the drop out method is used. In the drop out method, nodes in  
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a unit are included at every training stage, with some probability that we do not know the entire 

network, for one particular example. This helps with preventing overfitting, as the network will  

 

adjust to these situations. After the training is done, all the units in the network are used for 

inference. 

 

Loss Function 

        Neural network training is essentially an objective function minimization problem. The 

objective function is invariably called a loss function that measures how far away predictions of 

the model are from actual labels. During training, the gradient of the loss function is computed 

with respect to each weight wi,j. It helps us to calculate how a small change in weight can help 

with decreasing the loss. There are different kinds of loss functions that we can use based on 

the modeling problem, such as mean squared error, cross entropy, logistic loss, hinge loss, and 

hamming distance loss. 

 

  We used Cross entropy loss function [21] in our model. Cross entropy gives the measure of 

the distance between what the network believes the output distribution should be and what the 

actual distribution is. It is the standard loss function for multi-label classification problems. It is 

basically used when we need to generate a multinomial (i.e. probability for every label) 

distribution. It penalizes the incorrect predictions a lot, which helps in learning. 

Cross entropy loss formula: 

                                  Li  = −∑jti,jlog(pi,j) 

where p is prediction and t is target tensor. 
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Activation function  

               All the neurons in a neural network add their inputs and put them in a nonlinear 

function, which is known as the activation function. There are many different types of activation 

functions used in academia and industry. Some of the most commonly used are sigmoid, step 

function, logistics, hyperbolic, and ReLU. 

 

Sigmoid: 

f(x)=1/ (1+exp(−x)) 

 

 

Figure 5: Sigmoid Function 
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Tanh unit: 

f(x) = tanh(x) 

  

Figure 6: Tanh  

LSTMs use tanh as its gradient is bounded, which helps in ameliorating the exploding gradient 

problem. 

 

Rectified linear unit (ReLU): 

f(x) = max(0, x) 

 

                           Figure 7: ReLU Activation Function [20] 

 

Blue - ReLU 
Green - Softplus 
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In Figure 7, the blue line represents the ReLU activation function. ReLu works in practice, but 

the ReLU function is a discontinuous function, having discontinuity at 0. Softplus is similar to  

ReLu, but is continuous everywhere. The Softplus function is represented in the green line in 

figure 7. 

In our models, we used ReLU activation function. 

 

Advantages of using ReLU activation function: 

● It does not lead to an exploding or vanishing gradient problem. Also, it has been 

shown that deep neural networks can be trained efficiently using this function 

without any pre-training. 

● It can also be used in RBM (Restricted Boltzmann machine) to train real-valued 

inputs. 

● They are faster to compute, as they are very simple and don’t require normalization. 

 

Softmax Layer 

              A softmax layer takes the activations (probabilities) calculated so far and divides each 

of them by the sum of all the activations. In other words, it normalizes the activations. It thereby 

forces the output of the layer to take the form of probability distribution, i.e. between 0-1. From 

these, the value with the maximum probability is chosen as the output of the network. It is a type 

of activation function that is applied on the last layer only.  
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Learning rate 

               Learning rate is an important concept in training a neural network, as it determines by 

what amount the weight should be adjusted in order to converge. A low value of learning rate 

will take a lot of time to converge, whereas a large value of learning rate may cause the network 

to bounce around the optimal parameters, as shown in the figure below: 

 

Figure 8: Impact of low learning rate 

 

 

As can be seen in Figure 8, if we have a lower learning rate, the loss tends to decrease slowly. 

But with a high learning rate, as can be seen in Figure 9, the network could bounce around the 

optimal parameter values. 

 

 

Low learning 
rate, more time 
to converge 
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Figure 9: Impact of high learning rate. 

 

 

Recurrent Neural Networks 

 

               One of the disadvantages of feedforward networks is that they accept a fixed length of 

input vector and generate a fixed length of output vector. Moreover, they perform mapping using 

the same set of layers, i.e. it does not change.  
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Figure 10: A Sample feed-forward network 

 

Recurrent Neural Networks (RNNs) can be used to overcome these disadvantages. In RNNs, 

connections between units have a directed cycle. RNNs are called recurrent because they 

perform the same task for each element in a sequence with the output being dependent on the 

previous computations, which is not the case with feedforward networks, they just go in a 

forward direction independently of previously computed values. Unlike feedforward neural 

networks, RNNs make use of their internal memory to process arbitrary input sequences. 

Various applications of RNNs include handwriting recognition and speech recognition. Figure 11 

shows an example of a network using RNNs. 

 

 

 

 

 

 

 

 

Input layer 

Hidden layer 

Output  layer 

https://en.wikipedia.org/wiki/Directed_cycle
https://en.wikipedia.org/wiki/Feedforward_neural_networks
https://en.wikipedia.org/wiki/Feedforward_neural_networks
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Figure 11: An example of RNN. 

 

 

Figure 11 can be seen as Figure 12 after unfolding it for three steps. 

 

 

Figure 12: An example of RNN with unfolds. 
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RNNs have shown good results in predicting sequences of words in which the output of one 

field is dependent on another field [5]. The most commonly used RNNs are LSTM (Long Short 

Term Memory), which we have used in our project. 

 

What are LSTMs? 

               Long Short Term Memory (LSTMs) networks are a special kind of RNNs. Training 

RNNs is difficult because of vanishing and exploding gradient issues. If gradients and weights 

are small, gradients can vanish quickly during backpropagation. Conversely, if gradients and 

weights are large, gradients can explode quickly during backpropagation. The former gradient is 

known as a vanishing gradient, and the latter is known as an exploding gradient. The issue is in 

particularly acute when the input or output sequences are long, as the gradients either vanish or 

explode while back propagating through long sequences. This was first found in 1991 [9][10]. 

LSTMs ameliorate this issue, as discussed below.  

 

     In LSTM blocks, when the error values are back propagatedu7u from the output, the error 

becomes trapped in the memory portion of the block. Figure 13 shows a structural diagram of 

the LSTM memory cell. 

 

 

 

 

 

 

 



 

 

 

 

35 

 

Figure 13:  Memory cell in LSTMs [22] 

 

 

Also, LSTMs use tanh as an activation function. A tanh gradient is always between 0 and 1, so 

the gradient does not explode when multiplied with gradients during backpropagation. 

 

LSTMs are explicitly designed to avoid the long-term dependency problem. They have shown 

great performance in unsegmented handwriting recognition [11], machine translation, and 

speech recognition. 

 

              There are two types of LSTMs: forward LSTMs and backward LSTMs. In the case of 

forward LSTMs, we consider the output that we have so far. For example, in the case of speech 

recognition, consider a sentence like I __ a girl that a network wants to complete. In this 

case, we can make use of “I” to predict that it should be “am”. So, we took help of the predicted 

character “I”. Forward LSTMs first predict “I” and then “am” and so on. 
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               In backward LSTMs, we try to predict backwards. For example, in the above example, 

it will predict “girl” first, then “a”, then “am” and lastly “I”.  In bidirectional LSTMs, both forward 

and backward LSTMs are combined. They try to predict all the characters together. For 

example, She lives in __. She speaks French. In this sentence, we know that 

because of “lives”, we need to fill the name of a place. But by only looking at French, we could 

make a decision that it would be France. In these scenarios, bidirectional LSTMs are useful. 

 

We also expect bidirectional LSTMs to be useful in the CAPTCHA recognition problem. For 

instance, in problems like "rrn", the output could be ['r', 'm'] or ['r', 'r', 'n'], so it is useful to predict 

if the last character is 'm' or 'n' first and then predict the previous characters. 
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Chapter 5 

FRAMEWORKS USED 

 

There are many publicly available frameworks that provide machine learning. Some of them are: 

● Torch7 

● Caffe 

● Theano 

 

Torch7 [13] is a machine learning library that was developed at New York University, IDIAP 

Research Institute, and NEC Laboratories America.  

Caffe [14] is a machine learning library developed at UC Berkeley. 

 

              After preliminary research about the different frameworks available, we chose Theano 

because we found Theano to be more flexible, specifically due to libraries like Lasagne. Since 

Theano is in Python, it is very easy to integrate it with the rest of our system, which is also 

written in Python. It performs functions like input pre-processing and weights storage. Also, 

today Theano is one of the most popular frameworks in the Machine Learning community.  

 

Theano 

               Theano [12,15] was developed by the University of Montreal. It is a Python library 

used to define, optimize, and evaluate mathematical expressions, especially ones with  
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multi-dimensional arrays. It combines the convenience of NumPy’s syntax and the speed of 

optimized native machine language.  

 

Theano helps in creating symbolic expressions, are beneficial when creating a neural network. 

Also, it supports static differentiation; that is, we just need to specify our architecture and the  

loss function in a declarative way to get the gradients for free.  

Theano is not a neural network library, but rather a mathematical expression compiler. Its basic 

components are not neural network layers, but mathematical operations. But there are many 

wrappers around Theano that provide neural network libraries. One of them that we have used 

is Lasagne. Lasagne is a Python package used to train neural networks. It uses Theano 

internally. We used Lasagne because of the following reasons: 

● It implements LSTM. Theano by itself does not have implementation of LSTM. Theano 

contains only building blocks like scan, but Lasagne has LSTM implementation. 

● It implements various learning algorithms like stochastic gradient descent with 

momentum, adagrad etc. We use Nesterov momentum [31]. 

● It implements the framework to keep track of all the neural network parameters, like 

weights and biases. It makes it easy to save the parameters and initialize the model with 

pre-trained weights. 

 

Theano takes care of optimization while compiling. Right before the expression is compiled, it is 

optimized. The expressions are represented as a graph of operations and variable nodes. 

Theano contains a lot of graph optimizers, which modify the graph to optimally produce the 

same result. 

https://github.com/Lasagne/Lasagne
https://github.com/Lasagne/Lasagne
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 In addition, Theano makes use of the GPU, if present. One of the Theano’s design goals is to 

do computations at an abstract level, so that the compiler is flexible about how to carry out the 

calculations on a graphic card. It supports both NVIDIA cards and OpenCL devices.  
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Chapter 6 

DATASET  

 

               Since our CAPTCHA breaking problem is a machine learning problem, we need a 

huge amount of data to train our models. A standard dataset for CAPTCHAs is not publicly 

available, so we had to generate the dataset synthetically. We used the Simple CAPTCHA 

library [17], which is available in Java. It has various functions to create noise and backgrounds 

in a CAPTCHA image. We wrote a Java module that generates a random string of 4 to 7 

characters in length and then randomly adds noise to the image. The background of an image is 

chosen with the same randomness. Below are a couple of images we generated through our 

program. 

 

 

Figure 14: CAPTCHA examples 

 

All the images generated are of same size (200*50), where 200 is the width and 50 is the height 

of the image. We trained our model using simple CAPTCHA images, complex CAPTCHA 

images, and a combination of both. Simple images are those that have very little noise, as 

shown in Figure 14 on the right-hand side, and complex images contain more noise and clutter, 

as shown on the left-hand side of Figure 14. We created around 1 million simple images, 2 

million complex images of fixed length 5, and 13 million images of variable length, which is a 

combination of all kinds of possible CAPTCHAs using the SimpleCAPTCHA library. As we are  
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supplying labeled data, we have stored the name of the image as the output of that particular 

CAPTCHA. This acts as a label for our models.  

 

Before supplying images for training, we convert them to grayscale using a PIL library [18] 

function to reduce a 3 channel image to 1 channel using the following formula: 

L = R * 299/1000 + G * 587/1000 + B * 114/1000 

 

               Accuracy of neural networks depends upon the training data. If we have only one kind of 

image in our training data, our model would not perform well with other data or real time data. So we 

randomized our training data by generating images from different sources and randomly sampling 

images to create batches for training. To ensure that the model does not overfit, we used a PHP 

script to create fixed length (5) CAPTCHA images and merged it with our existing dataset. It worked 

well, as mentioned in Chapter 7. 
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Chapter 7 

Our Models    

 

               We created two kinds of models: one using LSTM and another using multiple Softmax 

layers. We trained on both fixed length and variable length CAPTCHAs. 

 

Main blocks of our models 

CNN: 

              We have two convolutional layers, each with 5*5 dimensional 32 filters. After each 

convolutional layer, we have a maxpool layer, which applies non-overlapping 2*2 matrix to get 

the max of neighboring pixel values. Input images are 2D of size (height:50, width:200), as we 

use only 1 channel. 

First convolutional layer:        Number of filters = 32 

                                                   Size of a filter = 5*5 

                                                   Stride = 1 

 

First Maxpool layer:                 Pool size = 2*2 

                                                   Stride = 1 

 

Second convolutional layer:  Number of filters: = 32 

                                                  Size of a filter = 5*5 

                                                  Stride = 1 

 

Second Maxpool layer:           Pool size = 2*2 

                                                  Stride = 1 

 

Dense layer :                            No of units : 256 

                                                  In dense layer, we use ReLU as an activation function. 
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Dropout layer :                        Probability 0.5, which means a unit in the dense layer is              

                                                  considered in a network at the time of training with a probability             

                                                  of 0.5. 

                                          

RNNs: 

We used LSTM for RNNs of size 256. 

Different models 

1)  Fixed length with multiple Softmax: In this model, we used image CAPTCHAs of 

fixed length (5 in our models) to train the model using a fixed number (again, 5 in our 

case) of Softmax layers each predicting one character. Figure 15 illustrates the 

architecture used. We trained this model using simple as well as complex dataset 

images. The softmax layers at the top shared weights. 

 

Figure 15: CNN with multiple oftmax 
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 2) Variable length: For variable length, we used CNN with RNN layer, as shown in Figure 15.         

             In Figure 16, 3 RNN steps are taken for the sake of brevity. It should be equal to the 

maximum number of characters possible in a CAPTCHA image. For example, in our model, we 

have a maximum of 7. Figure 16 shows 3. Again, Softmax layers at the top share weights. We 

trained this model on the images of fixed length as well as on the images of variable length. 

Results are presented in the next section. 

 

 

Figure 16: RNN architecture. 

We assigned special label (“unk”), short for “unknown”, for termination. We mask the input. If we 

get one “unk”, we do not go any further, because it is faster and will take fewer steps to train.  
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Also, during training, exploding gradients were pulling the model too far in different directions. 

We tried clipping the gradients, which helped reduce this issue by dampening the exploding 

gradients. 

 

 

3) Fixed length LSTMs: 

This model is the same as the variable length model, but in this model, we fixed the number 

of RNN steps. In this case, we did not pass any “unk” label. The architecture is same as that 

of Figure 16. We trained this model on simple CAPTCHAs as well as on complex datasets. 

 

The whole project is written in Python using publicly available Python libraries, as discussed in 

Chapter 5. The project is available on GitHub at https://github.com/bgeetika/CAPTCHA-

Decoder.  

          

 

 

 

 

 

 

 

 

 

https://github.com/bgeetika/Captcha-Decoder
https://github.com/bgeetika/Captcha-Decoder
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Chapter 8 

EXPERIMENTS AND RESULTS 

 

              After generating images, as described in Chapter 5, we began training. To train a 

model and make it more efficient, we packaged 20,000 images in one numpy file. This was 

easier to load than loading one file at a time. We specified the batch size with which we want to 

train the model. By default, there are 500 images. 

For testing and validation, we put 20,000 images each.  

The total number of epochs used in training is 20. 

We have added various command line flags that help to customize our training.  Below is the 

output of a code snippet’s output showing the positional arguments used:  

 

TrainingDirc:           Path to training data directory 

ValidateDirc: Path to validation data file  

TestDirc:    Path to test data file   

ModelParamsFile: Path to the directory where params is to be 
stored, followed by prefix for the parameter 
file 

optional arguments:  -h, --help  Show this help message and exit  

-maxsoft, --maxsoft    Provide this argument if you want to run 
multiple softmax  

-bidirec, --bidirec  Provide this argument in order to run 
bidirectional     

-hiddenlayers, --hiddenlayers  Number of hidden layers in the network  

-learningrate, --learningrate   Learning rate   
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 -batchsize, --batchsize                              Training batch size   

-testsize, --testsize  Test batch size   

-includeCapital, --includeCapital Include capital letters or not   

 -length, --length   Length of the characters   

-rescale_in_preprocessing, --rescale     Rescale_in_preprocessing 

--use_mask_input        Use_mask_input   

-lstm_layer_units, --lstm_layer_units No of units in lstm layer 

    

   Table 1: Command line arguments supplied  

                                                             
             
 We have used a Google compute engine machine that had 8 cores. Because of this, we were 
able to train multiple models at the same time. 
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Different model and the individual character accuracy achieved so far: 

 

Type of model  Individual Character Accuracy 

LSTM  fixed length (simple Dataset) 
 

100% 

LSTM  fixed length (Complex dataset) 
 

98.48% 

Multiple Softmax fixed length( Simple 
dataset) 
 

99.8% 

Multiple Softmax fixed length( Complex 
dataset) 
 

98.96% 

LSTM only first character recognition 
 

99.8% 

LSTM with real data 
 

99.2% 

LSTM variable length with fixed length data 
 

99.5% 

LSTM variable length with variable length 
data 
 

97.31% 

                                      

Table 2: Individual character accuracy for different models 
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Type of model  
 

Individual Sequence Accuracy 

LSTM  fixed length (simple Dataset) 
 

99.8% 

LSTM  fixed length (Complex dataset) 91% 

Multiple Softmax fixed length( Simple 
dataset) 
 

99% 

Multiple Softmax fixed length( Complex 
dataset) 
 

96% 

LSTM with real data 
 

97% 

LSTM variable length with fixed length data 
 

98% 

LSTM variable length with variable length 
data 
 

81% 

 

  Figure 17: Training loss vs. number of images trained on 

 

Figure 17 shows how cross entropy loss decreased during the training. This particular graph is 

taken from model that uses real data as well as generated data. 
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Number of images trained and training accuracy: 
 

 
Figure 18: Training individual character accuracy vs. number of images trained on 

 
 

The above graph shows how individual character accuracy improved during training. Since 

getting a character correct is easier than getting the whole sequence right, the curve in Figure 

18 is steep as compared to the curve in Figure 19, which plots sequence training accuracy 

. 
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Table 3: Sequence accuracy for different models 

 

Table 1 and Table 2 show the accuracy of models achieved so far. LSTMs on fixed size of 

CAPTCHA length have provided good results, as we anticipated. Model with multiple Maxsoft 

layers also did quite well, with 99% and 96% accuracy on simple and complex images, 

respectively. We have also tried merging real data that we obtained from a website. In this case 

as well, LSTM has provided 96.2% accuracy, with 99% individual character accuracy.  

 

 

 

Graphs Generated: 

Training loss vs. number of images trained on  

 

Figure 19: Training sequence accuracy vs. number of images trained on 
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Number of images trained on and training accuracy: 

              Training accuracy is generally a bit different then testing accuracy. The curves for 

testing accuracy and training accuracy look similar. Figure 20 shows the individual character 

accuracy and Figure 21 shows the sequence accuracy. Both of these curves are also generated 

for models trained on website data and self-generated data. 

 

 

Figure 20: Testing individual character accuracy vs. number of images trained on 
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Figure 21: Testing sequence accuracy vs. number of images trained on 
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Chapter 9 

CONCLUSION 

 

               In this project, we have tried to decode an image-based CAPTCHA using deep neural 

networks. We have used convolutional neural networks and recurrent neural networks instead 

of using the conventional approach of first cleaning a CAPTCHA image, segmenting the image, 

and recognizing the individual characters. For machine learning problems, we need a large 

amount of data, so we have generated a dataset of 13 Million image-based CAPTCHAs. The 

programs generating this dataset will be publicly available so that they can be used by other 

people in their research. We have exploited the capabilities of CNNs to work on the images and 

RNNs to work with sequences. The model was trained on both simple CAPTCHAs and complex 

CAPTCHAs. The accuracy achieved on fixed-length CAPTCHA was very impressive (99.8% for 

simple images and 96% for complex images). We tried both fixed length and variable length 

CAPTCHAs. Both give 99and 55 % accuracy respectively. Gradient clipping helped speed up 

the training of LSTMs, which were otherwise very slow. Also, masking inputs helped learn 

models faster. 

 

                It is clear that the more kinds of CAPTCHAs we include in our training set, the more 

robust our model will become. We have tried to demonstrate this by using a real dataset in our 

training set, and were able to achieve 99% accuracy.  
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               While it is still in early stage, our model performs better than previous work that relies 

on manually-generated segmentation oriented models. For example, our model beats the 

accuracy of [2] model.  More importantly, our approach is not impacted by the fragility inherent 

in attacks while doing manual cleaning or segmenting of an image. This leads to our most 

interesting finding: neural networks can learn to perform complicated tasks such as the 

simultaneous localization and segmentation of ordered sequences of objects. 

 

               In the end, we are able to provide end-to-end neural network system. Given an image, 

we will be able to decode the CAPTCHA in that image. 
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