

1

NEURAL NETWORK CAPTCHA

 CRACKER

 Project Report

Presented to

 The Faculty of Department of Computer Science

San Jose State University

In Partial fulfillment

Of the Requirement for the Degree

Master of Science in Computer Science

 by

Geetika Garg

Fall 2015

2

© 2015

Geetika Garg

ALL RIGHTS RESERVED

3

SAN JOSE STATE UNIVERSITY

 The Undersigned Project Committee Approves the Project Titled

NEURAL NETWORK CAPTCHA CRACKER

 By

Geetika Garg

 APPROVED FOR THE DEPARTMENT OF

COMPUTER SCIENCE

Dr. Chris Pollett, Department of Computer Science Date

Dr. Thomas Austin, Department of Computer Science Date

Mr. James Casaletto, Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

4

ABSTRACT

 NEURAL NETWORK CAPTCHA CRACKER

 A CAPTCHA (acronym for "Completely Automated Public Turing test to tell Computers

and Humans Apart") is a type of challenge-response test used to determine whether or not a

user providing the response is human. In this project, we used a deep neural network

framework for CAPTCHA recognition. The core idea of the project is to learn a model that

breaks image-based CAPTCHAs. We used convolutional neural networks and recurrent neural

networks instead of the conventional methods of CAPTCHA breaking based on segmenting and

recognizing a CAPTCHA. Our models consist of two convolutional layers to learn image

features and a recurrent layer to output character sequence. We tried different configurations,

including wide and narrow layers and deep and shallow networks. We synthetically generated a

CAPTCHA dataset of varying complexity and used different libraries to avoid overfitting on one

library. We trained on both fixed-and variable-length CAPTCHAs and were able to get accuracy

levels of 99.8% and 80%, respectively.

5

ACKNOWLEDGEMENTS

 It gives me immense pleasure to thank my project advisor, Dr. Chris Pollett, for

providing me his valuable guidance and time. He helped me in every phase of my project.

I am grateful to my committee members, Dr. Thomas Austin and Mr. James Casaletto, for their

suggestions and time, without which this project would not have been possible. I also want to

thank my husband, Mr. Sujeet Bansal, for his support and time throughout this project.

6

LIST OF FIGURES

Figure 1: A Sample image-based CAPTCHA..13

Figure 2: A Biological Neuron..19

Figure 3: A Simple Neural Network Model..20

Figure 4: Convolutional Layer.............. ...24

Figure 5: Sigmoid Function..27

Figure 6: Tanh Function...... ...28

Figure 7: ReLU Activation Function...28

Figure 8: Impact of low learning rate... .30

Figure 9: Impact of high learning rate..31

Figure 10: A Sample feed -forward network......... ..32

Figure 11: An example of RNN..33

Figure 12: An example of RNN with unfolds..33

Figure 13: Memory cell in LSTMs... 35

Figure 14: CAPTCHA examples. .. 40

Figure 15: CNN with multiple softmax... 43

Figure 16: RNN architecture... .44

Figure 17: Training loss vs number of images... .50

Figure 18: Training individual character accuracy vs number of images trained........... 51

Figure 19: Training sequence accuracy vs number of images trained...... 51

Figure 20: Testing individual character accuracy vs number of images trained..........................52

Figure 21: Testing sequence accuracy vs number of images trained...53

7

LIST of TABLES

Table 1: Command line arguments supplied..46

Table 2: Individual character accuracy for different models..48

Table 3: Sequence accuracy for different models...49

8

TABLE OF CONTENTS

1. INTRODUCTION ..09

2. INTRODUCTION TO CAPTCHAs...12

 Need for CAPTCHAs ...12

 Characteristics of CAPTCHAs13

3. RELATED WORK..15

4. INTRODUCTION TO NEURAL NETWORK..18

 Training Neural Networks ...20

 Supervised Vs Unsupervised Learning ...22

 Convolutional Neural Networks .. 22

 Recurrent Neural Networks. ...31

5. FRAMEWORKS USED ..37

 Theano ..37

 Laasange .. 38

6. DATASET ...40

7. OUR MODELS. ..42

8. EXPERIMENTS AND RESULTS.. 46

9. CONCLUSION ..54

10. REFERENCES. ..56

9

CHAPTER 1

INTRODUCTION

 A ‘Completely Automated Public Turing test to tell Computers and Humans Apart,’ or

CAPTCHA, is a problem that is very easy for a human to solve, but very difficult for a computer

to solve. Typically, it involves a task like recognizing a string of characters in an image. In this

project, we tried to make it easy for a computer to solve a string of character CAPTCHAs.

 CAPTCHAs are ubiquitous on the Internet. They are intuitive for users and are a

cheap and fast way to secure a site and to ward off spam. A lot of major websites use them for

security on the Internet. When CAPTCHAs were designed, there were no AI programs that

could recognize them using computer vision. Recently, deep neural networks have brought

major advancements in the field of AI and computer vision. They have reached state-of-the-art

or better performance as compared to other methods in the fields of speech recognition [30],

computer vision, natural language processing [32], and language translation [33]. We tried using

deep neural networks to break CAPTCHAs to assess how secure CAPTCHA-based security

systems are.

 Traditionally, for object/character recognition tasks in computer vision, separate

modules were created for preprocessing (noise reduction), segmentation (character

segmentation), and character recognition and sequence generation, where the sequence of

characters with highest probability was generated. Systems with multiple modules tend to

behave poorly because each module is optimized independently and errors compound between

10

modules. Our system is trained to learn an end-to-end model, where we solve the entire

problem in one module. Deep neural networks have multiple layers, where different layers learn

features at different levels. Lower level layers learn low-level features, while higher layers learn

higher-level features. The entire network is trained together so as to align the goals of individual

layers. In other words, layers co-adapt to learn features that will help optimize for the single big

goal of CAPTCHA recognition.

 Special purpose neural networks have been studied to solve specific problems.

Convolutional neural networks have achieved great success with image and video

understanding and are now heavily used in computer vision. Google used convolutional neural

networks [4] to process Street View images for detecting home addresses. Recurrent neural

networks have enabled state-of-the-art performance in sequence processing tasks. Feed

forward networks take fixed size input and generate fixed size output. Recurrent neural

networks are used to feed variable length inputs and generate variable length outputs. Google

used recurrent neural networks, in particular LSTMs, to generate image captions [5].

 In our project, we combined the idea of two papers [4], [5] and are building a model

that uses convolutional neural network to learn CAPTCHA image features and then use those

features in a recurrent neural network to output the sequence of characters in the image. We

combine both of the networks to get a single deep neural network that performs end-to-end

CAPTCHA recognition. For our recurrent neural network, we use LSTMs [7], [22] (Long Short

Term Memory. LSTMs have been around for decades [7], and lately have been used a lot in

11

academia and industry [5], as they solve some of the big issues with training recurrent neural

networks.

 This report is divided into eight chapters. Chapter 2 gives a literary reviews of

CAPTCHAs, including what they are and why we need them. Chapter 3 discusses the work

done in the related field of CAPTCHA recognition and what we planned to do. Chapter 4 covers

an introduction to neural networks and the various components we used in our project. Chapter

5 talks about the framework we used for our project. Chapter 6 focuses on the dataset we

generated for our project. We tried different kinds of models, and the details of these are

discussed in Chapter 7. Chapter 8 records all the experiments and results we got after training

the huge dataset. Chapter 9 concludes the report.

12

CHAPTER 2

 INTRODUCTION TO CAPTCHAs

 Before delving into the models directly, let us discuss what CAPTCHAs are.

CAPTCHAs were first mentioned in a paper by Moni Naor [1] in 1996. A visual CAPTCHA is

usually an image with a series of letters or numbers that prompts a user to recognize what

exactly is written in the image. At present, CAPTCHAs are almost a standard security

mechanism for defending against malicious and undesirable bot programs on the Internet, such

as bots that could sign up for thousands of accounts a minute with free email service providers

and bots that could send out thousands of spam messages each minute. They are very

annoying and can cause denial of service attacks.

Where is there a need for CAPTCHAs?

The following are some scenarios in which we need to use CAPTCHAs:

Online Polling - In case of online polls, bots or computers can vote automatically. We have to

prevent this. To enforce this, a CAPTCHA can be used to ensure that only humans are polling.

Free Mailing Services - There are many email services that are available for free. However, if

there are a lot of accounts, it can lead to poor service. Customers would not be served properly.

Again, CAPTCHAs are useful here.

Dictionary Attack Prevention - CAPTCHAs can also be used to prevent dictionary attacks in

password systems. One of the ways this could be done is by preventing a computer from

13

iterating through the entire range of possible passwords by requiring it to solve a CAPTCHA

after a certain number of unsuccessful logins.

Characteristics of a CAPTCHA:

The important characteristics of a CAPTCHA are:

● Easy for a user to solve.

● Difficult for a program or a computer to solve.

 To make it happen, the following standard techniques are used. Normally, characters

are used to generate CAPTCHAs. The reason why object-based CAPTCHAs are not used in

CAPTCHAs is because recognition of objects requires prior knowledge of the scene, and

different regions have different names for objects; therefore, it would not be universal. Instead,

characters have a unique data set (for example, in the English alphabet, 26 characters and 10

numeric digits), which is present on keyboards as well, making them easier to understand.

Hence, they are easy to generate. Figure 1 shows an image-based CAPTCHA in which we used

the alphabet.

Figure 1: A Sample image-based CAPTCHA [36]

14

 Initially, it was realized that CAPTCHAs could be used for security purposes because

there were no AI programs that could perform the problem task. CAPTCHAs are based on the

underlying assumption that it is difficult to solve this AI problem. If computers could be taught to

decode a CAPTCHA, a difficult AI problem would be solved, which would help in research. It

was a win-win situation.

 CAPTCHAs were first used by AltaVista to prevent “bots” [29]. The motivation for this

project was to show that the security methods used in many online systems are not secure and

are prone to attack by hackers.

15

CHAPTER 3

RELATED WORK

 Programmatically, breaking CAPTCHAs is not a new concept. For example, Mori and

Malik [2] have broken EZ-Gimpy (92% success) and Gimpy (33% success), CAPTCHAs with

sophisticated object recognition algorithms. In comparison to earlier works that were based on

sophisticated computer vision algorithms, we are planning to train an end-to-end neural network

system that would extract the features needed for classification with minimal hand tuning.

Neural networks have shown great results recently in many domains, such as natural language

processing [32], speech [30], and image processing [4][5]. Neural networks also have brought

down the entry barrier in training such models, as one does not require deep domain knowledge

to massage inputs in order to provide the features that a model could learn from. The hidden

layers in neural networks extract the features that are useful during learning. We will be

discussing more about neural networks later in the report.

In some of the papers, for example, in paper [3], the following steps were used for character

recognition in a CAPTCHA:

1) Preprocessing

2) Segmentation

3) Training the model for individual character recognition

4) Generating sequence with highest probability

16

These steps are very difficult to do because of the following reasons:

● Segmentation is difficult, as some digits could overlap with other digits.

● Deformity of digits is also a major concern. For example, a digit “2” can have a larger

loop or just a cusp.

● Unknown scale of characters. We do not know how big a character will be, so it is not

known how big the segmentation boxes should be.

● Character orientation. Characters could be rotated at arbitrary angles, making

recognition difficult.

Modules for each of the steps mentioned above are optimized independently, so systems

combining these modules don’t work well in practice. We can instead learn a deep neural

network, a single monolithic system for embedding these modules, and train the entire network

together to make sure that that objectives of all the modules are aligned. We can just provide

CAPTCHA images to the network and let it learn image features and how to use these features

for recognition.

 Relevantly, Google has published a research paper in which they used a convolutional

neural network [4] for detecting home addresses using convolutional neural networks. They

achieve a 96% accuracy in recognizing complete street numbers. We took the same idea for

this project to train our dataset with convolutional neural networks. But in their work [4], they

17

fixed the length of the street number in an image unlike CAPTCHAs, in which length could be

different. To tackle this problem, we propose to use Recurrent Neural Networks, which have

achieved good results recently, as shown by the “show and tell” [5] paper by Google, where

they generate a caption (variable length) for a given image.

 The real work in decoding a CAPTCHA is to guess all the words in the CAPTCHA

correctly. If even one word is wrong, we have to discard the result. Based on the papers [4] and

[5], a neural network could be helpful in these scenarios.

 Using these ideas, we will use CNNs to learn image features and the RNNs to predict a

sequence of characters (which could also be variable) in a CAPTCHA.

18

Chapter 4

INTRODUCTION TO NEURAL NETWORKS

 In our project, we are using neural networks to break CAPTCHAs. Neural networks are

inspired by the brain. In 1943, McCulloch and Pitts [6] laid the formal foundation for the field of

artificial neural networks. Because neural networks were computationally expensive and there

was no good learning algorithm for training the models, they became unpopular in the 1960’s.

Marvin Minsky and Seymour Papert made this clear in their paper [25]. Another key advance

that came later was the backpropagation algorithm, which effectively solved the neural network

problem, given by Werbos [26]. In the early 1980's, researchers showed renewed interest in

neural networks. From 2005 onwards, they have again become popular, as computers have

now become fast enough to do large computations. People have also achieved success in

training neural networks with the SGD (stochastic gradient descent) algorithm, which fortunately

works, but does not have clear theoretical justification. In addition, neural network models are

big, and thus require a lot of training data. With the recent advances in Big Data, it has become

very easy to collect training data. They are the hottest area in the field of machine learning [24].

Neural networks work very well with different machine learning problems.

 Neural networks are a type of machine learning algorithm. The basic difference

between machine learning and conventional programming languages is that in conventional

programming, a computer has to be explicitly programmed. We ourselves have to write and

maintain the code. But in case of neural networks, the network adapts itself to the problem

during training. In conventional programming style, people have to understand the problem well

and research different approaches. Since a clear solution is often elusive in practical problems,

https://en.wikipedia.org/wiki/Marvin_Minsky
https://en.wikipedia.org/wiki/Seymour_Papert
https://en.wikipedia.org/wiki/Backpropagation

19

people tend to use heuristics, which work for some use cases but do not generalize well. But

with machine learning, we have the model itself learn from the data. Machines tend to learn

faster (vis a vis core research), so they take less time in solving problems. Machine learning

algorithms like neural networks also do a good job with generalization. Some of the applications

of neural networks include facial recognition as used by Facebook to tag photos [27], image

captioning [5] by Google and etc.

 Neural networks are essentially a bunch of interconnected elements called neurons.

They are an information processing paradigm which is inspired by biological nervous systems.

The nervous system contains around 1010 neurons. Figure 2 shows a single neuron.

Figure 2: A Biological Neuron [37]

Each biological neuron consists of a cell body. It contains lots of dendrites, which bring electrical

signals into the cell, and an axon, which transmits these signals out of the cell. A neuron fires

when the collective effect of its inputs reaches a certain threshold. The axons of neurons are

dependent on each other and can influence the dendrites of another neuron. Similarly, a neural

20

network starts with a model, as in Figure 3. It consists of several inputs and a single output.

Every input is modified by a weight and multiplied with the input value.

The neuron combines these weighted inputs and, with the help of the threshold value and

activation function, determines its output. The objective of the neural network is to transform the

inputs into a meaningful output.

Figure 3: A Simple Neural Network Model

(Perceptron) [37]

Training Neural Networks

Backpropagation in Neural Networks

 Backpropagation is a technique to train neural networks. In this technique, a set of

input and output pairs are assembled. The input data is then fed into the neural network via the

input layer. Every neuron in the network processes the input and propagates it to the output

layer. The output is then compared with the actual output. The difference between them is

known as the “Error Value”. While training a neural network, we try to minimize this “Error

Value”. The connection weights in the network are then adjusted gradually, working backwards

from the output layer, through the hidden layer, and to the input layer, until the correct output is

produced. This is the basic idea of Backpropagation. This algorithm was first introduced in the

21

1970s, but the importance of it was not fully appreciated until the publication of a paper in1986

[28].

The steps involved in training a neural network model are:

● Initialize a model with random weights.

● Generate output based on the weights.

● Calculate the difference between the actual output and the achieved output.

● Adjust weights according to the error and learning rate.

● Repeat the process until:

1) Either we have reached the maximum number of epochs,

2) Or error is not decreasing anymore.

Gradient flow in Back Propagation

Suppose we have a layer with input x and output y, computing:

y = f(x)

Define L to be the loss. To perform gradient descent on x, we calculate 𝛿𝑙/𝛿𝑥 and plug this into

the following gradient descent equation:

x = x - (learning rate)* 𝛿𝑙/𝛿𝑥

To calculate 𝛿𝑙/𝛿𝑥, the backpropagation algorithm uses the derivative chain rule.

 𝛿𝑙/𝛿𝑥 = 𝛿𝑙/𝛿𝑦*𝛿𝑦/𝛿𝑥

So from the gradient of y, the gradient of x can be computed. This is the way gradient flows from

a layer’s output to input. By induction, gradients flow backwards from the top layer to the input

layer. This is the main idea behind backpropagation.

http://www.nature.com/nature/journal/v323/n6088/pdf/323533a0.pdf

22

Supervised Learning vs. Unsupervised Learning

 Supervised Learning is a kind of learning in which some prior experience or knowledge

in the machine learning problem is used to determine whether the outputs are correct or not. A

model that uses this technique adjusts its parameters according to the training examples

provided. In other words, the training data should be labeled, which would help the network with

learning the parameters. On the other hand, in unsupervised learning, it learns only from local

information. It self-organizes the data presented to it and then detects their properties. It divides

the data into different clusters representing similar patterns. This is particularly useful in

domains, where instances are checked to match previous scenarios. For example, in credit card

fraud detection, the pattern of a case can be matched with known fraud patterns.

 In the case of our CAPTCHA decoder, we classified our problem of CAPTCHA

recognition as supervised learning, in which training examples have labels assigned to them, so

that our network can learn how a character in a CAPTCHA may look.

Convolutional Neural Networks

 In 1995, Yann LeCun Et al. [34] introduced the concept of convolutional neural

networks in which they tried to recognize handwritten characters. A Convolutional Neural

Network (CNN) is a variant of multilayer perceptron. CNN contains many layers, of which some

could be convolutional layers. A convolutional layer is a layer that applies a convolution filter (a

great way to process images for certain features). It can be seen as a sliding window function

applied to input pixel matrix.

23

 In our model, we chose to use CNN for learning image features. One of the main

advantages of using a Convolutional Neural Network is that it is independent of prior knowledge.

All the pixel values can be directly inputted into the network, as opposed to handcrafting the

feature values by performing segmentation and filtering beforehand, as explained earlier. CNNs

exploit local dependencies in images. A pixel value is more correlated with its neighbors than

pixels that are farther away. A normal (dense) layer would have tried to learn all the global

interdependencies. But CNN has local connections that work very well for images. Also, they

are easier to train, as they have fewer parameters than fully connected networks with the same

number of hidden units. They share weights in convolutional layers, which means that the same

filter is used for every pixel in the layer. This leads to a reduction in the required memory size and

also improves performance. Another advantage is the availability of special purpose hardware

like GPUs that can perform convolution very cheaply.

 A CNN can contain many convolutional layers followed by fully connected layers.

Various components of the Convolutional Neural Network that we used in creating our model

are explained below:

Convolutional layer:

 Convolutional layer is the core building block of a Convolutional Network. It is the layer

in which convolution filters are applied on an input image (or multidimensional feature vectors).

In every convolutional layer in a model, different filters are applied. The same filters are applied

on all the pixels. Filter application is essentially a convolution operation between input and filter

(mostly 2D or 3D vectors) vectors.

24

 If input to a convolutional layer is an image of dimensions x*y*z where x is the height, y

is the width, z is the number of channels in the image, and the layer has k filters, the size of the

filter is m*n*r, where m, n, and r could be equal or less than x, y and z respectively. Then the

convolution layer will output a vector of dimensions x*y*k. For translational and rotational

invariance, max-pooling of the feature for all the generated k feature maps is done using a patch

of t*t, where t could be any number (usually it is 2 for smaller images to a maximum of 5).

Figure 4: Convolutional Layer [17]

 If we have multiple convolutional layers, then lower layers learn low-level features and

higher layers learn high-level features. In particular, the first layer takes care of detecting edges,

and the following layers can detect different shapes.

 The weights of a filter remain the same for all the pixels. This helps in reducing the number

of parameters. For example, if image size id 200*50, filter size is 5*5 and if there are 32 filters,

25

we have only 32*(5*5 +1) (1 for bias) = 832 weights to learn. Otherwise, it would be

number_of_pixels*number_of_pixels*filters, which would be 200*50*200*50*32 = 3.2 million.

This is several orders of magnitude larger and is thus intractable to learn.

Maxpool layer

 The Maxpool layer averages or maxes out feature values. The main function of this

layer is to reduce the spatial size of the representation in order to reduce the amount of

parameters and computation, which helps in controlling overfitting. It ensures that same result

will be seen, even if image features have some small translation or rotation. This feature is

known as Location Invariance and Compositionality. In case of CAPTCHAs, the digit “2” could

be anywhere in the image. The network tries to learn what the digit “2” looks like, not where “2”

is located in the image. In other words, it does not matter where “2” is present.

Dense layer

 The dense layer is simply a fully connected layer in which all the units in the layer are

connected with all the units of the input layer. We do not need any special layout to apply in

such a layer; it can be applied over any array of data. It is a very commonly used layer in neural

networks.

Drop out

 Since a fully connected layer has most of the parameters in a network, it is prone to

overfitting. In order to control this, the drop out method is used. In the drop out method, nodes in

26

a unit are included at every training stage, with some probability that we do not know the entire

network, for one particular example. This helps with preventing overfitting, as the network will

adjust to these situations. After the training is done, all the units in the network are used for

inference.

Loss Function

 Neural network training is essentially an objective function minimization problem. The

objective function is invariably called a loss function that measures how far away predictions of

the model are from actual labels. During training, the gradient of the loss function is computed

with respect to each weight wi,j. It helps us to calculate how a small change in weight can help

with decreasing the loss. There are different kinds of loss functions that we can use based on

the modeling problem, such as mean squared error, cross entropy, logistic loss, hinge loss, and

hamming distance loss.

 We used Cross entropy loss function [21] in our model. Cross entropy gives the measure of

the distance between what the network believes the output distribution should be and what the

actual distribution is. It is the standard loss function for multi-label classification problems. It is

basically used when we need to generate a multinomial (i.e. probability for every label)

distribution. It penalizes the incorrect predictions a lot, which helps in learning.

Cross entropy loss formula:

 Li = −∑jti,jlog(pi,j)

where p is prediction and t is target tensor.

27

Activation function

 All the neurons in a neural network add their inputs and put them in a nonlinear

function, which is known as the activation function. There are many different types of activation

functions used in academia and industry. Some of the most commonly used are sigmoid, step

function, logistics, hyperbolic, and ReLU.

Sigmoid:

f(x)=1/ (1+exp(−x))

Figure 5: Sigmoid Function

28

Tanh unit:

f(x) = tanh(x)

Figure 6: Tanh

LSTMs use tanh as its gradient is bounded, which helps in ameliorating the exploding gradient

problem.

Rectified linear unit (ReLU):

f(x) = max(0, x)

 Figure 7: ReLU Activation Function [20]

Blue - ReLU
Green - Softplus

29

In Figure 7, the blue line represents the ReLU activation function. ReLu works in practice, but

the ReLU function is a discontinuous function, having discontinuity at 0. Softplus is similar to

ReLu, but is continuous everywhere. The Softplus function is represented in the green line in

figure 7.

In our models, we used ReLU activation function.

Advantages of using ReLU activation function:

● It does not lead to an exploding or vanishing gradient problem. Also, it has been

shown that deep neural networks can be trained efficiently using this function

without any pre-training.

● It can also be used in RBM (Restricted Boltzmann machine) to train real-valued

inputs.

● They are faster to compute, as they are very simple and don’t require normalization.

Softmax Layer

 A softmax layer takes the activations (probabilities) calculated so far and divides each

of them by the sum of all the activations. In other words, it normalizes the activations. It thereby

forces the output of the layer to take the form of probability distribution, i.e. between 0-1. From

these, the value with the maximum probability is chosen as the output of the network. It is a type

of activation function that is applied on the last layer only.

30

Learning rate

 Learning rate is an important concept in training a neural network, as it determines by

what amount the weight should be adjusted in order to converge. A low value of learning rate

will take a lot of time to converge, whereas a large value of learning rate may cause the network

to bounce around the optimal parameters, as shown in the figure below:

Figure 8: Impact of low learning rate

As can be seen in Figure 8, if we have a lower learning rate, the loss tends to decrease slowly.

But with a high learning rate, as can be seen in Figure 9, the network could bounce around the

optimal parameter values.

Low learning
rate, more time
to converge

31

Figure 9: Impact of high learning rate.

Recurrent Neural Networks

 One of the disadvantages of feedforward networks is that they accept a fixed length of

input vector and generate a fixed length of output vector. Moreover, they perform mapping using

the same set of layers, i.e. it does not change.

High learning rate,
it bounces off the
optimal value

32

Figure 10: A Sample feed-forward network

Recurrent Neural Networks (RNNs) can be used to overcome these disadvantages. In RNNs,

connections between units have a directed cycle. RNNs are called recurrent because they

perform the same task for each element in a sequence with the output being dependent on the

previous computations, which is not the case with feedforward networks, they just go in a

forward direction independently of previously computed values. Unlike feedforward neural

networks, RNNs make use of their internal memory to process arbitrary input sequences.

Various applications of RNNs include handwriting recognition and speech recognition. Figure 11

shows an example of a network using RNNs.

Input layer

Hidden layer

Output layer

https://en.wikipedia.org/wiki/Directed_cycle
https://en.wikipedia.org/wiki/Feedforward_neural_networks
https://en.wikipedia.org/wiki/Feedforward_neural_networks

33

Figure 11: An example of RNN.

Figure 11 can be seen as Figure 12 after unfolding it for three steps.

Figure 12: An example of RNN with unfolds.

Input layer

Hidden layer

Recurrent layer Recurrent layer Recurrent layer

Output layer Output layer Output layer

Output layer

Recurrent layer

Maxpool layer

Input layer

34

RNNs have shown good results in predicting sequences of words in which the output of one

field is dependent on another field [5]. The most commonly used RNNs are LSTM (Long Short

Term Memory), which we have used in our project.

What are LSTMs?

 Long Short Term Memory (LSTMs) networks are a special kind of RNNs. Training

RNNs is difficult because of vanishing and exploding gradient issues. If gradients and weights

are small, gradients can vanish quickly during backpropagation. Conversely, if gradients and

weights are large, gradients can explode quickly during backpropagation. The former gradient is

known as a vanishing gradient, and the latter is known as an exploding gradient. The issue is in

particularly acute when the input or output sequences are long, as the gradients either vanish or

explode while back propagating through long sequences. This was first found in 1991 [9][10].

LSTMs ameliorate this issue, as discussed below.

 In LSTM blocks, when the error values are back propagatedu7u from the output, the error

becomes trapped in the memory portion of the block. Figure 13 shows a structural diagram of

the LSTM memory cell.

35

Figure 13: Memory cell in LSTMs [22]

Also, LSTMs use tanh as an activation function. A tanh gradient is always between 0 and 1, so

the gradient does not explode when multiplied with gradients during backpropagation.

LSTMs are explicitly designed to avoid the long-term dependency problem. They have shown

great performance in unsegmented handwriting recognition [11], machine translation, and

speech recognition.

 There are two types of LSTMs: forward LSTMs and backward LSTMs. In the case of

forward LSTMs, we consider the output that we have so far. For example, in the case of speech

recognition, consider a sentence like I __ a girl that a network wants to complete. In this

case, we can make use of “I” to predict that it should be “am”. So, we took help of the predicted

character “I”. Forward LSTMs first predict “I” and then “am” and so on.

36

 In backward LSTMs, we try to predict backwards. For example, in the above example,

it will predict “girl” first, then “a”, then “am” and lastly “I”. In bidirectional LSTMs, both forward

and backward LSTMs are combined. They try to predict all the characters together. For

example, She lives in __. She speaks French. In this sentence, we know that

because of “lives”, we need to fill the name of a place. But by only looking at French, we could

make a decision that it would be France. In these scenarios, bidirectional LSTMs are useful.

We also expect bidirectional LSTMs to be useful in the CAPTCHA recognition problem. For

instance, in problems like "rrn", the output could be ['r', 'm'] or ['r', 'r', 'n'], so it is useful to predict

if the last character is 'm' or 'n' first and then predict the previous characters.

37

Chapter 5

FRAMEWORKS USED

There are many publicly available frameworks that provide machine learning. Some of them are:

● Torch7

● Caffe

● Theano

Torch7 [13] is a machine learning library that was developed at New York University, IDIAP

Research Institute, and NEC Laboratories America.

Caffe [14] is a machine learning library developed at UC Berkeley.

 After preliminary research about the different frameworks available, we chose Theano

because we found Theano to be more flexible, specifically due to libraries like Lasagne. Since

Theano is in Python, it is very easy to integrate it with the rest of our system, which is also

written in Python. It performs functions like input pre-processing and weights storage. Also,

today Theano is one of the most popular frameworks in the Machine Learning community.

Theano

 Theano [12,15] was developed by the University of Montreal. It is a Python library

used to define, optimize, and evaluate mathematical expressions, especially ones with

38

multi-dimensional arrays. It combines the convenience of NumPy’s syntax and the speed of

optimized native machine language.

Theano helps in creating symbolic expressions, are beneficial when creating a neural network.

Also, it supports static differentiation; that is, we just need to specify our architecture and the

loss function in a declarative way to get the gradients for free.

Theano is not a neural network library, but rather a mathematical expression compiler. Its basic

components are not neural network layers, but mathematical operations. But there are many

wrappers around Theano that provide neural network libraries. One of them that we have used

is Lasagne. Lasagne is a Python package used to train neural networks. It uses Theano

internally. We used Lasagne because of the following reasons:

● It implements LSTM. Theano by itself does not have implementation of LSTM. Theano

contains only building blocks like scan, but Lasagne has LSTM implementation.

● It implements various learning algorithms like stochastic gradient descent with

momentum, adagrad etc. We use Nesterov momentum [31].

● It implements the framework to keep track of all the neural network parameters, like

weights and biases. It makes it easy to save the parameters and initialize the model with

pre-trained weights.

Theano takes care of optimization while compiling. Right before the expression is compiled, it is

optimized. The expressions are represented as a graph of operations and variable nodes.

Theano contains a lot of graph optimizers, which modify the graph to optimally produce the

same result.

https://github.com/Lasagne/Lasagne
https://github.com/Lasagne/Lasagne

39

 In addition, Theano makes use of the GPU, if present. One of the Theano’s design goals is to

do computations at an abstract level, so that the compiler is flexible about how to carry out the

calculations on a graphic card. It supports both NVIDIA cards and OpenCL devices.

40

Chapter 6

DATASET

 Since our CAPTCHA breaking problem is a machine learning problem, we need a

huge amount of data to train our models. A standard dataset for CAPTCHAs is not publicly

available, so we had to generate the dataset synthetically. We used the Simple CAPTCHA

library [17], which is available in Java. It has various functions to create noise and backgrounds

in a CAPTCHA image. We wrote a Java module that generates a random string of 4 to 7

characters in length and then randomly adds noise to the image. The background of an image is

chosen with the same randomness. Below are a couple of images we generated through our

program.

Figure 14: CAPTCHA examples

All the images generated are of same size (200*50), where 200 is the width and 50 is the height

of the image. We trained our model using simple CAPTCHA images, complex CAPTCHA

images, and a combination of both. Simple images are those that have very little noise, as

shown in Figure 14 on the right-hand side, and complex images contain more noise and clutter,

as shown on the left-hand side of Figure 14. We created around 1 million simple images, 2

million complex images of fixed length 5, and 13 million images of variable length, which is a

combination of all kinds of possible CAPTCHAs using the SimpleCAPTCHA library. As we are

41

supplying labeled data, we have stored the name of the image as the output of that particular

CAPTCHA. This acts as a label for our models.

Before supplying images for training, we convert them to grayscale using a PIL library [18]

function to reduce a 3 channel image to 1 channel using the following formula:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

 Accuracy of neural networks depends upon the training data. If we have only one kind of

image in our training data, our model would not perform well with other data or real time data. So we

randomized our training data by generating images from different sources and randomly sampling

images to create batches for training. To ensure that the model does not overfit, we used a PHP

script to create fixed length (5) CAPTCHA images and merged it with our existing dataset. It worked

well, as mentioned in Chapter 7.

42

Chapter 7

Our Models

 We created two kinds of models: one using LSTM and another using multiple Softmax

layers. We trained on both fixed length and variable length CAPTCHAs.

Main blocks of our models

CNN:

 We have two convolutional layers, each with 5*5 dimensional 32 filters. After each

convolutional layer, we have a maxpool layer, which applies non-overlapping 2*2 matrix to get

the max of neighboring pixel values. Input images are 2D of size (height:50, width:200), as we

use only 1 channel.

First convolutional layer: Number of filters = 32

 Size of a filter = 5*5

 Stride = 1

First Maxpool layer: Pool size = 2*2

 Stride = 1

Second convolutional layer: Number of filters: = 32

 Size of a filter = 5*5

 Stride = 1

Second Maxpool layer: Pool size = 2*2

 Stride = 1

Dense layer : No of units : 256

 In dense layer, we use ReLU as an activation function.

43

Dropout layer : Probability 0.5, which means a unit in the dense layer is

 considered in a network at the time of training with a probability

 of 0.5.

RNNs:

We used LSTM for RNNs of size 256.

Different models

1) Fixed length with multiple Softmax: In this model, we used image CAPTCHAs of

fixed length (5 in our models) to train the model using a fixed number (again, 5 in our

case) of Softmax layers each predicting one character. Figure 15 illustrates the

architecture used. We trained this model using simple as well as complex dataset

images. The softmax layers at the top shared weights.

Figure 15: CNN with multiple oftmax

Dense
layer

Maxpool
Layer

Convolution
al layer

Convolution
al layer

Maxpool
layer

Softmax
layer

Dense
layer

Softmax
layer

Dense
layer

Softmax
layer

Dense
layer

Softmax
layer

Dense
layer

Softmax
layer

44

 2) Variable length: For variable length, we used CNN with RNN layer, as shown in Figure 15.

 In Figure 16, 3 RNN steps are taken for the sake of brevity. It should be equal to the

maximum number of characters possible in a CAPTCHA image. For example, in our model, we

have a maximum of 7. Figure 16 shows 3. Again, Softmax layers at the top share weights. We

trained this model on the images of fixed length as well as on the images of variable length.

Results are presented in the next section.

Figure 16: RNN architecture.

We assigned special label (“unk”), short for “unknown”, for termination. We mask the input. If we

get one “unk”, we do not go any further, because it is faster and will take fewer steps to train.

Dense layer

Maxpool Layer

Convolutional Layer

Convolutional Layer

Maxpool layer

Recurrent Layer Recurrent layer Recurrent layer

Softmax layer Softmax layer Softmax layer

45

Also, during training, exploding gradients were pulling the model too far in different directions.

We tried clipping the gradients, which helped reduce this issue by dampening the exploding

gradients.

3) Fixed length LSTMs:

This model is the same as the variable length model, but in this model, we fixed the number

of RNN steps. In this case, we did not pass any “unk” label. The architecture is same as that

of Figure 16. We trained this model on simple CAPTCHAs as well as on complex datasets.

The whole project is written in Python using publicly available Python libraries, as discussed in

Chapter 5. The project is available on GitHub at https://github.com/bgeetika/CAPTCHA-

Decoder.

https://github.com/bgeetika/Captcha-Decoder
https://github.com/bgeetika/Captcha-Decoder

46

Chapter 8

EXPERIMENTS AND RESULTS

 After generating images, as described in Chapter 5, we began training. To train a

model and make it more efficient, we packaged 20,000 images in one numpy file. This was

easier to load than loading one file at a time. We specified the batch size with which we want to

train the model. By default, there are 500 images.

For testing and validation, we put 20,000 images each.

The total number of epochs used in training is 20.

We have added various command line flags that help to customize our training. Below is the

output of a code snippet’s output showing the positional arguments used:

TrainingDirc: Path to training data directory

ValidateDirc: Path to validation data file

TestDirc: Path to test data file

ModelParamsFile: Path to the directory where params is to be
stored, followed by prefix for the parameter
file

optional arguments: -h, --help Show this help message and exit

-maxsoft, --maxsoft Provide this argument if you want to run
multiple softmax

-bidirec, --bidirec Provide this argument in order to run
bidirectional

-hiddenlayers, --hiddenlayers Number of hidden layers in the network

-learningrate, --learningrate Learning rate

47

 -batchsize, --batchsize Training batch size

-testsize, --testsize Test batch size

-includeCapital, --includeCapital Include capital letters or not

 -length, --length Length of the characters

-rescale_in_preprocessing, --rescale Rescale_in_preprocessing

--use_mask_input Use_mask_input

-lstm_layer_units, --lstm_layer_units No of units in lstm layer

 Table 1: Command line arguments supplied

 We have used a Google compute engine machine that had 8 cores. Because of this, we were
able to train multiple models at the same time.

48

Different model and the individual character accuracy achieved so far:

Type of model Individual Character Accuracy

LSTM fixed length (simple Dataset)

100%

LSTM fixed length (Complex dataset)

98.48%

Multiple Softmax fixed length(Simple
dataset)

99.8%

Multiple Softmax fixed length(Complex
dataset)

98.96%

LSTM only first character recognition

99.8%

LSTM with real data

99.2%

LSTM variable length with fixed length data

99.5%

LSTM variable length with variable length
data

97.31%

Table 2: Individual character accuracy for different models

49

Type of model

Individual Sequence Accuracy

LSTM fixed length (simple Dataset)

99.8%

LSTM fixed length (Complex dataset) 91%

Multiple Softmax fixed length(Simple
dataset)

99%

Multiple Softmax fixed length(Complex
dataset)

96%

LSTM with real data

97%

LSTM variable length with fixed length data

98%

LSTM variable length with variable length
data

81%

 Figure 17: Training loss vs. number of images trained on

Figure 17 shows how cross entropy loss decreased during the training. This particular graph is

taken from model that uses real data as well as generated data.

50

Number of images trained and training accuracy:

Figure 18: Training individual character accuracy vs. number of images trained on

The above graph shows how individual character accuracy improved during training. Since

getting a character correct is easier than getting the whole sequence right, the curve in Figure

18 is steep as compared to the curve in Figure 19, which plots sequence training accuracy

.

51

Table 3: Sequence accuracy for different models

Table 1 and Table 2 show the accuracy of models achieved so far. LSTMs on fixed size of

CAPTCHA length have provided good results, as we anticipated. Model with multiple Maxsoft

layers also did quite well, with 99% and 96% accuracy on simple and complex images,

respectively. We have also tried merging real data that we obtained from a website. In this case

as well, LSTM has provided 96.2% accuracy, with 99% individual character accuracy.

Graphs Generated:

Training loss vs. number of images trained on

Figure 19: Training sequence accuracy vs. number of images trained on

52

Number of images trained on and training accuracy:

 Training accuracy is generally a bit different then testing accuracy. The curves for

testing accuracy and training accuracy look similar. Figure 20 shows the individual character

accuracy and Figure 21 shows the sequence accuracy. Both of these curves are also generated

for models trained on website data and self-generated data.

Figure 20: Testing individual character accuracy vs. number of images trained on

53

Figure 21: Testing sequence accuracy vs. number of images trained on

54

Chapter 9

CONCLUSION

 In this project, we have tried to decode an image-based CAPTCHA using deep neural

networks. We have used convolutional neural networks and recurrent neural networks instead

of using the conventional approach of first cleaning a CAPTCHA image, segmenting the image,

and recognizing the individual characters. For machine learning problems, we need a large

amount of data, so we have generated a dataset of 13 Million image-based CAPTCHAs. The

programs generating this dataset will be publicly available so that they can be used by other

people in their research. We have exploited the capabilities of CNNs to work on the images and

RNNs to work with sequences. The model was trained on both simple CAPTCHAs and complex

CAPTCHAs. The accuracy achieved on fixed-length CAPTCHA was very impressive (99.8% for

simple images and 96% for complex images). We tried both fixed length and variable length

CAPTCHAs. Both give 99and 55 % accuracy respectively. Gradient clipping helped speed up

the training of LSTMs, which were otherwise very slow. Also, masking inputs helped learn

models faster.

 It is clear that the more kinds of CAPTCHAs we include in our training set, the more

robust our model will become. We have tried to demonstrate this by using a real dataset in our

training set, and were able to achieve 99% accuracy.

55

 While it is still in early stage, our model performs better than previous work that relies

on manually-generated segmentation oriented models. For example, our model beats the

accuracy of [2] model. More importantly, our approach is not impacted by the fragility inherent

in attacks while doing manual cleaning or segmenting of an image. This leads to our most

interesting finding: neural networks can learn to perform complicated tasks such as the

simultaneous localization and segmentation of ordered sequences of objects.

 In the end, we are able to provide end-to-end neural network system. Given an image,

we will be able to decode the CAPTCHA in that image.

56

Chapter 10

REFERENCES

[1] Moni Naor. Verification of a human in the loop or Identification via the Turing Test.

Unpublished Manuscript, 1997.

[2] Greg Mori and Jitendra Malik. Recognising Objects in Adversarial Clutter: Breaking a Visual

CAPTCHA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR'03), Vol 1,

June 2003, pp.134-141.

[3] Kumar Chellapilla, Patrice Y. Simard Using Machine Learning to Break VisualHuman

Interaction Proofs (HIPs) Microsoft Research, one microsoft way, WA. 2005

[4] Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, Vinay Shet. Multi-digit

Number Recognition from Street View Imagery using Deep Convolutional Neural Networks,14

Apr 2014.

[5] Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan, Show and Tell: A Neural

Image Caption Generator, 20 Apr 2015

[6] F. Azam and H. F. VanLandingham. An efficient dynamic system identification technique

using modular neural networks. Artificial Neural Networks for Intelligent Engineering, 7:225-

230,1997.

[7] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Long short term

memory,Technische Univ. Munich, 1991.

57

[8] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent nets:

the difficulty of learning long-term dependencies. In S. C. Kremer and J. F. Kolen, editors, A

Field Guide to Dynamical Recurrent Neural Networks. IEEE Press, 2001.

[9] H. Jaeger. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless

communication. Science, 2004.

[10] W. Maass, T. Natschläger, and H. Markram. A fresh look at real-time computation in

generic recurrent neural circuits. Technical report, Institute for Theoretical Computer Science,

TU Graz, 2002.

[11] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, J. Schmidhuber. A Novel

Connectionist System for Improved Unconstrained Handwriting Recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, 2009.

[12] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, Y.

Bengio - Theano: a CPU and GPU Math Expression Compiler.

[13] Torch7. http://torch.ch/ Accessed in Oct 2015.

[14] Caffe. http://caffe.berkeleyvision.org/.Accessed in Oct 2015.

[15] Theano. http://deeplearning.net/software/theano/.Accessed in Oct 2015.

[16] Lasagne. http://lasagne.readthedocs.org/en/latest/user/installation.htm.Accessed in Oct

2015.

[17] SimpleCAPTCHA.Simplehttp://simpleCAPTCHA.sourceforge.net. Accessed in Oct 2015

[18] Python Imaging Library. http://www.pythonware.com/products/pil/. Accessed in Oct 2015

[19] Receptive field of neurons in LeNet.

http://stats.stackexchange.com/questions/142606/receptive-field-of-neurons-in-lenet. Accessed

in Oct 2015

http://torch.ch/
http://caffe.berkeleyvision.org/
http://deeplearning.net/software/theano/
http://lasagne.readthedocs.org/en/latest/user/installation.html
http://www.pythonware.com/products/pil/
http://stats.stackexchange.com/questions/142606/receptive-field-of-neurons-in-lenet
http://stats.stackexchange.com/questions/142606/receptive-field-of-neurons-in-lenet

58

[20] ReLU Rectifier (neural networks). https://en.wikipedia.org/wiki/Rectifier_(neural_networks).

Accessed in Oct 2015

[21] Cross entropy. https://en.wikipedia.org/wiki/Cross_entropy. Accessed in Oct 2015

[22] LSTMS. http://deeplearning.net/tutorial/lstm.html. Accessed in Oct 2015.

[23] Tianhui Cai. CAPTCHA Solving With Neural Networks.2007-2008

[24] Artificial neural networks are changing the world. What are they?.

http://www.extremetech.com/extreme/215170-artificial-neural-networks-are-changing-the-world-

what-are-they. Accessed in Oct 2015.

[25] Minsky, M. S. Papert. An Introduction to Computational Geometry. MIT Press, 1969.

[26] Werbos, P.J. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences, 1975

[27] Yaniv Taigman,Ming Yang, Marc'Aurelio Ranzato, Lior Wolf. DeepFace: Closing the Gap to

Human-Level Performance in Face Verification, June 24, 2014.

[28] David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams. Learning representations by

back-propagating errors, July 31, 1986.

[29] CAPTCHA. https://en.wikipedia.org/wiki/CAPTCHA. Accessed in Oct 2015.

[30] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan

Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, Andrew Y. Ng. Deep Speech:

Scaling up end-to-end speech recognition, 17 Dec 2014

[31] Ilya Sutskever , James Martens , George Dahl , Geoffrey Hinton. On the importance of

initialization and momentum in deep learning.

[32] Tomas Mikolov Et al. Distributed Representations of Words and Phrases and their

Compositionality,Oct 16, 2013.

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Cross_entropy
http://deeplearning.net/tutorial/lstm.html
http://www.extremetech.com/extreme/215170-artificial-neural-networks-are-changing-the-world-what-are-they
http://www.extremetech.com/extreme/215170-artificial-neural-networks-are-changing-the-world-what-are-they
https://www.facebook.com/yaniv
https://www.facebook.com/yaniv
https://www.facebook.com/yaniv
https://www.facebook.com/myang671
https://www.facebook.com/myang671
https://www.facebook.com/myang671
https://www.facebook.com/marcaurelio.ranzato
https://www.facebook.com/marcaurelio.ranzato
https://www.facebook.com/marcaurelio.ranzato
https://www.facebook.com/marcaurelio.ranzato
https://www.facebook.com/liorwolf
https://www.facebook.com/liorwolf
https://www.facebook.com/liorwolf
https://en.wikipedia.org/wiki/CAPTCHA
http://arxiv.org/find/cs/1/au:+Hannun_A/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Case_C/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Casper_J/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Catanzaro_B/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Diamos_G/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Elsen_E/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Prenger_R/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Prenger_R/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Satheesh_S/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Sengupta_S/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Coates_A/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Ng_A/0/1/0/all/0/1

59

[33] Ilya Sutskever, Oriol Vinyals, Quoc V. Le. Sequence to Sequence Learning with Neural

Networks. Sep 10, 2014.

[34] Y.LeCun, B. Boser, J. S. Denke, D. Henderson, R. E. Howard, W. Hubbard and L.D. jackel.

Handwritten digit recognition with a back-propagation network. 1989.

[35] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time-series. In

M. A. Arbib, editor, The Handbook of Brain Theory and Neural Networks. MIT Press, 1995.

[36] http://www.lifehack.org/articles/technology/fed-with-distorted-texts-for-verification-google-

offering-new-captcha.html . Accessed in Oct, 2015.

[37] http://www.neuralpower.com/technology.htm. Accessed in Oct, 2015.

[38] http://www.cheshireeng.com/Neuralyst/nnbg.htm. Accessed in Oct, 2015.

http://arxiv.org/find/cs/1/au:+Sutskever_I/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Vinyals_O/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Le_Q/0/1/0/all/0/1
http://www.neuralpower.com/technology.htm
http://www.cheshireeng.com/Neuralyst/nnbg.htm

