
EXPERIMENTS WITH AND IMPLEMENTATION OF A CONTEXT SENSITIVE
TEXT SUMMARIZER

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Charles J. Bocage

August 2016

c○ 2016

Charles J. Bocage

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

EXPERIMENTS WITH AND IMPLEMENTATION OF A CONTEXT SENSITIVE
TEXT SUMMARIZER

by

Charles J. Bocage

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

August 2016

Dr. Christopher Pollett Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Dr. Robert Chun Department of Computer Science

ABSTRACT

EXPERIMENTS WITH AND IMPLEMENTATION OF A CONTEXT SENSITIVE
TEXT SUMMARIZER

by Charles J. Bocage

Automatic text summarization is the ability to obtain key ideas from a text

passage using as few words as possible. With the increase in data on the web, manual

summarization of web pages has become unfeasible, and the need for automatic text

summarization has become ever greater. This project explored and implemented

various parts of the automatic text summarization process for an open source search

engine, Yioop. These parts included stemming, text segmentation, term frequency

weighting, automatic sentence compression, and content management system

detection.

In addition, experiments were conducted on different pre-existing Yioop

summarizers. These results served as a baseline for comparison with results obtained

from two new ways to generate summaries which we implemented: A graph based

approach and an average sentence approach. Summaries were evaluated using

Recall-Oriented Understudy for Gisting Evaluation (ROUGE). Analyzing the

ROUGE results of each summarizer showed that the new summarizers did not

produce better summaries than Yioop’s pre-existing summarizers. During the course

of conducting these experiments, it was noted that the location of useful information

on a web page could often be obtained if one could determine the content

management system that created the web page. An extensible detector for the

content management system was written for the Yioop search engine. ROUGE

results using this system were recomputed for the various summarizers. Using the

content management system detector resulted in a ten to twenty percent increase in

ROUGE scores across various page experiments.

ACKNOWLEDGMENTS

I would like to express my gratitude towards my advisor Dr. Chris Pollett for

guiding me through the extensive research process that became this Master’s thesis.

Furthemore, I would like to thank Dr. Christopher Pollett for exposing me to this

topic in addition to all of his help during the journey to completion. I would also like

to thank my committee members Dr. Thomas Austin and Dr. Robert Chun for their

suggestions and support. Lastly, I would like to thank my family and friends for their

encouragement and belief in me.

v

Contents

Chapter

1 Introduction . 1

2 Background . 3

2.1 Automatic Text Summarization 3

2.1.1 Types . 3

2.1.2 Phases . 4

2.2 The Yioop Search Engine . 5

2.3 Term Frequency-Inverse Document Frequency 6

2.4 Text Segmentation . 6

2.5 Cosine Similarity . 7

2.6 Latent Semantic Analysis . 7

2.7 Redundant Word Removal . 8

2.8 Recall-Oriented Understudy for Gisting Evaluation (ROUGE) 8

2.8.1 Longest Common Subsequence 9

2.8.2 Skip-bigram Co-occurrence 10

3 Understanding the Preprocessing Before Summarization 11

3.1 Stemmers . 11

3.2 The Design of the Dutch Stemmer 11

4 Testing the Pre-Existing Summarizers 14

4.1 ROUGE Results . 14

5 Understanding and Creating a New Summarizer 15

vi

vii

5.1 Page Rank Algorithm for Ranking Sentences 15

5.2 Distortion Measure Calculation 15

5.3 Graph Based Ranking Summarizer 17

5.4 ROUGE Results . 18

6 Implementing Term Frequency Weighting in the Centroid-Based Sum-
marizer . 19

6.1 Term Frequency Weighting in the Centroid-Based Summarizer 19

6.2 Term Frequency Weighting Experiment Results 20

7 Centroid-Based Weighted Summarization 21

7.1 Centroid-Based Weighted Summarization Algorithm 21

7.2 ROUGE Results . 22

8 Locating and Testing Against a Large Data Set 23

8.1 Document Understanding Conference 23

8.2 Results of the Experiments with a Large Data Set 24

9 Improving the ROUGE Results Using Content Management System
Detection . 25

9.1 Content Management System Detection for Search Engines . . 25

9.2 Content Management System Detection Design 25

9.3 Content Management System Detection ROUGE Results . . . 27

10 Understanding the Post-processing After Summarization 29

10.1 Automatic Sentence Compression 29

10.2 Automatic Sentence Compression Framework Design 30

10.3 ROUGE Results . 31

viii

11 Conclusion and Future Work . 32

APPENDIX

A Appendix A: Yioop’s Summarizers Result Files 35

A.1 BASIC ROUGE Result . 35

A.2 CBS ROUGE Result . 35

A.3 BASIC ROUGE Configuration File 36

A.4 CBS ROUGE Configuration File 40

A.5 Human Generated Input . 44

A.6 System Generated Input . 45

B Appendix B: Graph Based ROUGE Result 47

C Appendix C: CBS Weighted ROUGE Result 49

D Appendix D: Locating and Testing Against a Large Data Set Result Files 51

D.1 Overall Rankings . 51

D.2 ROUGE Test Rankings . 51

E Appendix E: Improving the Creator’s Algorithm Result Files 54

E.1 CBWS ROUGE Result Before 54

E.2 CBWS ROUGE Result After 54

F Appendix F: Understanding the Post-processing After Summarization
Result Files . 56

List of Tables

D.1 Overall Rankings . 51

D.2 ROUGE Test Rankings . 53

ix

List of Figures

1 Summarization classification . 4

2 Automatic Text Summarization Process 5

3 R1 and R2 Regions . 12

4 Example of a Dutch Stemmer . 13

5 Sample Text Passage Graph . 16

6 Example of a graph based summarizer in PHP 18

7 Example of an additional weighting algorithm in PHP 20

8 Example of a centroid based weighted summarizer in PHP 22

9 Sample WordPress HTML Header 26

10 Example of a head tag checker for WordPress in PHP 27

11 Sentence Compression Algorithm in PHP 31

x

CHAPTER 1
INTRODUCTION

Automatic text summarization (ATS) is the use of computer algorithms to

obtain key ideas from a text passage using as few words as possible. Modern search

engines obtain documents from across the web in a variety of tag based languages.

Choosing what to index from these documents is an important step in making

documents searchable and involves ATS. This thesis reports on our attempts to

improve the summarization component of the Yioop open source search engine.

The first work on ATS was done by Luhn [11] in the 1950s. He suggested using

many of the common techniques like term frequencies and stop work removal to

summarize content. Over the years, Luhn’s techniques still remain in use, and some

improvements have been made. For example, the inverse document frequency

calculation was introduced to improve the term frequency technique. The latest

techniques and improvements are discussed further in Chapter 2.

This thesis project uses the Yioop search engine to produce its summaries. The

Yioop search engine is an open source search engine created by Dr. Christopher

Pollett at San Jose State University.Since its inception, it has grown to have 30

contributers. Yioop has a search front end, a crawler to obtain documents, and an

indexer that makes use of a summarizer. It also has several other features that were

of lesser importance to this project such as a news service, social groups, blogs, wikis,

and website hosting.

In order to improve something, one needs a metric to evaluate its current

performance. So to improve a summarization algorithm, one needs a tool for

measuring the quality of the summaries it generates. Judgments made by a

committee of trained evaluators were among the first approaches to measuring

1

summary quality. However, when one has a very large number of documents to

evaluate, this process can be very slow. Before automation, it could take thousands of

hours to evaluate all the summaries for a contest like the Document Understanding

Conference. Recall-Oriented Understudy for Gisting Evaluation (ROUGE) was

developed to provide a mechanism whereby summaries could be evaluated frequently

at large scale. ROUGE is currently the gold standard for calculating summary metrics

and was used to evaluate the summaries produced by the Yioop search engine.

The result sections of each experiment show that improving summarization

algorithms is difficult. Using content management system (CMS) detection is one

way of improving summarization for search engines. This is because traditional

summarizers digest plain text content but search engines summarize HTML

documents. The HTML documents usually contain non-important content like

navigations and links to other pages. Implementing CMS detection can improve

summarization results by ten to twenty percent. It does this by allowing the

summarizer to focus on the important content only.

This paper is organized as follows: Chapter 2 provides background information

on the building blocks of the experiments. Chapter 3 covers an experiment with

summarization preprocessing. In Chapter 4 the pre-existing summarizers in the Yioop

search engine are compared. Chapter 5 covers a new summarizer for the Yioop search

engine. Chapter 6 covers an algorithm in which to augment term frequency weights.

Chapter 7 covers a new summarization algorithm using a concept based on average

sentence closeness. Chapter 8 covers a comparison of the current summarizers,

including the two new ones, against a large data set. Chapter 9 covers applying

content management system detection to the summarization process. Chapter 10

covers summarization post-processing. Finally, Chapter 11 concludes the paper and

presents possible future work.

2

CHAPTER 2
BACKGROUND

2.1 Automatic Text Summarization

Summarization of a text passage is a complex task. To be able to summarize a

text passage efficiently, a summarizer needs to be broken down into different parts.

At a high level, ATS can be explained further by splitting the discussion into types

and phases.

2.1.1 Types

Summarizers can be extract based or abstract based. Extract based

summarizers output the sentences as they are written and abstract based

summarizers attempt to paraphrase the sentences they output. In addition,

summarizers are categorized by how many documents they try to summarize

simultaneously. The two categories are single document or multi document. Single

document summarization is obviously easier than multi document because there is

only one document processed at at time. For example, a multi document summarizer

faces the problem of choosing duplicate content in its summaries because the same

content could appear in more than one of the documents it is summarizing.

Furthermore, summarizers can be either knowledge rich or knowledge poor.

Knowledge rich summarizers have an external corpus of training data to improve the

results of the summaries they produce and knowledge poor summarizers do not. They

rely solely on the content being summarized to generate their summaries.

Lastly, summarizers can be extended for a specific use case. Most commonly,

summarizers will summarize the content but sometimes they are focused to provide

special features: query focused, update, and guided. Query focused summarizers hone

in on their content based on a provided query. Update summarizers target new pieces

3

of information from articles assuming a reader has already read related articles.

Guided summarizers classify their summaries into categories like earthquakes,

hurricanes, and cyclones. The summarizers in the Yioop search engine are extract

based, single document, and knowledge poor with no specific purpose extensions.

Figure 1 shows how each summarization category fits together.

[21]

Figure 1: Summarization classification

2.1.2 Phases

Figure 2 depicts the six phases in the creation of a summary: preprocessing,

feature selection, context representation, content selection, context ordering and

sentence realization. The preprocessing phase consists of eliminating terms that are

not useful. The feature selection phase finds valuable characteristics of textual

contexts. The context representation phase puts the context into a representable

form.

4

[21]

Figure 2: Automatic Text Summarization Process

In addition, the context selection phase marks the sentences such that the next

task can easily choose the sentences to be in the summary. The last two phases are

rarely used. Context ordering attempts to cluster or structure the text in an order

that would generate a more coherent summary. Sentence realization attempts to

summarize each of the sentences in the summary to produce a more concise version.

2.2 The Yioop Search Engine

As a search engine, after downloading a web page, Yioop uses a summarizer to

select the content to be added to its index. The process of downloading a web page is

performed by its fetcher. Once the web page is downloaded, the fetcher calls its

HTML processor routines. Within those routines, the configured summarizer is

loaded and summarization is performed. Once the summary is produced and stored,

the fetcher performs the same actions on the next web page.

Again, the summarizers in the Yioop search engine are extract based, single

5

document, and knowledge poor with no extensions. There were two pre-existing

summarizers in the Yioop search engine, the basic summarizer (BASIC) and the

centroid-based summarizer (CBS). BASIC generates a summary by extracting

sentences from an HTML document in a fixed order. CBS performs its summary

generation using a centroid (a set of words that are statistically important to the

document) to get the main idea for the document. After the centroid is created, CBS

computes the text frequencies and cosine similarity to build the summary.

2.3 Term Frequency-Inverse Document Frequency

Term frequency-inverse document frequency (TF-IDF) is a task performed in

the feature selection phase of summarization. TF-IDF determines the relevance of a

sentence by computing its statistical weight. TF is a function of number of times

(TC) the term w appears in the document d, otherwise known as its term frequency.

Inverse document frequency (IDF) is the number of documents |D| divided by the

number of documents the term appears in plus 1:

𝑤𝑒𝑖𝑔ℎ𝑡(𝑤, 𝑑) = 𝑇𝐹 (𝑤, 𝑑) · 𝐼𝐷𝐹 (𝑤)

𝑇𝐹 (𝑤, 𝑑) = 𝑇 𝐶(𝑤,𝑑)
|𝑑|

𝐼𝐷𝐹 (𝑤) = 𝑙𝑜𝑔 |𝐷|
|𝐷(𝑤)| + 1

2.4 Text Segmentation

In order for a summarizer to perform efficiently, text segmentation is critical.

Text segmentation divides the text passage into separate contexts. In the case of a

summarizer, the contexts are sentences. For example, the English language is difficult

to segment because sentences do not always end with a period, question mark or

exclamation point. Shortening someone’s middle name by using a period could

confuse the text segmentation process. ‘‘Jane E. Doe likes computers’’ could be

mistaken as two sentences when it is one.

6

To avoid text segmentation problems, rule-based or machine-learning

approaches are used. Rule-based approaches segment a text passage using regular

expressions. On the other hand, machine-learning approaches are more sophisticated,

using techniques like decision trees or neural networks that leverage comprehensive

training sets.

2.5 Cosine Similarity

One way to tell if a sentence is similar to another during the feature selection

phase is to calculate their similarity using the Euclidean dot product formula

𝐴 · 𝐵 = ||𝐴|| ||𝐵|| cos 𝜃 [20]. Isolating cos 𝜃 leaves the cosine similarity formula to

be cos 𝜃 = 𝐴 · 𝐵
||𝐴|| ||𝐵|| , where A and B are sentences represented by vectors. A and B are

composed of the TFs of each term in the sentence relative to the entire document.

For example, consider a document that contains the set of terms {a b c b a} and two

sentences of {a c} and {a b}. The example document consists of three distinct terms

{a, b, c}, so the TF vectors will contain three slots. To compare their similarity, the

terms need to be counted. The TF vector for {a c} is {1, 0, 1}, the TF vector for {a

b} is {1, 1, 0}, and the absolute TF is {2, 2, 1}. Calculating the cosine similarity for

the two sentences gives 0.5. A perfect match is a value of 1.0. The closer the cosine

similarity value is to 1.0, the more similar the sentences are.

2.6 Latent Semantic Analysis

Latent semantic analysis (LSA) is a matrix-based approach to capture the

relationship between terms and the text in which they occur. LSA can be used to

generate a summary of a text passage. To do it, LSA converts the text passage into

an initial TF matrix 𝑋. Based on 𝑋, LSA creates new matrices using the singular

vector decomposition (SVD) process. To perform the SVD computations, the initial

matrix X, of r rows by 𝑐 columns, is decomposed into three matrices: U, S, V. U is an

𝑟 x 𝑟 sized matrix consisting of the eigenvectors of 𝑋𝑋𝑇 . The rows of U represent the

7

co-occurrences of the terms. The 𝑆 matrix is an 𝑟 x 𝑐 diagonal matrix representing

the importance of the eigenvectors. The matrix 𝑉 is the opposite of 𝑈 . It is a 𝑐 x 𝑐

matrix of the eigenvectors of 𝑋𝑇 𝑋. The rows of V represent the relationship between

context in the text passage. Once the text passage has been decomposed using SVD,

it can be used to approximate context similarity. Context similarity can be

approximated by using the rows of V or the rows from the dot product of V and S.

2.7 Redundant Word Removal

Redundant word removal is performed in the preprocessing phase of

summarization. Redundant words are words that occur frequently but are not

particularly important to sentences. The idea behind redundant word removal is that

removing redundant words helps sentences appear more relevant. For example,

either, already, and often are stop words used for summarizing text written in English.

Consider the sentence: I drink water often. Removing the word ‘‘often’’ does not

change the meaning of the sentence but makes it appear more relevant.

2.8 Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

To perform summarizer evaluations frequently and on a large scale, [9] began

developing a system called Recall-Oriented Understudy for Gisting Evaluation

(ROUGE). ROUGE is a well designed PERL script whose purpose is to determine the

quality of a summary by comparing it to human summaries. ROUGE uses various

metrics to calculate statistics: Recall (R), Precision (P), and F measure. The P

measure is the relevance of the retrieved documents, the R measure is the relevance

of the relevant documents, and the F measure is a combination of both.

𝐹 = 2 · precision · recall
precision + recall

𝑟𝑒𝑐𝑎𝑙𝑙 = |{relevant documents} ∩ retrieved documents|
|{relevant documents}|

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = |{relevant documents} ∩ retrieved documents|
|{retrieved documents}|

8

provided by [18]

Below is a brief explanation of each test ROUGE can perform:

∙ ROUGE-L measures sentence-to-sentence similarity based on the longest
common subsequence (LCS) statistics between a candidate translation and a set
of reference translations [9].

∙ ROUGE-S computes skip-bigram co-occurrence statistics [9].

∙ ROUGE-W is an extended version of ROUGE-L. The only difference is
ROUGE-W weights the LCS statistics and favors contiguous occurrences.

∙ ROUGE-SU is an extended version of ROUGE-S. ROUGE-SU considers
skip-bigrams and unigrams, hence the addition of U in the name.

∙ ROUGE-N is an N-gram recall between a candidate summary and the reference
summaries. N is the length of the n-gram [9] usually between one and four.

Further details of each of these measures is covered in the next sections.

2.8.1 Longest Common Subsequence

Determining the longest common subsequence (LCS) of two text passages is

one way to detect how similar they are. This technique is used in the ROUGE-W

measure. The use of LCS originates in biology. Biologists use the LCS to compare

DNA strands of different organisms in order to find out how similar or related the

organisms are. DNA molecules are chains that can be viewed as a string of subunits.

The chains are built from simpler subunits that are denoted by the letters A, C, G, T.

The LCS technique can easily be transferred for other uses such as

summarization. The difference is that the sequences are words instead of letters.

Cormen [4] defines a subsequence as ‘‘the given sequence with zero or more elements

left out.’’ Using LCS as a base, summarization requires that order be preserved in a

common subsequence. A common subsequence is a subsequence contained in both

sentences and LCS’s goal is to find the longest one. Cormen gives a good example of

two sentences and how LCS would evaluate them. Consider the two sentences X={A,

9

B, C, B, D, A , B} and Y={B, D, C, A, B, A}. They have many common

subsequences: {A, B}, {B, D}, {B, C, A}. The longest LCSes are {B, C, B, A} and

{B, D, A, B}. In such cases where there is more than one LCS, the standard dynamic

programming algorithm will choose the first one it encounters.

2.8.2 Skip-bigram Co-occurrence

Skip-bigrams are pairs of terms from a sentence occurring in order while

allowing for other terms to be skipped. ‘‘Skip-bigram counts all in order matching

word pairs while LCS only counts the longest one’’ [9]. For example, a sentence {A,

B, C, D} has six skip-bigrams: {A, B}, {A, C}, {A, D}, {B, C}, {B, D}, and {C, D}.

Skip-bigram also has to consider the distance between terms because the chance of a

bigram being duplicate words is great. For example, {the, the}. The formula below is

used to compute the Skip-bigram Co-occurrence F measure, recall, and precision

scores. X and Y represent sentences, while m is the length of X and n is the length of

Y. If the distance of the terms is to be restricted further, the m and n can be replaced

with smaller values. As defined in [9]:

𝑅𝑠𝑘𝑖𝑝2 = 𝑆𝐾𝐼𝑃 2(𝑋,𝑌)
𝐶(𝑚,2)

𝑃𝑠𝑘𝑖𝑝2 = 𝑆𝐾𝐼𝑃 2(𝑋,𝑌)
𝐶(𝑛,2)

𝐹𝑠𝑘𝑖𝑝2 = (1 + 𝛽2)𝑅𝑠𝑘𝑖𝑝2𝑃𝑠𝑘𝑖𝑝2
𝑅𝑠𝑘𝑖𝑝2 + 𝛽2𝑃𝑠𝑘𝑖𝑝2

10

CHAPTER 3
UNDERSTANDING THE PREPROCESSING BEFORE SUMMARIZATION

Before delving directly into the Yioop summarization process, a simple

experiment with stemming was performed. A truncating stemmer in the Dutch

language is the stemmer used in the experiment which was tested on over 49000

words provided by Martin Porter.

3.1 Stemmers

A stemmer is an algorithm that reduces all words with the same stem to a

common form [10]. The reducing of words to a common form is known as conflation

(to bring together). For example, connect, connected, connecting, connection and

connections [15] would all conflate to connect. Stemmers are broken down into three

categories: truncating, statistical and mixed. A truncating stemmer removes the

appropriate affixes (prefix or suffix) in a word. Statistical stemmers remove affixes

based on statistical analysis such as letter frequency. Lastly, a mixed stemmer uses

inflectional and derivational methods to stem words.

Most stemmers are used as part of an information retrieval (IR) system or used

for natural language processing. Julie Beth Lovins developed the first IR stemmers in

1968. Many stemmers today are general purpose because of the work of Martin

Porter. In 1980, Porter presented a simple algorithm for stemming English language

words [15]. Porter’s website, tartarus.org, has stemmers for many languages. Each

supported language on Porter’s website contains pseudo-code for implementing your

own version of his stemmers defined in his proprietary language called snowball [16].

3.2 The Design of the Dutch Stemmer

To stem a word in the Dutch language, various steps need to be performed. To

code this properly, the programming language of choice must be able to interact with

11

Unicode characters because the Dutch language contains letters with accents and

umlauts. The first step is to remove all characters with umlauts or accents and

replace them with their normal letter equivalent. The next step sets up the term such

that a y is appended, a y is placed after every vowel, and i’s are capitalized. The

next two steps define regions within the term as shown in Figure 3:

R1 is the region after the first non-vowel following a vowel, or is the null
region at the end of the word if there is no such non-vowel. [17]

R2 is the region after the first non-vowel following a vowel in R1, or is the
null region at the end of the word if there is no such non-vowel. [17]

[17]

Figure 3: R1 and R2 Regions

Then the algorithm proceeds through five steps to complete the stemming

process. Step 1 performs certain actions on specific suffixes: heden, en ene, and s se.

Step two deletes the suffix e if in region one and a vowel is in front of it. If this case

is true it undoubles its ending. Step 3a deletes heid if it is in region two and there is

not a letter c in front of it. Step 3b performs certain actions on more suffixes: end

ing, ig, lijk, baar, and bar. Lastly step four removes duplicate vowels in between two

consonants. Figure 4 is an example of a Dutch Stemmer.

12

Figure 4: Example of a Dutch Stemmer

13

CHAPTER 4
TESTING THE PRE-EXISTING SUMMARIZERS

The next experiment was to compare the Yioop search engine’s pre-existing

basic summarizer (BASIC) and centroid-based summarizer (CBS) results to human

created summaries on a sample of web pages and report the results. Each summarizer

was run to produce its summaries. The summary results were then compared using

the ROUGE software package, which is the gold standard for calculating

summarization metrics.

4.1 ROUGE Results

Overall, BASIC performed superior to the CBS. The test results were analyzed

down to their respective R, P and F metrics. BASIC outperformed the CBS for the

ROUGE-1, ROUGE-L, ROUGE-S, and ROUGE-SU in all metrics. BASIC and CBS

tied in all metrics for the ROUGE-4 test. Furthermore, they split results in the

ROUGE-2, and ROUGE-3 tests. All was not lost for the CBS because it did manage

to surpass BASIC in all of the metrics for the ROUGE-W-1.2 test. The complete

results are in Appendix A.

14

CHAPTER 5
UNDERSTANDING AND CREATING A NEW SUMMARIZER

The overarching goal for this project is to improve Yioop’s automatic

summarization capacity. After an extensive literature review of current summarizers,

a new summarizer was chosen to implement. Once the new summarizer was

implemented, its ROUGE results were compared to Yioop’s pre-existing summarizers.

5.1 Page Rank Algorithm for Ranking Sentences

There is a famous algorithm that is used to rank web pages created by Larry

Page and Sergey Brin, the founders of Google [8]. It can be used to rank sentences as

well. Here is a simple example of how it works: if there are five sentences, an initial

probability vector [1/5, 1/5, 1/5, 1/5, 1/5] is created. An orthogonal matrix, in this

case five by five, between sentences is created with entries defined using a distortion

measure defined later. This orthogonal matrix is referred to as the adjacency matrix.

The adjacency matrix is multiplied by the probability vector to generate a new

probability vector. Then the squared difference (∑︀𝑖
(𝑣,𝑤)[𝑣𝑖 − 𝑤𝑖]2) of the old

probability vector v and the new probability vector w are compared. The process is

repeated until the squared difference is below some threshold. For summarization,

ten iterations are sufficient. ‘‘As few as 10 iterations produced a good approximate

ordering, competitive with the exact ordering produced by the traditional

convergence measure’’ [8]. When the ten iterations are complete, the probability

vector is returned and is used to generate the summary. Each sentence is added to

the summary in order of highest probability to lowest probability.

5.2 Distortion Measure Calculation

A distortion measure (DM) is used to calculate the entries of the adjacency

matrix. The distortion measure between sentences is the sum of the frequencies of all

15

the words in common divided by the sum of words that are not in common.

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = Sum
non common words

Figure 5 is what the adjacency graph for our five sentence example looks like.

[19]

Figure 5: Sample Text Passage Graph

Here is an algorithm for computing distortion:

1. Check each word in sentence1 to see if it exists in sentence2. If the word X of

sentence1 does not exist in sentence2, square the score of word X and add to

the sum and increase the number of not-common words by one.

2. In case the word X is common between sentence1 and sentence2, calculate its

frequency in sentence2 and subtract it from the score of word X, then square

and add to sum.

3. Then check the sentence2 to find its not-common words with sentence1, in case

the word Y is not in sentence1, square the score of word Y and add to sum and

increase the number of not-common words by one.

16

4. At the end, calculate the distortion between sentence1 and sentence2 by

dividing sum by the number of not-common words.

5.3 Graph Based Ranking Summarizer

The Graph Based Summarizer was created based on the Graph Based Ranking

Summarizer [19]. It constructs a weighted graph out of the text where the sentences

are the nodes. First, the file has to be read entirely into memory. Next, the

non-ASCII characters are removed. The next module replaces all new lines with

spaces to help when it is time to split up the text into sentences.

Next the sentences are separated using the following regular expression:

(?<!\w\.\w.)(?<![A-Z][a-z] \.)(?<=\.|\?). After the sentences are split, the stop

words are removed. Furthermore, the punctuation is removed from the sentences.

Now a porter stemmer is used to stem the remaining words. A vector is created that

holds each word and the count of how many times the word occurs in the text. A

weighted graph is created, known as the adjacency matrix, using the distortion

measure. Finally, the sentences are ranked using the summarization form of the page

rank algorithm. Figure 6 is an example of a graph based summarizer in PHP.

17

Figure 6: Example of a graph based summarizer in PHP

5.4 ROUGE Results

The raw results are in Appendix B. However an analysis of the results shows

that they were dramatically lower than the BASIC and CBS already in the Yioop

search engine. The highest result was not anywhere near the lowest for either of the

other summarizers. For example, in the ROUGE-1 test, the CBS 95%-conf int value

was 0.76663, the BASIC value was 0.80587, and the GBS value was 0.32603.

18

CHAPTER 6
IMPLEMENTING TERM FREQUENCY WEIGHTING IN THE

CENTROID-BASED SUMMARIZER

The next attempt to improve Yioop’s summarizers was to extend CBS to

include additional term weights. Once the algorithm was implemented, it was

evaluated using ROUGE and compared to the other summarizers.

6.1 Term Frequency Weighting in the Centroid-Based Summarizer

This experiment considers the effect of adding weights to the centroid-based

summarizer in order to improve its results. To do this, how the terms should be

weighted and what to do with the additional weight values has to be defined. For

example, if the term is in an H1 (heading) tag, a numerical weight is added to that

term’s frequency. The HTML tags are classified into six categories. The first class

contains only the A (anchor) tag. The second class contains the H1 and H2 heading

tags. The third class contains the H3, H4, H5 and H6 heading tags. The fourth class

contains the text emphasizing and list tags: STRONG, B, EM, I, U, DL, OL and UL

tags. The fifth class contains the TITLE tag and the sixth class is everything else.

Terms that fall through to the sixth class gets no additional weight.

The weight of each tag is multiplied by its term frequencies in that tag and

summed. In other words, the weight of a term is the sum of all weights multiplied by

its respective frequency in that tag. Figure 7 is an example of an additional weighting

algorithm in PHP.

19

Figure 7: Example of an additional weighting algorithm in PHP

6.2 Term Frequency Weighting Experiment Results

No combination of weights was able to consistently improved the results over

the original summarizers. It seemed that no matter what the weight was, the results

were consistently lower. The CBS summarizer Average_R value without weighting

was 0.76663 and with weights was 0.24689. Additional results are located in

Appendix C.

20

CHAPTER 7
CENTROID-BASED WEIGHTED SUMMARIZATION

The goal of this experiment was to create a new algorithm that applies weights

a different way in hopes of producing better ROUGE results. Again, the results of

this experiment are evaluated using ROUGE.

7.1 Centroid-Based Weighted Summarization Algorithm

The main idea of the centroid-based weighted summarizer (CBWS) is to find

the sentences that are closest to the average sentence. This is done by first calculating

the term frequencies for all sentences. Next the term frequencies for all of the

sentences are normalized. Then the average sentence is calculated adding each term

frequency column value and dividing it by the total number of rows. To compare the

closeness of each sentence to the average sentence, the dot product of each sentence

and the average sentence is calculated. Lastly, the dot product values are sorted with

the largest at the top to represent the most important to least important sentences.

Figure 8 is an example of a centroid based weighted summarizer in PHP.

21

Figure 8: Example of a centroid based weighted summarizer in PHP

7.2 ROUGE Results

The raw results are in Appendix E. The CBWS results were a little lower than

the BASIC and CBS summarizers. One thing to note was that the results were better

than the GBS.

22

CHAPTER 8
LOCATING AND TESTING AGAINST A LARGE DATA SET

The goal of this experiment was to test all of the summarizers against a large

data set rather than the smaller human created data considered so far. The large

document set used is from the Document Understanding Conference (DUC).

8.1 Document Understanding Conference

The Document Understanding Conference (DUC) is an event organized by the

National Institute of Standards and Technology (NIST) that consists of a many

summarization evaluations. ‘‘Its goal is to further progress in automatic text

summarizations and enable researchers to participate in large-scale experiments in

both the development and evaluations of summarization systems’’ [14]. DUC was

held during the years 2001-2007. Its tasks have been merged into the Text Analytic

Conference (TAC) which is also organized by the NIST.

DUC produces data that are useful for testing summarizers. The data are

broken into two tasks, a main task and an update task. The tasks are independent of

each other. The participants in the conference can choose to do one of them or both.

The main task focuses more on the question answering problem. Contestants are

given a topic and a set of 25 relevant documents they need to produce a 250-word

summary that answers the questions in the topic. The update task contestants

produce a 100-word summary based on the AQUAINT corpus. The AQUAINT

corpus is ‘‘newswire articles from the Associated Press and New York Times (1998 -

2000) and Xinhua News Agency (1996 - 2000)’’ [14]. The purpose of the summaries is

to update the readers of new information based on the assumption that the readers

have already read an earlier set of articles.

23

8.2 Results of the Experiments with a Large Data Set

Remember, Yioop has four summarizers: a centroid based summarizer (CBS), a

basic summarizer (BASIC), a graph based summarizer (GBS) and a centroid based

weighted summarizer (CBWS). There were 38 DUC summaries (4 of ours, 12 human

and 22 candidates) used in the experiment. Reviewing the files in the Appendix D,

the summarizer results all average closely together with the GBS being the best on

average. The CBS had the best rank while the BASIC had the lowest rank. Although

the generated summaries were better than some of the other summarizers, they still

have 13 (17 total minus 4 human) computer generated summarizes ahead of them at

best. Based on further analysis, BASIC performed best on each of the F-measure,

Precision or Recall tests while the other summarizers did really well with the Recall

tests.

24

CHAPTER 9
IMPROVING THE ROUGE RESULTS USING CONTENT MANAGEMENT

SYSTEM DETECTION

The goal of this experiment was to try to get better ROUGE results using

content management system detection before summarizing the content.

9.1 Content Management System Detection for Search Engines

When a search engine crawls a web page, it extracts the most important parts

to store in its index. Not all parts of a web page need to be viewed as important to

the page, for example, the page’s navigation or side-bar content. Detecting which

content management system (CMS) a web page uses can improve the important

content extraction. A CMS is a tool ‘‘for building and maintaining web applications

for many disciplines’’ [12]. In other words, a CMS helps organizations stand up web

content quickly with virtually no web programming experience. For example,

WordPress offers its users plugins, themes, and site management functionality to

publish content and apply consistent layouts. WordPress is so popular that it is used

by 25.4% of all the websites [25].

9.2 Content Management System Detection Design

Most, if not all, CMS generated web pages leave a fingerprint behind in the

HEAD tag. For example, a HEAD tag from my blog’s WordPress pages has paths to

style sheets that almost always contain the words wp-content or wp-include as shown

in Figure 9. Although any web page could have a similar entry in its HEAD tag and

not be generated by WordPress, it is assumed not to be the case for our experiment.

Figure 10 is an example of a head tag checker for WordPress in PHP.

25

Figure 9: Sample WordPress HTML Header

26

Figure 10: Example of a head tag checker for WordPress in PHP

9.3 Content Management System Detection ROUGE Results

The ROUGE results improved by ten to twenty percent when CMS detection

was used. They are given in Appendix E. For example, the ROUGE-1 Average_R

score went up from 0.66665 to 0.80863 for the CBWS summarizer. Naturally, the

27

next thing to do was to see if the other summarizers would also produce better

results. The only one that did not increase was the CBS.

28

CHAPTER 10
UNDERSTANDING THE POST-PROCESSING AFTER SUMMARIZATION

The goal of this experiment was to create a simple automatic sentence

compression framework to improve text summarization. The ROUGE results were

compared with and without automatic sentence compression.

10.1 Automatic Sentence Compression

‘‘Automatic sentence compression can be broadly described as the task of

creating a grammatical summary of a single sentence with minimal information loss’’

[2]. The goal is to provide a more concise summary as a human would. Research on

automatic sentence compression (ASC) has shown that ‘‘in many cases, sentences in

summaries contain unnecessary information as well as useful facts’’ [13]. It is also

noted that the longer the sentence, the greater the chance it contains unnecessary

information. For example, consider the sentence:

As a tenured professor, Dr. Pollett has mentored many graduate students,
who sometimes work on his search engine, which has improved the
breadth of research on many topics.

Dr. Pollett mentors students, students working on his search engine and improving

the breadth of research are three distinct topics. Depending on what is in the rest of

the article being summarized, one of more of those topics may be irrelevant.

Research on automatic sentence compression has focused on rule based, term

knowledge, and statistical approaches to solving the problem. The rule based

approach uses knowledge about how each term is related to the rest of the summary

and/or syntactic structure of the sentence. For example, syntactical structure is used

to trim sentences. ‘‘Commas, periods, and sentence start are used in identifying most

of those items to remove’’ [3]. Term knowledge comes in the form of a corpus that

29

consists of ‘‘original sentences and their corresponding reduced forms written by

humans for training and testing purpose’’ [6]. The corpus is further used to match

phrases from the human summary to phrases in the document being summarized.

The statistical approach uses rules, but the rules are not coded into the summarizer;

they are learned. For example, rules are created using the first section of the Penn

Treebank [23] (a syntactic and semantic parser), counting up all of the best context

free grammar expansions [24]. Rules are also created using discourse informed models

built on the framework of Integer Linear Programming [1].

10.2 Automatic Sentence Compression Framework Design

The sentence trimming algorithm presented is based on [3]. It relies on lists of

words that fall into the various categories like propositions, determiners, and

conjunctions. In other words, it looks for specific words, phrases or clauses and

removes them. The algorithm has seven categories but only four of them were

implemented as show in Figure 11. They are [3]:

∙ We remove many adverbs and all conjunctions, including phrases such as ‘‘As a
matter of fact,’’ and ‘‘At this point,’’ that occur at the start of a sentence.

∙ We remove a small selections of words that occur in the middle of a sentence,
such as ‘‘, however,’’ and ‘‘, also,’’ (not always requiring the commas).

∙ For DUC 2006, we added the removal of ages such as ‘‘, 51,’’ or ‘‘, aged 24,’’.

∙ We remove relative clause attributives (clauses beginning with ‘‘who(m)’’,
‘‘which’’, ‘‘when’’, and ‘‘where’’) wherever possible.

30

Figure 11: Sentence Compression Algorithm in PHP

10.3 ROUGE Results

The sentence compression implementation was tested against the DUC data

where it did not increase the ROUGE results. The DUC data have 120 documents to

summarize and seven ROUGE tests to perform. That result in to a total of 875 tests

for each summarizer. Out of the 875 tests, sentence compression lost 793 to 82 for the

BASIC, 740 to 135 for the CBS, 821 to 54 for the CBWS and 784 to 91 for the GBS.

31

CHAPTER 11
CONCLUSION AND FUTURE WORK

The purpose of this project was to experiment with different parts of the

automatic text summarization process, implement some new algorithms, and improve

ROUGE results for the Yioop search engine. In the end, a Dutch stemmer was

created, two new summarizers were created, summarizers were evaluated against a

large data set, and a basic sentence compression framework was created.

During the research on automatic text summarization, questions arose that

have not been answered yet. First, research on applying the appropriate weights to

terms in order to increase the term’s importance was not successful. In chapter 6, the

weighting schemes tested did not produce any noticeable results. In addition, the

summarizers in the Yioop search engine perform text segmentation their own way.

The new summarizers written required sentences to be segmented with and without

punctuation. Future work in this area would consist of researching the best approach

to segment the contexts and integrating it into the of Yioop’s summarizers, still

preserving the versions with and without punctuation. Moreover, the experiment in

Chapter 9 uncovered that detecting the CMS that produced the web page increased

the ROUGE results but the work is not 100% complete. Some analysis could be done

to see how similar the schemas are from version to version of the CMS to better

facilitate CMS detection.

32

REFERENCES

[1] Clarke, James and Lapata, Mirella, Modelling Compression with Discourse
Constraints, EMNLP-CoNLL, 1--11, 2007

[2] Cohn, Trevor and Lapata, Mirella, Sentence compression beyond word deletion,
Proceedings of the 22nd International Conference on Computational Linguistics,
137--144, 2008

[3] Conroy, John M and Schlesinger, Judith D and O‘leary, Dianne P and Goldstein,
Jade, Back to basics: CLASSY 2006, Proceedings of DUC, 6:150, 2006

[4] Cormen, Thomas H, Introduction to algorithms, MIT Press, 2009

[5] Golub, Gene H and Van Loan, Charles F, Matrix computations, JHU Press, 2012

[6] Jing, Hongyan, Sentence reduction for automatic text summarization,
Proceedings of the sixth conference on Applied natural language processing,
310--315, 2000

[7] Kim, Youn S, Text Summarization, Master’s report, Department of Computer
Science, San Jose State University, 2010,
http://scholarworks.sjsu.edu/etd_projects/212/

[8] Langville, Amy N and Meyer, Carl D, Google’s PageRank and beyond: The
science of search engine rankings, Princeton University Press, 2011

[9] Lin, Chin-Yew, Rouge: A package for automatic evaluation of summaries, Text
summarization branches out: Proceedings of the ACL-04 workshop, 8, 2004

[10] Lovins, Julie B, Development of a stemming algorithm, MIT Information
Processing Group, Electronic Systems Laboratory Cambridge, 1968

[11] Luhn, H. P., The automatic creation of literature abstracts, IBM Journal of
Research and Development, 2(2):159--165, 1958.

[12] Mooney, Sean D. and Baenzigerp, Peter H., Extensible open source content
management systems and frameworks: a solution for many needs of a
bioinformatics group, Briefings in Bioinformatics, 9(1):69--74, 2008,
http://dx.doi.org/10.1093/bib/bbm057

[13] Nenkova, Ani and Maskey, Sameer and Liu, Yang, Automatic summarization,
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Tutorial Abstracts of ACL 2011, 3, 2011

33

http://scholarworks.sjsu.edu/etd_projects/212/
http://dx.doi.org/10.1093/bib/bbm057

[14] NIST, DUC 2007: Task, Documents, and Measures, 2011,
http://duc.nist.gov/duc2007/tasks.html

[15] Porter, Martin F, An algorithm for suffix stripping, 14(3):130--137, 1980, MCB
UP Ltd

[16] Porter, Martin F, Snowball: A language for stemming algorithms, 2001,
http://snowball.tartarus.org/texts/introduction.html

[17] Porter, Martin F, Defining R1 and R2, 2001,
http://snowball.tartarus.org/texts/r1r2.html

[18] Powers, David M W, Evaluation: From Precision, Recall and F-Measure to
ROC, Informedness, Markedness & Correlation, Journal of Machine Learning
Technologies, 2 (1):37--63, 2011

[19] Samei, Borhan and Estiagh, Marzieh and Eshtiagh, Marzieh and Keshtkar, Fazel
and Hashemi, Sattar, Multi-Document Summarization Using Graph-Based
Iterative Ranking Algorithms and Information Theoretical Distortion Measures,
The Twenty-Seventh International Flairs Conference, 2014

[20] Spiegel M.R., Lipschutz S., Spellman D, Vector Analysis, McGraw Hill, 2009

[21] Sizov, Gleb, Extraction-Based Automatic Summarization: Theoretical and
Empirical Investigation of Summarization Techniques, Department of Computer
and Information Science, 2010

[22] Smith, David, Estimation: Maximum Likelihood and Smoothing, University of
Massachusetts Amherst, 2009
https://people.cs.umass.edu/~dasmith/inlp2009/lect5-cs585.pdf

[23] Taylor, Ann, Mitchell Marcus, Beatrice Santorini, The Penn treebank: an
overview, In Treebanks, 5--22, 2003

[24] Turner, Jenine and Charniak, Eugene, Supervised and unsupervised learning for
sentence compression, Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, 290--297, 2005

[25] W3Techs, Usage of content management systems for websites, 2015,
http://w3techs.com/technologies/overview/content_management/all

[26] Willett, Peter, The Porter stemming algorithm: then and now, Princeton
University Press, 40(3):219--223, 2006

34

http://duc.nist.gov/duc2007/tasks.html
http://snowball.tartarus.org/texts/introduction.html
http://snowball.tartarus.org/texts/r1r2.html
https://people.cs.umass.edu/~dasmith/inlp2009/lect5-cs585.pdf
http://w3techs.com/technologies/overview/content_management/all

APPENDIX A
APPENDIX A: YIOOP’S SUMMARIZERS RESULT FILES

A.1 BASIC ROUGE Result

11 ROUGE-1 Average_R: 0.80587 (95%-conf.int. 0.68571 - 0.92333)
11 ROUGE-1 Average_P: 0.70494 (95%-conf.int. 0.55714 - 0.85833)
11 ROUGE-1 Average_F: 0.74742 (95%-conf.int. 0.61115 - 0.88264)

11 ROUGE-2 Average_R: 0.70543 (95%-conf.int. 0.54000 - 0.86333)
11 ROUGE-2 Average_P: 0.61554 (95%-conf.int. 0.43571 - 0.80857)
11 ROUGE-2 Average_F: 0.65227 (95%-conf.int. 0.47596 - 0.83047)

11 ROUGE-3 Average_R: 0.60484 (95%-conf.int. 0.39167 - 0.82833)
11 ROUGE-3 Average_P: 0.52748 (95%-conf.int. 0.31095 - 0.76429)
11 ROUGE-3 Average_F: 0.55747 (95%-conf.int. 0.34470 - 0.78985)

11 ROUGE-4 Average_R: 0.46413 (95%-conf.int. 0.20000 - 0.76667)
11 ROUGE-4 Average_P: 0.42445 (95%-conf.int. 0.16000 - 0.71333)
11 ROUGE-4 Average_F: 0.43933 (95%-conf.int. 0.17500 - 0.73333)

11 ROUGE-L Average_R: 0.56185 (95%-conf.int. 0.42162 - 0.71773)
11 ROUGE-L Average_P: 0.70494 (95%-conf.int. 0.55714 - 0.85833)
11 ROUGE-L Average_F: 0.60646 (95%-conf.int. 0.47795 - 0.75049)

11 ROUGE-W-1.2 Average_R: 0.37926 (95%-conf.int. 0.27541 - 0.49500)
11 ROUGE-W-1.2 Average_P: 0.65106 (95%-conf.int. 0.49107 - 0.82321)
11 ROUGE-W-1.2 Average_F: 0.46368 (95%-conf.int. 0.34814 - 0.59179)

11 ROUGE-S* Average_R: 0.66482 (95%-conf.int. 0.47238 - 0.85524)
11 ROUGE-S* Average_P: 0.53184 (95%-conf.int. 0.32500 - 0.75000)
11 ROUGE-S* Average_F: 0.57648 (95%-conf.int. 0.37678 - 0.78848)

11 ROUGE-SU* Average_R: 0.71369 (95%-conf.int. 0.53984 - 0.88286)
11 ROUGE-SU* Average_P: 0.57277 (95%-conf.int. 0.38142 - 0.78056)
11 ROUGE-SU* Average_F: 0.62202 (95%-conf.int. 0.43843 - 0.81393)

A.2 CBS ROUGE Result

11 ROUGE-1 Average_R: 0.76663 (95%-conf.int. 0.63762 - 0.89333)
11 ROUGE-1 Average_P: 0.67857 (95%-conf.int. 0.53214 - 0.84286)

35

11 ROUGE-1 Average_F: 0.71577 (95%-conf.int. 0.57970 - 0.86190)

11 ROUGE-2 Average_R: 0.70201 (95%-conf.int. 0.54667 - 0.86333)
11 ROUGE-2 Average_P: 0.61664 (95%-conf.int. 0.43809 - 0.80762)
11 ROUGE-2 Average_F: 0.65163 (95%-conf.int. 0.48667 - 0.83636)

11 ROUGE-3 Average_R: 0.60484 (95%-conf.int. 0.39167 - 0.82833)
11 ROUGE-3 Average_P: 0.53236 (95%-conf.int. 0.31917 - 0.76250)
11 ROUGE-3 Average_F: 0.56079 (95%-conf.int. 0.35098 - 0.79039)

11 ROUGE-4 Average_R: 0.46413 (95%-conf.int. 0.20000 - 0.76667)
11 ROUGE-4 Average_P: 0.42445 (95%-conf.int. 0.16000 - 0.71333)
11 ROUGE-4 Average_F: 0.43933 (95%-conf.int. 0.17500 - 0.73333)

11 ROUGE-L Average_R: 0.54120 (95%-conf.int. 0.39743 - 0.70309)
11 ROUGE-L Average_P: 0.67857 (95%-conf.int. 0.53214 - 0.84286)
11 ROUGE-L Average_F: 0.58289 (95%-conf.int. 0.44879 - 0.72838)

11 ROUGE-W-1.2 Average_R: 0.39129 (95%-conf.int. 0.28736 - 0.50728)
11 ROUGE-W-1.2 Average_P: 0.67325 (95%-conf.int. 0.52159 - 0.83758)
11 ROUGE-W-1.2 Average_F: 0.47857 (95%-conf.int. 0.36753 - 0.60219)

11 ROUGE-S* Average_R: 0.60686 (95%-conf.int. 0.40381 - 0.81667)
11 ROUGE-S* Average_P: 0.49785 (95%-conf.int. 0.28373 - 0.74167)
11 ROUGE-S* Average_F: 0.53466 (95%-conf.int. 0.32789 - 0.76667)

11 ROUGE-SU* Average_R: 0.66706 (95%-conf.int. 0.48421 - 0.84841)
11 ROUGE-SU* Average_P: 0.54722 (95%-conf.int. 0.34603 - 0.76429)
11 ROUGE-SU* Average_F: 0.58952 (95%-conf.int. 0.40240 - 0.79922)

A.3 BASIC ROUGE Configuration File
<ROUGE-EVAL version=‘‘1.0’’>
<EVAL ID=‘‘1’’>
<PEER-ROOT>
./Yioop-testBasic/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testBasic/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
AgiletaskslistswhatdoesdonemeaninAgileCS200WBlog.html</P>

36

</PEERS>
<MODELS>
<M ID=‘‘A’’>
AgiletaskslistswhatdoesdonemeaninAgilCS200WBlog.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘2’’>
<PEER-ROOT>
./Yioop-testBasic/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testBasic/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
DeliveringaprojectandpresentingtoamultilevelaudienceCS200WBlog.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
DeliveringaprojectandpresentingtoamultilevelaudienceCS200WBlog.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘3’’>
<PEER-ROOT>
./Yioop-testBasic/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testBasic/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
HandingoffaprojecttoaclientwhataretherisksandchallengesCS20.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
HandingoffaprojecttoaclientwhataretherisksandchallengesCS20.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘4’’>
<PEER-ROOT>
./Yioop-testBasic/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>

37

./Yioop-testBasic/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
LinkedInprofileshowtousethemhowtomarketyourselfhowtonetwork.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
LinkedInprofileshowtousethemhowtomarketyourselfhowtonetwork.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘5’’>
<PEER-ROOT>
./Yioop-testBasic/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testBasic/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
SocialMediaandBrandingCS200WBlog.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
SocialMediaandBrandingCS200WBlog.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘6’’>
<PEER-ROOT>
./Yioop-testBasic/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testBasic/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
TheAgileTeamandwhatisaBacklogWhataretheyforandwhyaretheyimp.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
TheAgileTeamandwhatisaBacklogWhataretheyforandwhyaretheyimp.html</M>

38

</MODELS>
</EVAL>
<EVAL ID=‘‘7’’>
<PEER-ROOT>
./Yioop-testBasic/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testBasic/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
WhatfivetechnicalskillsareemployersseekingWhatfivesoftskillsput.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
WhatfivetechnicalskillsareemployersseekingWhatfivesoftskillsput.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘8’’>
<PEER-ROOT>
./Yioop-testBasic/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testBasic/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
WhatisAgileandwhatareuserstoriesCS200WBlog.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
WhatisAgileandwhatareuserstoriesCS200WBlog.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘9’’>
<PEER-ROOT>
./Yioop-testBasic/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testBasic/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>

39

<P ID=‘‘11’’>
WhatisanAgileSprintRetrospectiveAbusylifeofagirlgamer.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
WhatisanAgileSprintRetrospectiveAbusylifeofagirlgamer.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘10’’>
<PEER-ROOT>
./Yioop-testBasic/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testBasic/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
WhatisanAgileSprintRetrospectiveCS200WBlog.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
WhatisanAgileSprintRetrospectiveCS200WBlog.html</M>
</MODELS>
</EVAL>
</ROUGE-EVAL>

A.4 CBS ROUGE Configuration File
<ROUGE-EVAL version=‘‘1.0’’>
<EVAL ID=‘‘1’’>
<PEER-ROOT>
./Yioop-testCentroid/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testCentroid/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
AgiletaskslistswhatdoesdonemeaninAgileCS200WBlog.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
AgiletaskslistswhatdoesdonemeaninAgilCS200WBlog.html</M>

40

</MODELS>
</EVAL>
<EVAL ID=‘‘2’’>
<PEER-ROOT>
./Yioop-testCentroid/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testCentroid/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
DeliveringaprojectandpresentingtoamultilevelaudienceCS200WBlog.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
DeliveringaprojectandpresentingtoamultilevelaudienceCS200WBlog.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘3’’>
<PEER-ROOT>
./Yioop-testCentroid/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testCentroid/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
HandingoffaprojecttoaclientwhataretherisksandchallengesCS20.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
HandingoffaprojecttoaclientwhataretherisksandchallengesCS20.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘4’’>
<PEER-ROOT>
./Yioop-testCentroid/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testCentroid/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>

41

<P ID=‘‘11’’>
LinkedInprofileshowtousethemhowtomarketyourselfhowtonetwork.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
LinkedInprofileshowtousethemhowtomarketyourselfhowtonetwork.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘5’’>
<PEER-ROOT>
./Yioop-testCentroid/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testCentroid/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
SocialMediaandBrandingCS200WBlog.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
SocialMediaandBrandingCS200WBlog.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘6’’>
<PEER-ROOT>
./Yioop-testCentroid/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testCentroid/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
TheAgileTeamandwhatisaBacklogWhataretheyforandwhyaretheyimp.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
TheAgileTeamandwhatisaBacklogWhataretheyforandwhyaretheyimp.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘7’’>
<PEER-ROOT>

42

./Yioop-testCentroid/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testCentroid/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
WhatfivetechnicalskillsareemployersseekingWhatfivesoftskillsput.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
WhatfivetechnicalskillsareemployersseekingWhatfivesoftskillsput.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘8’’>
<PEER-ROOT>
./Yioop-testCentroid/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testCentroid/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
WhatisAgileandwhatareuserstoriesCS200WBlog.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
WhatisAgileandwhatareuserstoriesCS200WBlog.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘9’’>
<PEER-ROOT>
./Yioop-testCentroid/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testCentroid/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
WhatisanAgileSprintRetrospectiveAbusylifeofagirlgamer.html</P>
</PEERS>
<MODELS>

43

<M ID=‘‘A’’>
WhatisanAgileSprintRetrospectiveAbusylifeofagirlgamer.html</M>
</MODELS>
</EVAL>
<EVAL ID=‘‘10’’>
<PEER-ROOT>
./Yioop-testCentroid/systemsAreGenerated </PEER-ROOT>
<MODEL-ROOT>
./Yioop-testCentroid/modelsAreHuman </MODEL-ROOT>
<INPUT-FORMAT TYPE=‘‘SEE’’>
</INPUT-FORMAT>
<PEERS>
<P ID=‘‘11’’>
WhatisanAgileSprintRetrospectiveCS200WBlog.html</P>
</PEERS>
<MODELS>
<M ID=‘‘A’’>
WhatisanAgileSprintRetrospectiveCS200WBlog.html</M>
</MODELS>
</EVAL>
</ROUGE-EVAL>

A.5 Human Generated Input
<html>
<head>
<title>
AgiletaskslistswhatdoesdonemeaninAgilCS200WBlog</title>
</head>
<body bgcolor=‘‘white’’>
[1]Agile tasks lists, what does done

[2]In life just as at work, you may

have had someone ask you the dreaded question Are you done yet?
[3]That is why to ensure

transparency and improve quality in an agile environment, the definition of done
(DoD) must be clearly defined and have a consensus among the team.

[4]We will walk through what the
DoD is, an example of how to create a DoD and what value it brings to the sprint
cycle.

[5]According to the Agile Alliance
and Institute (2014) the DoD is a list of criteria which must be met before a product
increment often a user story is considered done.

44

[6]The most important feature of
the DoD is it keeps hidden work or scope creep from happening.

[7]The DoD gets iteratively worked
just like the user stories within each sprint. According to Scrum.org (2013), the
Definition of Done is not changed during a Sprint, but should change periodically
between Sprints to reflect improvements the Development Team has made in its
processes and capabilities to deliver software.

[8]Moreover, you will find the risk
is reduced, teams are more focused, and communication between the client is
better.

[9]By making the DoD a way of life
and committing to exceptional work, the client will be able to visualize what
complete really is.

</body>
</html>

A.6 System Generated Input
<html><head>
<title>AgiletaskslistswhatdoesdonemeaninAgileCS200WBlog </title>
</head>
<body bgcolor=‘‘white’’>
[1]Agile tasks lists, what does done

mean in Agile? | CS200W Blog
[2]In life just as at work, you may

have had someone ask you the dreaded question Are you done yet?
[3]In life outside of work, we can

consult our own minds to make the determination if something is done or not.
[4]In an agile work environment

you are most likely not the only one involved in making that decision.
[5]Everyones opinion on what done

means may vary.
[6]That is why to ensure

transparency and improve quality in an agile environment, the definition of done
(DoD) must be clearly defined and have a consensus among the team.

[7]We will walk through what the
DoD is, an example of how to create a DoD and what value it brings to the sprint
cycle.

[8].. CS200W Blog
[9]powered by Charles Bocage
[10]CS200W Blog
[11]Facebook
[12]CS200W Blog

45

[13]Twitter
[14]CS200W Blog
[15]YouTube
[16]Search
[17]Home Agile
[18]Project Management
[19]Social Media
[20]Skills
[21]About Me
[22]Contact
[23]First lets get the definition

of done out of the way.
[24]According to the Agile

Alliance and Institute (2014) the DoD is a list of criteria which must be met before a
product increment often a user story is considered done.

[25]In other words, it is the
acceptance criteria the work must pass to be evaluated as complete.

[26]It can be in the form of a
Done List or a Done Checklist.

[27]There is no preference on
what it is called because they both produce the same results.

[28].. CS200W Blog
[29]powered by Charles

Bocage
[30]CS200W Blog
[31]Facebook
[32]CS200W Blog
[33]Twitter
[34]CS200W Blog
[35]YouTube
[36]Search
[37]Home Agile
[38]Project Management
[39]Social Media
[40]Skills
[41]About Me
[42]Contact
</body>
</html>

46

APPENDIX B
APPENDIX B: GRAPH BASED ROUGE RESULT

11 ROUGE-1 Average_R: 0.32603 (95%-conf.int. 0.16429 - 0.49286)

11 ROUGE-1 Average_P: 0.30169 (95%-conf.int. 0.15000 - 0.45119)

11 ROUGE-1 Average_F: 0.31165 (95%-conf.int. 0.15619 - 0.46519)

11 ROUGE-2 Average_R: 0.19028 (95%-conf.int. 0.04000 - 0.35667)

11 ROUGE-2 Average_P: 0.18023 (95%-conf.int. 0.04000 - 0.34667)

11 ROUGE-2 Average_F: 0.18470 (95%-conf.int. 0.04000 - 0.35111)

11 ROUGE-3 Average_R: 0.12849 (95%-conf.int. 0.02500 - 0.24500)

11 ROUGE-3 Average_P: 0.12012 (95%-conf.int. 0.02500 - 0.24000)

11 ROUGE-3 Average_F: 0.12370 (95%-conf.int. 0.02500 - 0.24000)

11 ROUGE-4 Average_R: 0.00000 (95%-conf.int. 0.00000 - 0.00000)

11 ROUGE-4 Average_P: 0.00000 (95%-conf.int. 0.00000 - 0.00000)

11 ROUGE-4 Average_F: 0.00000 (95%-conf.int. 0.00000 - 0.00000)

11 ROUGE-L Average_R: 0.20862 (95%-conf.int. 0.08138 - 0.36597)

11 ROUGE-L Average_P: 0.28501 (95%-conf.int. 0.14167 - 0.44405)

11 ROUGE-L Average_F: 0.23625 (95%-conf.int. 0.10295 - 0.39301)

11 ROUGE-W-1.2 Average_R: 0.14754 (95%-conf.int. 0.05208 - 0.27167)

11 ROUGE-W-1.2 Average_P: 0.26469 (95%-conf.int. 0.11303 - 0.43571)

47

11 ROUGE-W-1.2 Average_F: 0.18541 (95%-conf.int. 0.07116 - 0.33047)

11 ROUGE-S* Average_R: 0.13775 (95%-conf.int. 0.05000 - 0.24191)

11 ROUGE-S* Average_P: 0.11769 (95%-conf.int. 0.04000 - 0.22095)

11 ROUGE-S* Average_F: 0.12457 (95%-conf.int. 0.04019 - 0.22895)

11 ROUGE-SU* Average_R: 0.19791 (95%-conf.int. 0.07333 - 0.33667)

11 ROUGE-SU* Average_P: 0.17406 (95%-conf.int. 0.06500 - 0.31556)

11 ROUGE-SU* Average_F: 0.18243 (95%-conf.int. 0.06702 - 0.32222)

48

APPENDIX C
APPENDIX C: CBS WEIGHTED ROUGE RESULT

11 ROUGE-1 Average_R: 0.24689 (95%-conf.int. 0.12667 - 0.37333)

11 ROUGE-1 Average_P: 0.21218 (95%-conf.int. 0.11607 - 0.31071)

11 ROUGE-1 Average_F: 0.21092 (95%-conf.int. 0.11915 - 0.30427)

11 ROUGE-2 Average_R: 0.14330 (95%-conf.int. 0.05000 - 0.25000)

11 ROUGE-2 Average_P: 0.08230 (95%-conf.int. 0.02857 - 0.14286)

11 ROUGE-2 Average_F: 0.10366 (95%-conf.int. 0.03636 - 0.18182)

11 ROUGE-3 Average_R: 0.06350 (95%-conf.int. 0.03333 - 0.13333)

11 ROUGE-3 Average_P: 0.03175 (95%-conf.int. 0.01667 - 0.06667)

11 ROUGE-3 Average_F: 0.04233 (95%-conf.int. 0.02222 - 0.08889)

11 ROUGE-4 Average_R: 0.00000 (95%-conf.int. 0.00000 - 0.00000)

11 ROUGE-4 Average_P: 0.00000 (95%-conf.int. 0.00000 - 0.00000)

11 ROUGE-4 Average_F: 0.00000 (95%-conf.int. 0.00000 - 0.00000)

11 ROUGE-L Average_R: 0.18470 (95%-conf.int. 0.09365 - 0.29961)

11 ROUGE-L Average_P: 0.21218 (95%-conf.int. 0.11607 - 0.31071)

11 ROUGE-L Average_F: 0.18124 (95%-conf.int. 0.10222 - 0.26444)

11 ROUGE-W-1.2 Average_R: 0.11842 (95%-conf.int. 0.05341 - 0.20543)

11 ROUGE-W-1.2 Average_P: 0.17366 (95%-conf.int. 0.08750 - 0.27679)

49

11 ROUGE-W-1.2 Average_F: 0.12677 (95%-conf.int. 0.06425 - 0.20894)

11 ROUGE-S* Average_R: 0.07818 (95%-conf.int. 0.03000 - 0.14000)

11 ROUGE-S* Average_P: 0.02791 (95%-conf.int. 0.01071 - 0.05000)

11 ROUGE-S* Average_F: 0.04038 (95%-conf.int. 0.01579 - 0.07427)

11 ROUGE-SU* Average_R: 0.13299 (95%-conf.int. 0.05656 - 0.22476)

11 ROUGE-SU* Average_P: 0.09831 (95%-conf.int. 0.03429 - 0.20513)

11 ROUGE-SU* Average_F: 0.08041 (95%-conf.int. 0.03828 - 0.12862)

50

APPENDIX D
APPENDIX D: LOCATING AND TESTING AGAINST A LARGE DATA SET

RESULT FILES

The ROUGE tests have been abbreviated for easy viewing. They all start with

an R for ROUGE. The second character is the test type. R1 being the ROUGE 1

test. The last character is the metric. F for F-measure, R for the recall measure and

P for the precision measure. For example, R1R stands for the recall metric from the

ROUGE 1 test.

D.1 Overall Rankings

Metric CBS BASIC CBWS GBS
Lowest Rank 18 21 24 22
Lowest Ranking ROUGE Test R1R RLF;RWF R3F RLF
Median Rank 37 38 36 34
Average Rank 32.0952381 33.28571429 32.42857143 31.85714286
Highest Rank 37 38 36 35

Table D.1: Overall Rankings

D.2 ROUGE Test Rankings

Summarizer Rank ROUGE Test
BASIC 38 R1F
CBS 37 R1F
CBWS 36 R1F
GBS 35 R1F
BASIC 38 R1P
CBS 37 R1P
CBWS 36 R1P
GBS 35 R1P
BASIC 23 R1R
CBS 18 R1R
CBWS 25 R1R
GBS 24 R1R

BASIC 38 R2F

51

CBS 37 R2F
CBWS 36 R2F
GBS 33 R2F
BASIC 38 R2P
CBS 37 R2P
CBWS 36 R2P
GBS 35 R2P
BASIC 27 R2R
CBS 23 R2R
CBWS 28 R2R
GBS 30 R2R

BASIC 38 R3F
CBS 37 R3F
CBWS 34 R3F
GBS 33 R3F
BASIC 38 R3P
CBS 37 R3P
CBWS 36 R3P
GBS 34 R3P
BASIC 23 R3R
CBS 27 R3R
CBWS 24 R3R
GBS 32 R3R

BASIC 38 R4F
CBS 36 R4F
CBWS 32 R4F
GBS 29 R4F
BASIC 38 R4P
CBS 37 R4P
CBWS 35 R4P
GBS 34 R4P
BASIC 24 R4R
CBS 28 R4R
CBWS 26 R4R
GBS 30 R4R

BASIC 38 RLF
CBS 37 RLF

52

CBWS 36 RLF
GBS 35 RLF
BASIC 38 RLP
CBS 37 RLP
CBWS 36 RLP
GBS 35 RLP
BASIC 21 RLR
CBS 19 RLR
CBWS 25 RLR
GBS 22 RLR

BASIC 38 RSF
CBS 37 RSF
CBWS 36 RSF
GBS 35 RSF
BASIC 38 RSP
CBS 37 RSP
CBWS 36 RSP
GBS 35 RSP
BASIC 28 RSR
CBS 22 RSR
CBWS 30 RSR
GBS 29 RSR

BASIC 38 RWF
CBS 37 RWF
CBWS 36 RWF
GBS 35 RWF
BASIC 38 RWP
CBS 37 RWP
CBWS 36 RWP
GBS 35 RWP
BASIC 21 RWR
CBS 20 RWR
CBWS 26 RWR
GBS 24 RWR
Table D.2: ROUGE Test Rankings

53

APPENDIX E
APPENDIX E: IMPROVING THE CREATOR’S ALGORITHM RESULT FILES

E.1 CBWS ROUGE Result Before

11 ROUGE-1 Average_R: 0.66665 (95%-conf.int. 0.56143 - 0.78024)
11 ROUGE-1 Average_P: 0.59174 (95%-conf.int. 0.44167 - 0.75417)
11 ROUGE-1 Average_F: 0.61670 (95%-conf.int. 0.49659 - 0.74103)

11 ROUGE-2 Average_R: 0.59220 (95%-conf.int. 0.47333 - 0.72667)
11 ROUGE-2 Average_P: 0.52933 (95%-conf.int. 0.35952 - 0.71357)
11 ROUGE-2 Average_F: 0.54518 (95%-conf.int. 0.41064 - 0.68843)

11 ROUGE-3 Average_R: 0.47023 (95%-conf.int. 0.32833 - 0.63333)
11 ROUGE-3 Average_P: 0.44098 (95%-conf.int. 0.24762 - 0.65000)
11 ROUGE-3 Average_F: 0.43500 (95%-conf.int. 0.27667 - 0.60444)

11 ROUGE-4 Average_R: 0.21573 (95%-conf.int. 0.00000 - 0.45000)
11 ROUGE-4 Average_P: 0.20247 (95%-conf.int. 0.00000 - 0.42667)
11 ROUGE-4 Average_F: 0.20307 (95%-conf.int. 0.00000 - 0.40952)

11 ROUGE-L Average_R: 0.46695 (95%-conf.int. 0.35840 - 0.59688)
11 ROUGE-L Average_P: 0.59174 (95%-conf.int. 0.44167 - 0.75417)
11 ROUGE-L Average_F: 0.50737 (95%-conf.int. 0.38835 - 0.65018)

11 ROUGE-W-1.2 Average_R: 0.27444 (95%-conf.int. 0.16971 - 0.37699)
11 ROUGE-W-1.2 Average_P: 0.43489 (95%-conf.int. 0.25417 - 0.63333)
11 ROUGE-W-1.2 Average_F: 0.32801 (95%-conf.int. 0.19819 - 0.46248)

11 ROUGE-S* Average_R: 0.43092 (95%-conf.int. 0.28524 - 0.60095)
11 ROUGE-S* Average_P: 0.38901 (95%-conf.int. 0.19166 - 0.60952)
11 ROUGE-S* Average_F: 0.37903 (95%-conf.int. 0.22536 - 0.54553)

11 ROUGE-SU* Average_R: 0.52030 (95%-conf.int. 0.38368 - 0.67646)
11 ROUGE-SU* Average_P: 0.44916 (95%-conf.int. 0.25394 - 0.65976)
11 ROUGE-SU* Average_F: 0.45378 (95%-conf.int. 0.30683 - 0.60927)

E.2 CBWS ROUGE Result After

11 ROUGE-1 Average_R: 0.80863 (95%-conf.int. 0.70071 - 0.89833)
11 ROUGE-1 Average_P: 0.79195 (95%-conf.int. 0.69143 - 0.88214)

54

11 ROUGE-1 Average_F: 0.79771 (95%-conf.int. 0.69705 - 0.88261)

11 ROUGE-2 Average_R: 0.71814 (95%-conf.int. 0.58000 - 0.83667)
11 ROUGE-2 Average_P: 0.70826 (95%-conf.int. 0.57000 - 0.83000)
11 ROUGE-2 Average_F: 0.71019 (95%-conf.int. 0.57272 - 0.82778)

11 ROUGE-3 Average_R: 0.63218 (95%-conf.int. 0.45833 - 0.78833)
11 ROUGE-3 Average_P: 0.62551 (95%-conf.int. 0.45167 - 0.79000)
11 ROUGE-3 Average_F: 0.62487 (95%-conf.int. 0.45143 - 0.78135)

11 ROUGE-4 Average_R: 0.45574 (95%-conf.int. 0.20000 - 0.68333)
11 ROUGE-4 Average_P: 0.46348 (95%-conf.int. 0.21667 - 0.71667)
11 ROUGE-4 Average_F: 0.45503 (95%-conf.int. 0.21333 - 0.68952)

11 ROUGE-L Average_R: 0.55198 (95%-conf.int. 0.44967 - 0.67684)
11 ROUGE-L Average_P: 0.79195 (95%-conf.int. 0.69143 - 0.88214)
11 ROUGE-L Average_F: 0.63472 (95%-conf.int. 0.55068 - 0.73380)

11 ROUGE-W-1.2 Average_R: 0.35800 (95%-conf.int. 0.27424 - 0.46042)
11 ROUGE-W-1.2 Average_P: 0.68562 (95%-conf.int. 0.57119 - 0.79762)
11 ROUGE-W-1.2 Average_F: 0.45893 (95%-conf.int. 0.36787 - 0.56848)

11 ROUGE-S* Average_R: 0.65210 (95%-conf.int. 0.48857 - 0.79953)
11 ROUGE-S* Average_P: 0.62371 (95%-conf.int. 0.46000 - 0.78143)
11 ROUGE-S* Average_F: 0.62855 (95%-conf.int. 0.47200 - 0.77133)

11 ROUGE-SU* Average_R: 0.72396 (95%-conf.int. 0.57849 - 0.84921)
11 ROUGE-SU* Average_P: 0.69407 (95%-conf.int. 0.55905 - 0.82167)
11 ROUGE-SU* Average_F: 0.70080 (95%-conf.int. 0.56488 - 0.81945)

55

APPENDIX F
APPENDIX F: UNDERSTANDING THE POST-PROCESSING AFTER

SUMMARIZATION RESULT FILES

The result files for the automatic sentence compression experiment are over

25,000 lines making them too large to include in this text. Below are their locations

on the Internet at http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/

Spring15/bocage/index.shtml?CS299Deliverable4.html#files.

56

http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Spring15/bocage/index.shtml?CS299Deliverable4.html#files
http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Spring15/bocage/index.shtml?CS299Deliverable4.html#files

	Introduction
	Background
	Automatic Text Summarization
	Types
	Phases

	The Yioop Search Engine
	Term Frequency-Inverse Document Frequency
	Text Segmentation
	Cosine Similarity
	Latent Semantic Analysis
	Redundant Word Removal
	Recall-Oriented Understudy for Gisting Evaluation (ROUGE)
	Longest Common Subsequence
	Skip-bigram Co-occurrence

	Understanding the Preprocessing Before Summarization
	Stemmers
	The Design of the Dutch Stemmer

	Testing the Pre-Existing Summarizers
	ROUGE Results

	Understanding and Creating a New Summarizer
	Page Rank Algorithm for Ranking Sentences
	Distortion Measure Calculation
	Graph Based Ranking Summarizer
	ROUGE Results

	Implementing Term Frequency Weighting in the Centroid-Based Summarizer
	Term Frequency Weighting in the Centroid-Based Summarizer
	Term Frequency Weighting Experiment Results

	Centroid-Based Weighted Summarization
	Centroid-Based Weighted Summarization Algorithm
	ROUGE Results

	Locating and Testing Against a Large Data Set
	Document Understanding Conference
	Results of the Experiments with a Large Data Set

	Improving the ROUGE Results Using Content Management System Detection
	Content Management System Detection for Search Engines
	Content Management System Detection Design
	Content Management System Detection ROUGE Results

	Understanding the Post-processing After Summarization
	Automatic Sentence Compression
	Automatic Sentence Compression Framework Design
	ROUGE Results

	Conclusion and Future Work
	Appendix A: Yioop's Summarizers Result Files
	BASIC ROUGE Result
	CBS ROUGE Result
	BASIC ROUGE Configuration File
	CBS ROUGE Configuration File
	Human Generated Input
	System Generated Input

	Appendix B: Graph Based ROUGE Result
	Appendix C: CBS Weighted ROUGE Result
	Appendix D: Locating and Testing Against a Large Data Set Result Files
	Overall Rankings
	ROUGE Test Rankings

	Appendix E: Improving the Creator's Algorithm Result Files
	CBWS ROUGE Result Before
	CBWS ROUGE Result After

	Appendix F: Understanding the Post-processing After Summarization Result Files

