CS 298 Report

A Hash-Cash Based Music Streaming Payment System
By

Timothy Chen

Project Advisor: Dr. Chris Pollett

Department of Computer Science

San José State University

One Washington Square
San Jose, CA 95112

2014
Timothy Chen

ALL RIGHT RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett
Professor of Computer Science Department, San Jose State University, San

Jose, California

Dr. Suneuy Kim
Professor of Computer Science Department, San Jose State University, San

Jose, California

Dr. Thomas Austin
Professor of Computer Science Department, San Jose State University, San

Jose, California

Abstract

This project develops a hash-cash based, streaming music payment system. In our
system, musicians are paid based on how long their works are listened to. Artists can
upload their works to our proof-of-concept service so that people can discover and listen
to them. While their works are being listened to, a mining process is run in parallel. The
mining process discovers a “listening coin” based on the hash-cash algorithm. Users of
our service would pay a monthly fee to access the music library. The monthly fees are
then distributed to all artists proportionate to the number of virtual coins they received
from users who have listened to the songs they have contributed to the library. The virtual
coins are available for public inspection so that the artists can be assured that they are

getting a fair share of the subscription fees.

ACKNOWLEDGEMENTS

| would like to thank Dr. Chris Pollett, my advisor, for helping and guiding me
through this entire project, and my committee members Dr. Thomas Austin and Dr.
Suneuy Kim for providing me help and feedback for my project. 1 also like to thank my

friend Brian for helping me by proofreading my report and giving me feedback.

Table of Contents

Lo INEFOAUCTION ..ttt ettt 11
B =T o1 (o | (011 o TSRS 13
2 YT ol T [0 TSR 13
2.0 PANGOIA ..ttt ettt ettt n e 14
N S 10) YRR 14
2.2 Distribution of ROYaltY SYStEMc.ocieiiiiceeceeeeeee e 15
2. 3 ROYAILY SYSIEM ISSUESccveeevitieeeetieteete sttt sttt et s re et e e tesreenbesteeraebesreennenns 16
2.4 MY SYStEM VS SPOLITYS ...oicveeiiiiceeeeeeese ettt e 18
3. PrelimiNary WOTKocueeeeeceeeeee ettt be et st e e ebesta et e beenneeas 20
3.1 BItCOIN RESEAICH......euiiiiiiietc et 20
3.2 Implementing a Hash FUNCLIONc.coveiiiiieeeececeeeee et 26
3.3 IMPIEMENING SNA25B.......ccueciiiecieieceeec ettt st se et e s beesaesbeeraenaens 29
3.4 MUSIC FUNCTION ...ttt ettt 32
4. AN MP3-Dased CUITENCY SYSEIMciuiireeierieceetieteete e et e e steetesteeaesbesreesesbeeasesteeraensesssensenes 35
4.1 Requirements and DESIONccueiiireeirieeetecteee ettt te et et e s reetesbe e e ebesbeessesbeenneeas 35
4.2 System t0 UPload the MUSIC......cceeveeeiiiieieciieeee ettt st 37
4.3 A string for each individual COIN........ccveviiiiiiece e 39
4.4 Use the Sha256 method to mine the Virtual CoiN.........cccoeveereinieincecceeee 39
4.6 Rank for who has highest coin of each month............cccocceiiiiiiiiicceeee, 41
4.7 Verify the COINT00N......c.eiiieeece ettt et st 42
oI o d 0 1= T 4 =] PP 46
5.1 WebCL: Implement Hash Function by using Webclcoovociiiiieiiiiciceeee e, 46
5.2 Timelnterval function FOr WEDCL ... 52
5.3 Web Worker Combine the music function and Hash function with Web Worker 54

5.4 VEriTICAtION 100l ISSUB......vviiiieeeiee ettt ettt ettt eet et e et e e s s et e s saaateesssaeeesasaeessasreeens 55

B CONCIUSTON ...eeeeee ettt ettt e e ettt e e ettt e s e e et e e seeraeeesaasaeeesassteeesasseeeesassateessarateessaneeeesanseeesanns 57

A =1 L= A= 0 [<R 59

List of Figure

Figure 1: Royalty SYStem frOM [6] ...coueieeiiiieieieeee sttt ettt 15
Figure 2: Music Stream Price INdeX fromM [7 J.c.eccioeeoiieeeeeeeeseeeere e 17
Figure 3: Bitcoin Transaction fromM [8 J....cccicieiiiieieececeeseeeee ettt 21
Figure 4: BitMiner Client from https:/bitminter.COM/.........covvveeeieeeeieceeereeeee e 23
Figure 5: Bitcoins | received from mining from https://bitminter.com/..........cccooevvvveceneecvenne 24
Figure 6 My test application for Hash FUNCLION..........cccoveieiiiieececeeceeeeeee e 26
Figure 7: Hash function iMpPIEMENTScooviiieieieeeeceeee ettt rne e 28
Figure 8: Sha256 IMPIEMENTALIONcceevieiicieeieieeeere ettt eaae s reerne e 31
Figure 9: Comparison of my sha256 code and website sha256 Code..........cccceveeveeveieeceneeeenn, 31
Figure 10: My test application for music fUNCLIONcccveviriecececeeeceee e 32
FIQUIE 11: BIOWSET STOP c.vveviitieieiteeeeesiesteetesteeteeteeteetesteesaestesteeasesteesaessesssensessesssesesseensessessnensens 33
Figure 12: MY SYSTEM GESIGN ...cviveeieiecieeieste ettt te st te et e s reete st e e e e saesbeensesteeanensens 37
Figure 13: My SyStem’s appliCatiONcouerieriieeneenieniieste ettt st sttt sbe e b e s e s 37
Figure 14: Use my application upload MUSICc.ccveveiieieieceeese ettt 38
Figure 15: Addinformation.php appliCationcceeeeiieieiiciccececeee e 38
Figure 16: Web Worker implementation.............coveveiiiieieieceece ettt 40
Figure 17: Rank.php appliCatiONcoeiueeieiieeeieeees ettt ettt e 42
Figure 18: Verify tool appliCationcceeiiiieiiiieeeeceeee ettt st 43
Figure 19: Verify tool application fOr Base B4ueieecuieeeeiiieee et eetee e eeree e e eree e e svee e e 44
Figure 20: Verify tool search appliCation............ccveveieiieieiiceee e 44
Figure 21: Verify to0l SEarch reSUIL..........coouoouieieee e 45
Figure 22: WebCL implementation...........uuiiiiii ettt e 47
Figure 23: LoadKernel implementatonccoccooeeierenieesee et 48
Figure 24: JavaScript declare WEDCL STEP 1coouieieiiiieiereeeee ettt 49

Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:

Figure 32:

JavaScript declare WEDCL SIEP 2 ...ovveviieeeieieeeeeeeeetee ettt 49
JavaScript declare WEDCL SIEP 3 ...oeveiieeeeeeeeeeeete et 50
JavaScript declare WEDCL SEP 4 ...ouveviieeieeeeeeeteeeste ettt 51
Use Timelnterval for WEDCLc.coeivieiniiciniceeeeeeeee et 53
Out of memory iSSUE FOr WEDCL.........ccvecviieeeeieceeeseeeee et 53
TV (oo N TS - R PS 55
Proof of My COde iS WOIKING......cc.eiieieiieieteseeeese ettt 56
SEOTE VAIUE ..ttt 56

List o f Table

Table 1: My System vs Royalty System table ...

Table 2: Chart for AISC machines, Nvidia graph card, and AMD(AT]I) graph card mining
BIECOINS TALE......cuieiii ettt

10

1. Introduction

Recently, crypto-currencies such as bitcoin have become popular and more
retailers are starting to accept those digital currency. Currently, 70,000 to 80,000 bitcoin
transactions occur a day [1]. There are also many increasingly popular music streaming
services such as Pandora, Spotify, etc. [2]. Unfortunately, music artists who upload
their songs to these music streaming services are paid using the an royalty system such as
described in article:[3]. In addition, there is no way for music artists to check how many
times their music has been streamed by users. This project explores a hash-cash based
music streaming payment system for music artists who allow their songs to be streamed

by my software which will address all the problems that music artists currently face.

My software allows music artists, via a web front end, to upload their music in
MP3 format to a website | have implemented. This site uses the artist’s name, content of
music, timestamp, and the music listener’s IP address as seed in a hash-cash SHA256
function for the artist to earn the new crypto-currency | have created. The amount earned
depends on how long the users of the website listen to the music. While the music artists’
works are being streamed to a listener, a mining process is run in parallel. This code use
HTML5 Web Workers to allow the streaming and the mining processes to run in parallel.
The mining process discovers a virtual coin when a hash-cash algorithm has generated a
hash that meets a certain criterion such as a minimum number of leading zeros. The
artists and the website are paid a share of the monthly access fees for the music library by

the public. The monthly fees are distributed to all artists proportionate to the number of

11

http://thenextweb.com/apps/2014/07/21/11-music-subscription-services/13/
http://thenextweb.com/apps/2014/07/21/11-music-subscription-services/13/
http://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-and-what-1-million-plays-means-to-you/
http://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-and-what-1-million-plays-means-to-you/

crypto-coins each artist earned while their work was listened to. My software also has a
ranking tool and a tool for verifying crypto-coins. The ranking tool feature ranks artists
by the amount of coins earned on a monthly basis. The ranking may be used by record
labels or radio stations as a top of the charts list or for invitations to a concert or other
events. The verification tool allows artists to check the crypto-coin count for a given

month.

This semester | worked on various experiments for the new currency system and
music system, basically to combine them together. As part of my earlier CS297, I
researched the background of Bitcoin and how it works. | have also implemented
WebCL and Web Worker mechanisms to make my music function and hash function run

in a parallel processing manner.

12

2. Background

This section reviews the current payment mechanisms in the music industry, how
they work, and what their problems are. This review is needed to help understand my

new payment system.

2.1 Music Industry

The most common payment mechanisms in the music industry are basically royalty
systems. Many organizations and web sites are involved in the development of, management of,
and distribution of the royalties. Below is a review of some of these organizations. One such
organization is ASCAP, American Society of Composers, Authors, and Publishers. Their
About Page [4] describes their role and history as follows. It was created by a group of
prominent music creators at the Hotel Claridge in NYC on February 13th, 1914. As of
December 2014, its members include more than 500,000 U.S. composers, songwriters,
lyricists, and music publishers of all kinds of music. Any decisions that ASCAP makes
can influence society because it was created and controlled by composers, songwriters,
and music publishers. The Board of Directors is selected by election by the members. The
ASCAP protects its members’ rights by licensing, distributing royalties, and copyright for

the music publicly.

Rights holders have come a long way since the early day of radio when they
would have to pay for their music to be heard. Payola is a term for the practice where in
radio stations are paid for playing music promoted by artists. Today, radio stations have

to disclose when a piece of music is being promoted, that is, when the radio station

13

receives compensation to play music. In the past there were troubles for stations

receiving the money from a record company or artist:

As the Payola hearings got under way in February 1960, the public was treated to
tales of a lavish disk-jockey convention in Miami bought and paid for by various
record companies. One disk jockey, Wesley Hopkins of KYW in Cleveland,
admitted to receiving, over the course of 1958 and 1959, $12,000 in "listening
fees" from record companies for "evaluating the commercial possibilities” of

records [5].

2.1.1 Pandora

Pandora is free web radio station based on the music genome project. It started in
the year 2000, and according to their company website: “Calendar year 2013 GAAP total
revenue of $637.9 million and non-GAAP total revenue of $647.5 million, both growing
56% year-over-year” [http://investor.pandora.com/phoenix.zhtml?c=227956 &p=irol-
newsArticle&ID=1897339]. Pandora analyzes music based on many attributes such as
characteristics and style. It provides a better match with a listener's interests and therefore
retains audience and generates revenue through advertisement. Artists are paid by

dividing revenue divided from the royalty system.

2.1.2 Spotify
Spotify is free web music site that attracts listeners by providing free access to
music from all kinds of devices: desktops, mobile, tablets, etc. Advertising is its source

of revenue. According to the following quote from its website:

14

By bringing listeners into our free, ad-supported tier, we migrate them away from
piracy and less monetized platforms and allow them to generate far greater
royalties than they were before. Once they are using our free tier, we drive users
to our premium subscription tier, at least doubling the amount that they spend on
music, from less than $5 per month (the average spent by download consumers in

The US) to $9.99 per month for Spotify.[6]

Spotify also uses a royalty system to pay the artist.

2.2 Distribution of Royalty System

From the above section, we see that most music websites pay artists who upload
their music according to a royalty system. The graph below shows how the Spotify

royalty system works and most music websites use a similar method:

SPOTIFY ARTIST'S SPOTIFY STREAMS "70% TO ARTIST'S
MONTHLY MASTER & ROYALTY

REVENUE TOTAL SPOTIFY STREAMS PUBLISHING OWNERS RATE

Figure 1: Royalty System from [6]

To explain each section in more detail:

1. Total revenues generated by month from advertising and subscription fees.

15

2. Artist’s total stream (how many people have listened to this artist’s music)
divided by Spotify’s total stream of the music (the total music listen by all users
from all artists).

3. Fee for labels and publisher in each territory. In the graph above, Spotify takes
away 70% of what the artist earns.

4. The label or the publisher pays each artist according to that artist’s contractual
royalty rates, so that each artist receives deals with a deduction from their
respective labels and publisher (only independent artists can receive 100% of the
royalty rate).

5. At the end, royalty is paid out to the artist after those deductions by the web sites,

record labels, and publishers.

2. 3 Royalty System Issues

The above method has some problems. For example, if a website is more
popular, then the artists will be paid less as explained by the first two boxes. If a music
website earns $500 in revenue, the total number of songs streamed is 10,000, and if an
artist only had one song listened to by two users, this artist will earn five hundred
multiplied by two, divided by one thousand. However, if the website was twice as
popular and the artists with songs on the website produce a lot of music each month, then
the same artist on that website will earn five hundred multiplied by two divided by two
thousand. So, artists actually are paid less on more popular sites. The graph below, from

the website, “The Streaming Price Bible”, proves my point:

16

Music Streaming price Index as of Feb 1, 2014

Store Per Stream Total in website Downloads
Nokia 0.07411 9
Google Play 0.04573 15
Xbox Music 0.03212 22
simfy 0.01626 43
Napster 0.01578 44
MediaNet 0.01140 61
Rhapsody 0.01122 62
Muve Music 0.00875 80
Deezer 0.00754 93
Rdio 0.00692 101
Spotif 0.00521 134
MySpace Music 0.00094 745
Amazon Cloud 0.00012 5,862

Figure 2: Music Stream Price Index from [7]

The above shows us that the more popular a music website is, the less an artist is paid per
song. For example: Amazon Cloud has the most downloads, but their artists are paid
less than any other music website. The main problem is that artists receive pay by the
number of streams, which means if an artist has a good reputation for their music, but the
music is horrible, people will just listen for a few seconds and then choose another one,
but the artist who creates horrible music will still be paid as well. The way my project
will solve this problem is by having listening coins that are created by a hash-cash
algorithm when it has generated a digest with the proper number of leading zeros (which

in my implementation is four leading zeros). The generation takes time and luck. The

17

most important factor is time, so the longer a user listens to a song, the more chance the
artist will have in earning a virtual coin. This encourages artists to focus on quality rather
than quantity, so that people listen for a long time without stopping or else they will end
up earning nothing. One artist can just upload one song and have a lot of people listen
for long time, and another artist can produce a hundred songs every month, but have
terrible music and still earn less. When there are new songs released, people will like to
listen to new music, which will be unfair for good artists. My virtual coin combined
music method will solve this problem. People can only receive a virtual coin when others

listen to his/her music long enough.

2.4 My System vs Spolifys

For my proposed system, | will take only ten percent of the total revenue for label
and hosting the website. Popular artists can participate and make more
money. Customers will like to visit to my website because they know that the quality of
the music on this website is very good. For example, the chart below shows the
comparison of my system vs the royalty system. For example, if my website and the
royalty system generate the same revenue, assume that this artist is very good and one
hundred users listen to his music for at least 5 minutes. Let us also assume that every
minute, one virtual coin will be generated, so this artist has 500 virtual coins. If there are
five hundred other artists who upload one song to each of the websites and their music is
very bad and only one person listens to each of their songs for around one minute,
generating an additional five hundred virtual coins, my website will have generated a
total of one thousand virtual coins. Assume all the artists are independent so they receive

100% of the royalty payout.

18

100 user listen to 5 min

Aurtist earn

My System | $1000*(500 the artist own coin /1000 total coin) * *(my cut 70%)

$150

Royalty $1000*(100 stream /600 stream) *(70% website cut)

$50

Table 1: My System vs Spotify table

Even if my system charges the same rate as they did, which is 70%(my system only

charges 10%) of artist’s income, the artist will end up with $150 dollars, which is still

three times more than the royalty system for good artists.

19

3. Preliminary Work

This section describes various experiments for we conducted new currency system. |
researched the background of bitcoin and how it works, and implemented a hash function and tied
it to a music player. The work was divided into four deliverables. The first deliverable involved
doing research to understand Bitcoin virtual currency system, installing the Bitcoin wallet, and
involved trying to do bitcoin mining. The second deliverable was using JavaScript to demonstrate
a hash function to use for the new currency. The third deliverable was using JavaScript to
implement SHA256 hash. The fourth deliverable was using JavaScript to implement function to

compute hashes as long as audio is being played.

3.1 Bitcoin Research

The Bitcoin virtual currency system uses a peer-to-peer technology to operate
without any central authority and there is no need to use banks to manage transactions.
The issuing of bitcoins is done by the network. Bitcoin is open-source; anyone can own
or mine for bitcoins. bitcoins are spent like real currency. Each transaction is broadcast
to the Bitcoin framework with details such as the amount, source, destination, timestamp
of the transaction, and the public keys of the bitcoins involved in the transaction. Each
bitcoin has a public key and a private key. The private key is used to determine who has
ownership of the bitcoin and the public key is used to sign the bitcoin for owner
verification during transactions. For example, suppose Owner 1 needs to buy a car from
Owner 2. Owner 1 needs to transfer the some of bitcoins to owner 2 by digitally signing a
hash of the previous transaction’s detail as mentioned above to change ownership of the

bitcoins to Owner 2 using Owner 1’s private key. The public key will then be used by a

20

third party to verify that the bitcoin changed ownership to Owner 2 as the graph below

shows:

Transaction Transaction Transaction
Owner 1's Owner 2's Owner 3's
Public Key Public Key Public Key

\J
v e, v Yeri, v
Owner 0's Owner 1's Owner 2's
Signature v Signature v Signature
o &
Owner 1's Owner 2's Owner 3's
Private Key Private Key Private Key

Figure 3: Bitcoin Transaction from [8]
How do we prevent Owner 1 from double-spending the same bitcoin to buy other stuff
from Owner 3? The solution is to use a timestamp. As mentioned before, the bitcoin
system is peer-to-peer, so anyone who gains ownership of a bitcoin will know the
transaction history of the bitcoin. When someone gives someone else a bitcoin, then
everyone else knows at what time the transaction occurred. This will prevent the use of
the same bitcoin twice because once a transaction occurs, the record of the transaction
will go public. Everyone will know what time that bitcoin was used, and the bitcoin will

not be able to be reused by the same person twice in a row.

21

How do we get bitcoins? There are two ways to get bitcoins: first, they can be

bought from a bitcoin exchange website such as https://www.mtgox.com/ (now defunct)

and https://coinbase.com/. The price for bitcoins fluctuates on a daily basis from about

$100 to $1,000, similar to stocks. Second, one can get bitcoins by bitcoin mining. The
mining system uses SHA256 to generate a digest of 32 hexidecimal digits. If the digest
begins with a certain number of zeros, then you can do verification. Whenever there is
any transaction moving bitcoins, people need to verify whether this coin was previously
used or not by utilizing their computer’s processing power. Whoever is notified and
verifies the transaction first will be paid a small reward, which is typically a small part of
a bitcoin such as .00001 bitcoin or even less, depending on the amount of bitcoin in the
transaction. Over time, more people are doing bitcoin mining, so it will become harder
and harder to mine bitcoins. Previously, one could mine bitcoin using a string such as
‘abc’ and by generating a 32 byte hexidecimal character string that starts with two zeroes
like 00af21acO6aceb9cdd0575e82d0d85fc39bedOa7ald71970bal641666a44f530.
However, now you would have to generate a hash string like with six leading zeros such
as: 000000c71f1bda5h63f5165243e10394bc9ebf62e394ef7c6e049c920ealbl81 to
successfully mine a bitcoin. Bitcoin is a framework of coins made from digital
signatures, which provides strong control of ownership and prevents double-spending.
The only way to attack this framework may be to use fake nodes to send a lot of verify
requests. The verifying will be very slow and during that time, the attacker can double-
send while verifications are not finished. bitcoin exchange websites need to defend
against this attack by coding carefully to prevent attackers from selling anything while
the bitcoin is not finished verifying prior transactions.

22

https://www.mtgox.com/
https://coinbase.com/

The next part of this deliverable was to install a bitcoin wallet and mine bitcoins. |

went to the https://bitminter.com/ website and created an account, so that | have a wallet

at the website. All the bitcoins | mine or receive are saved to this wallet. Then | installed
the “BitMiner Client” application, which generates different hashes for me to mine
bitcoins and do verification. All the bitcoins | obtained from mining are saved to my
account in bitminter.com. A screenshot of the “BitMiner Client” application is shown

below:

[=1 BitMinter Client v1.4.3 b ' ' ‘ “ ‘v a u \“ ‘

File Settings View Devices Tools Help
GPU: GeFarce GTX 670 (#1) 5] o| §& oW o/@ 1osemhps (05|~
= Total: Sum of all devices
Stats Controls
Mo 000000
& B
r

| 00000000 i
| Proofs of work rejected by server ot

T odaysomow:2e
Approx. mint speed:

- 0.0000 per day =
U U2 UHIT USE PefTormarice frioae Tor oes P (s
2014.02.25 [23:33] Probing all ports for external devices
2014.02.25 [23:33] /\Probe of port COM1 failed: timeout
2014.02.25 [23:33] No external devices detected.
2014.02.25 [23:33] Difficulty is now 3129573175

GeForce GTX 670 (#1) started Do[[]o] F o] o[& connected | & 5| @ 105.6 Mhps (1) ()
L

e
B

mn

s

Figure 4: BitMiner Client from https://bitminter.com/

The screenshot below shows how many bitcoins I received from mining:

23

https://bitminter.com/

Account Details for timchen623)

Unconfirmed income is added to your balance if and when blocks are confirmed. To improve your income
per block, improve your score in the shifts eligible for payments by increasing your hash power.

Personal Assets Unconfirmed Future Expected per block

Bitcoins [send] 0.00001243 = 0.00001243 0.00000423
Namecoins [send] 0.00002894 = 0.00002894 0.00000846

Email settings

To ensure messages are not caught in your spamfilter, please add noreply@bitminter.com and
operator@bitminter.com to your address book and/or whitelist them with your anti-spam solution.

Your email address:

Figure 5: Bitcoins | received from mining from https://bitminter.com/

The application examines my GPU processing power to determine how many hashes |
can generate every second to send to the bitcoin framework and see if we can get any
strings of hashes with starting zero the bitcoin machine wants. The mining tool can use:
ASIC card, our CPU, and graphics card. The speed at which bitcoins are mined depends
on how powerful our computer graphics card or ASIC machine we use to generate the
hash is. The chart below shows how different ASIC machines, Nvidia graphic card, and
AMD(ATI) graph card can mine bitcoins rate, and their current price. | got the

information below from [91], [10], [11], and http://www.Amazon.com/[12] :

Product Name Generate Mhash/s Price
ASIC Avalon Asic #1 107 $1299
ASIC Avalon Asic #2 117 $1499

24

https://en.bitcoin.it/wiki/Mining_hardware_comparison/
https://en.bitcoin.it/wiki/Mining_hardware_comparison/
http://www.tomshardware.com/reviews/geforce-gtx-660-ti-benchmark-review,3279html/
http://www.tomshardware.com/reviews/geforce-gtx-660-ti-benchmark-review,3279html/

ASIC Avalon Asic #3 117 $1499
AMD(ATI) Radeon HD 7970 | 603.8 $350
AMD(ATI) Radeon HD 7950 | 517 $229.99
AMD(ATI) Radeon HD 6970 | 389.9 $169.99
Nvidia GTX 770 123 $370
Nvidia GTX 670 112 $289
Nvidia GTX 660 Ti 96 $189

Table 2: Chart for AISC machines, Nvidia graph card, and AMD (AT]I) graph card mining bitcoins

rate

From the above, ATI graphics cards seem to be the best for bitcoin mining. For the same

price, they are much faster than Nvidia. For example, the Nvidia GTX770 and ATI

Radeon HD 7970 both cost around $350, but the GTX770 can only generate 123 hash

strings while the Radeon HD 7970 can generate 603 hash strings. The Radeon HD7970 is

four to five times faster at generating hashes than the GTX 770 for the same price.

25

3.2 Implementing a Hash Function

| am using JavaScript to demonstrate a hash function for use in a new currency.
After the research | did on Deliverable 1, | found out how to generate hashes by having
the user enter a string and how many zeroes they want at the start of the hash string, and
then the hash function will return a hash string with the requested number of zeroes at the

start. Below is a screenshot of my test application:

Demonstration

Text to hash abc
Enter Zero 3

Calculate MD5
Result 900150983 cd24b0d6963f7d28e 1772
ADDSTRING

Resultl 0006055c086a2fbc961b4c072630945b

Figure 6 My test application for Hash Function

The “text to hash” input box allows a user to enter the text they want to hash and the
“enter zero” input box will allows the user to choose how many zeros at the beginning are
required to mine for a coin. The “calculate” section uses the MD35 hash algorithm [19] to
generate the 32 hex digit to be displayed in the "result™ text box from the string that the

user entered in the "Text to hash" text box. The code was obtained from [13].

<input type="button" onclick="document.getElementById('hash').value =
hex md5 (document.getElementById('userString') .value)" value="MD5">

Clicking “ADDSTRING” button, generates the hash based on the user inputs in the “text

to hash” and “enter zero” input boxes, using a function called “hex_add.” For example, if

26

a user entered ‘abc’, this function will add characters after it. | use a loop to determine the
ASCII code from 0 to 255 to put into the MD5 function to see if the number of zeroes in
the start of the hash string generated will match the value of the “Enter Zero” input box.
If adding one character cannot generate a hash string as specified, then the function will
keep changing and adding additional characters until the generated hash string satisfies
the “Enter Zero” input. For example, given input ‘abc’ and ‘2°, character would result in
string ‘bacl’, which will be changed to ‘abc2’ if ‘abcl’ does not generate a hash string as
specified. If just adding one character does not generate a hash string starting with two
zeroes, we will add another character at end, and it will be abc11, then abc12, and so on.
Basically, it tries all 256 ASCII codes for each added character until we generate the

desired hash string. The screenshot below shows how this code works.

27

for (var i=0; i<len; i++)

var currentone = (str.charAt(i)).charCodeAt(0);
if (currentone <= 255){

{
}
else
{
}

}

currentone = currentone+1;

var res = String.fromCharCode(currentone);

str = str.replaceAt(i,String.fromCharCode(currentone));
var hash = hex_md5(userstring+str);

if (hash.charAt(0) == "0"){

found = true;
}
for (var i=1; i<zerolength; i++)
{
if (hash.charAt(i) '="0"){
found = false;
}
}
if (found){
break;
}

currentone = 0;

var init = String.fromCharCode(currentone);

str = str.replaceAt(i,String.fromCharCode(currentone));
str += String.fromCharCode(0);

Figure 7: Hash function implements

28

3.3 Implementing Sha256

As part of my CS297 preliminary work, | explored some hash functions, | decided
to implement SHA256 using the pseudo code from [14]. SHA256 is a one way hashing
method, meaning it can encrypt text but cannot be used to generate the original text. The
implementation works like this: when a user enters a string, the input string is divided
into 512 bit message blocks. Each message block and its prior intermediate hash value
are processed by a message schedule and a compression function to produce a 256 bit
intermediate hash value. The initial hash value is the square root of the first eight primes
2...19. Each message block is further broken down into 16 32-bit words. The 16 words
are extended to a 64 entry message schedule array[20]. The message schedule function is
to improve the compression function's quality because the compression function is
operated on a longer message schedule array. The compression function consists of
bitwise operations such as XOR, AND, OR, SHIFT operations, and so on. | use the

pseudo code for my implementation of the SHA256 algorithm as below:

Initialize hash values:

(first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):

var hash = new Array(Ox6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F,
0x9B05688C, 0x1F83D9AB, 0xX5BEOCD19);

Initialize array of round constants:

(first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):

var K = new Array(0x428A2F98, 0x71374491, 0xB5COFBCF, 0XE9B5DBAS5, 0x3956C25B, 0x59F111F1,
0x923F82A4, 0XAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74,
O0x80DEB1FE, 0x9BDCO06A7, 0xC19BF174, OXE49B69C1, OXEFBE4786, 0OXFC19DC6, 0x240CAL1CC,
0x2DE92C6F, 0x4A7484AA, 0X5CBOAIDC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8,
O0xBF597FC7, 0XC6EOOBF3, 0XD5A79147, 0x6CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138,
0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766 A0ABB, 0x81C2C92E, 0x92722C85, 0OxA2BFESAL,
0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106 AAQ70,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34BOBCB5, 0x391C0CB3, 0X4ED8AA4A, 0X5BICCA4F,
O0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0X90BEFFFA, 0xA4506CEB,
OxBEF9A3F7, 0xC67178F2);

Process the message in successive 512-bit chunks:
function preProcess (str, I) {
var binarylist = Array();
var move = (1<<8) - 1;
29

for(var i =0; i <str.length * 8; i +=8) {
binarylist[i>>5] |= (str.charCodeAt(i / 8) & move) << (24 - i%32);
}

binarylist[l >> 5] |= 0x80 << (24 - 1 % 32);
binarylist[((I + 64 >>9) << 4) + 15] = ;
return binarylist;
b
(The initial values in w[0..63] don't matter, so many implementations zero them here)
copy chunk into first 16 words w[0..15] of the message schedule array

Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array:
for i from 16 to 63
if (j < 16)
Wil = m[j +i[;
else

Initialize working variables to current hash value:
a = hash[0];

b = hash[1];

¢ = hash[2];

d = hash[3];

e = hash[4];

f = hash[5];

g = hashl[6];

h = hash[7];

Compression function main loop:
for (var j = 0; j<64; j++) {

if (j < 16)
WI[j] = m[j +if;
else

WI[j] = safe_add(safe_add(safe_add(s1(WTIj - 2]), W[j - 7]), sO(W[j - 15])), W[j - 16]);

templ = safe_add(safe_add(safe_add(safe_add(h, S1(e)), ch(e, f, g)), K[j1), WI[il);
temp?2 = safe_add(S0(a), maj(a, b, c));

h=g;

g="

f=e¢;

e = safe_add(d, templ);

0 OTo0

afe_add(templ, temp2);

LT O Q
o 1o
n

}

Add the compressed chunk to the current hash value:
hash[0] = safe_add(a, hash[0]);

hash[1] = safe_add(b, hash[1]);

hash[2] = safe_add(c, hash[2]);

hash[3] = safe_add(d, hash[3]);

hash[4] = safe_add(e, hash[4]);

hash[5] = safe_add(f, hash[5]);

hash[6] = safe_add(g, hash[6]);

30

hash[7] = safe_add(h, hash[7]);

Produce the final hash value (big-endian):
digest := hash := h0 append h1 append h2 append h3 append h4 append h5 append h6 append h7

Figure 8: Sha256 Implementation

My implementation produced an identical hash results as test values from[15]. When |
entered the string ‘abc’ as my input text and also enter the same input string to that
website, both give the same result of

ba7816hbf8f01cfead14140de5dae2223b00361a396177a9¢ch410ff61f20015ad.

A cryptographic hash (sometimes called "digest”) is a kind of "signature’ for a text or a data file. SHA-256 generates an al-
most-unigue 258-bit (32-byte) signature for a text. See below for the source code.

Enter any message to check its SHA-256 hash

abc

Message

Generate Hash

Hash bav816bf3f01cfead14140de5dae2223b00361a396177a9ch410ff61120015ad

Note SHA-256 hash of "abc’ should be: ba7816bfEM01cfead14140de5d32222300036133961 7739410/ 61f20015ad

Demonstration

Text to hash abc
Enter Zero
Calculate | MD5 || MY-SHA256
Result ba7316bfef1 cfead14140debdae2223b003¢

ADDSTRING

Resultl

Figure 9: Comparison of my sha256 code and website sha256 code

31

http://www.movable-type.co.uk/scripts/sha256.html
http://www.movable-type.co.uk/scripts/sha256.html

3.4 Music function

As part of my experiment, | began working on the play music proof of concert.
This deliverable combined the two functions that | implemented and described in the
previous two sections. | am using JavaScript to implement a function to compute hashes
while playing audio. I used the function I implemented in Deliverable 2 to add a music
bar into the GUI, which ran the hash function while the music player is played. When the
user presses play audio, it will ignore the “Enter Zero” input field. As it plays, my
implementation will run a while loop and continually generate hashes with leading zeroes
and keeping track of the hash value that has the highest number of leading zeros until the

music is finished playing or the pause audio button has been pressed..

Demonstration

Text to hash abc
Enter Zero
Calculate | MD5 || MY-SHA256 |
Result 900150983cd24b0dE363f/d28e1 772

Music

[Flay Audio] [Fause Audio]
| ADDSTRING |

Resultl
Result2 000004e22e53459b46ccd22b 76606855

Figure 10: My test application for music function

Once the music stops, the “Result2” field will contain the hash value with the highest
number of leading zeros it has generated while the music was playing. For example, the

above screenshot shows in the ‘Result2’ field that during the ten second interval, it has

32

calculated a hash value with five zeros by use SHA256 function which I implemented in
for the last section. | used an HTML5 audio tag to get music from a local file and for the
play audio button, I implemented a function called clickplay. When | press the play audio
button, it will use the value from the ‘text to hash’ inputbox, which is used by my
clickplay function. While the audio is playing, it will keep incrementing the zeroes to
pass to the function hex add starting with only one zero. If it returns a value and the
music is still playing, it will add another zero to hex_add function. If the music stops or is
paused then it will return the last value generated to the ‘Result2’ output text box.

This function seems to be working perfectly, but it has a problem. When it runs, |
cannot press the pause button because the JavaScript does not support multi-tasking. So
when | try to press the pause button, it will not work because it is still running in the
while loop as well as playing audio and it creates a problem. The screenshot below shows

the results:

vanuare i Wi e
Result 900150983cd24fo0d6963f7d28e17f72

0:10
Music

Play Audio | | Pause Audio |

ADDSTRING

Resultl
Result2

P9

Warning: Unresponsive script

A script on this page may be busy, or it may have stepped responding. You can stop the script now,
or you can continue to see if the script will complete.

Script: file:///C:/Users/IBM_ADMIN/ Desktop/C5297/jshash-2.2/md5-min js:11

¢ md5("message digest") = "£96b697dTcbT938dY

Don't ask
{_shal("160-bit hash") = "20d925d553c3d35cdy sontaskmeagan

Figure 11: Browser stop
Because JavaScript is single-threaded, | cannot use sleep() function in this method; I have

to use setTimeout function instead. During the setTimeout, the code runs smoothly, but

33

once the timer expires, the problem shows up again. The only solution for this problem is
to use WebCL,; it supports parallel computing in HTML5 web browsers and will allow
me to run two threads at same time, which are play audio function and clickplay function.
It uses the GPU and CPU, unlike my example website that only uses the CPU, so it will

be much faster.

According to WebCL [16]:

“WebCL 1.0 defines a JavaScript binding to the Khronos OpenCL standard for
heterogeneous parallel computing. WebCL enables web applications to harness GPU and
multi-core CPU parallel processing from within a Web browser, enabling significant
acceleration of applications such as image and video processing and advanced physics for
WebGL games. WebCL has been developed in close cooperation with the Web
community and provides the potential to extend the capabilities of HTML5 browsers to

accelerate computationally intensive and rich visual computing applications.”

The problem with this approach is anyone who wants to run it must have both the
OpenCL driver and the WebCL browser extension. | use WebCL for my thesis

implementation.

34

https://www.khronos.org/webcl/
https://www.khronos.org/webcl/

4. An MP3-based Currency System

The technologies | am going to use are JavaScript for the front end of the website,
PHP for the back end of the website, and new technologies like web worker to do the
hash encryption for the currency coin. My proposed MP3-based currency system will
mimic the bitcoin architecture with a modified mining process and a slightly different
transaction process. Instead of using the hash-cash based proof-of-work system in
mining bitcoin, this MP3-based currency system will award artists after they upload an
MP3-based song and users listen to it. Like the bitcoin system, the amount of currency
transferred is based on the length of time an artist’s song has been listened to. | also
created a ranking system to rank the artists from highest rank to lowest. All artists who
have their music listened to by users will be in the ranking system. First place will be the
most popular artist. The artist with the highest rank will receive the most listening coins,
which implies that their music is popular. The rank depends on the amount of the virtual
coins the artist owns, meaning the artist needs to create good music that encourages
people to listen for a long time instead of just listening to a few seconds and then stoping.
The record company will want to invite popular music artists to concerts so they can
become famous quickly. In addition there is a verification tool for artists to check

whether another crypto coin is valid or not.

4.1 Requirements and Design

The MP3-based currency system is a large framework. In my CS297 | was
thinking that when users played music the artists would receive some kind of crypto-coin.

After trying to come up with a workable system, | decided to use a subscription service

35

payment model. Users are required to pay a five dollar per month subscription fee for
listen the music. At end of the month, the artist will be paid depending on their virtual
coin amount divided by the total virtual coin amount and multiplied by revenue generate
by subscription fees. The operating cost for this project is around the $2000 to build a
server which can store a lot of music and $200 for a business account with an internet
service provider which can provide fast upload and download speed. | will offer a seven
day free trial period and our music quality will be very good because artists with bad
music cannot make money, which may discourage them from uploading more bad music.
| anticipate starting with one hundred users which will generate five hundred dollars of
revenue. The website will earn ten percent of that revenue which fifty dollars which will
be a net loss. Once this service becomes more popular and server is paid off, it will

become profitable with at least four hundred and one users.

The design will have the following requirements:

1. System to upload the music

2. A string for each individual virtual coin

3. Use the Sha256 method to mine for virtual coins

4. System to save the coin after the artist receives it

5. Rank for who has the highest virtual coin count for each month

6. To verify each coin
After the requirements were gathered, the design was started. The requirements were
converted into classes using object-oriented design. In MP3 system, all the classes and

database can be seen in the figure below.

36

VerifyHashCoin.php

VerifyCoin.php

Rank.php

hash_workers2.js

:

Index.php

Figure 12: My system design

artist Rank verfiv coin tool

Select the music: No file selected

Artist name

upload the music

Figure 13: My system’s application

4.2 System to upload the music

in_wallet
DataBase
GainCoin.php
member
DataBase
|
I uploadmusic.ph | music_data |
P g DataBase
Artist_data
DataBase
addinformation.php
Music Player artist name
' o0 |
1450 mp3 ||
2537.mp3 |3
2555.mp3 ||

If an artist wants to upload their music to my website, they click browse, select

their music, and click the “upload the music” button.

37

artist Rank verfiy coin tool

Music Player artist name

1450.mp3 | |3

2537.mp3

2555.mp3

2558.mp3 |l

Select the music: 2558.mp3

Artist name Harry

upload the music

Figure 14: Use my application upload music

For example, if you are Harry, like the above screenshot, and have uploaded music before,
clicking the “upload the music” button will take you to uploadmusic.php. In there, you
will save your songs in a folder call fileupload, and connect to the database music _data,
save the artist name, song names, path of the song, and musicData hashString, which is
generated from an MP3 file. We use PHP function file_get_contents(the mp3 file) to
convert it to a single long string, then use PHP library Sha256 function to change it into a
hex string. It then takes you back to the main page with an extra music line. If you have
never uploaded music onto the website before, after you upload the music, it will go to

addinformation.php and will ask your email and password as screenshot below:

Thank vou upload the music please enter vour email and password

email
password

Figure 15: Addinformation.php application

After you enter your email and password, it will go back to the home page.

38

4.3 A string for each individual coin

Once the user clicks the play button on the music, the name of the artist who
uploaded and their music data will be passed to the function audiPlay(name, music data).
Inside audiPlay, the play button will make a string for artisthame+music_data+timestamp
(when the user pressed to play) +user IP address (converted into a hash string by the
SHA256 function), which will be passed to the method startworker (string). The
timestamp is created in PHP by first setting the time zone date_default_timezone_set
(‘America/Los_Angeles) and then creating a new DateTime() variable. This new

DateTime variable will contain the current timestamp.

4.4 Use the Sha256 method to mine the virtual coin

The startworker method calls Web Worker to run:

w = new Worker ("hash_workers2.js").

The Inside hash_workers2.js file has hash function and implements Sha256. As shown
below, the w.possMessage(a) will pass the string to hash_workers2.js. It will keep
generating the hash hex string until it finds 4 leading zero then will return the string
(string pass to this method) + nonce (ASCII character added to the string, which will
create the 4 leading zero hex string) using the function w.onmessage. For example, if it

found one coin, it will return a string without parentheses

(artistname)(music_data)(timestamp)(userIP address) (1)(nonce).

39

If it found two virtual coin at this music play length of time, it will return a string in this

format without parentheses

(artistname)(music_data)(timestamp)(userlpaddress)(1)(nonce)--(artistname)

(music_data)(timestamp)(userlp address)(2)(nonce).
It should look like:
Larry8eac221e13834defb2e14d636e1a2417b30009dee009a6a07dd7b862c1b379002014-11-30 21:22:2012cal Th49af22894361303e0166030a21e525d266e209267433801a8fd407 1a0lnls

Then, we save those messages in variable counNumber.

w.onmeszage = fonction({event) {
zeros = event.data;
var hashString = ""+event.data;
countNumber = event.data;

b

w.postHMessage (a) ;

Figure 16: Web Worker implementation

Once the music ends, or the user clicks stop, it will go to the method stopWorker(). It
will terminate the Web Worker and stop generates the hash string and sends the variable

countNumber to GainCoin.php file.

4.5 System to save the coin after the artist receives it.
GainCoin.php will split the countNumber variable string by splitting on pattern “-
-“. Because the database cannot read some of the ASCII characters, I used the PHP

function base64_encode($string) to encode the string so the database can read it and

40

increased the character length for the column for hash_coin to ten thousand so it can be

saved in the database by using SQL

“Alter Table Hashcoin_wallet modify hash_coin varchar(10000)”.

After doing that, | then save each hashcoin one by one to the Hashcoin_wallet database
with the artistName. If the current day is at the end of the month, then GainCoin.php will
also connect to the member database and get the number of subscribers, multiply that by
5, which is the subscription fee in dollars, to get the revenue. Then it will connect to the
Artist_data database to get each artist’s name and update the percentage the artist will
receive. Finally, it will connect to the Hashcoin_wallet database, calculate the sum of all
the virtual coins that all of the artists have earned, then multiply that sum by the

percentage each artist is due.

4.6 Rank for who has highest coin of each month

If people or any record company wants to get the most famous music artist to play
at their concert, then they can click on the ‘Rank’ link to get the current most popular
artist, It will print out the all the virtual coins and which virtual coins belong to which

artist. Itis also has ranks to show who has the most virtual coins from most to least.

41

back to music menu

Rank
Rank | Artist Name
1 |Geodman
Tim
Lamy
4 Tom
5 [rek
Coin:
Artist Coin Base64
Name
LamySeac221613834defo e 14d636e 122417 74 Tb86261b379602014-12-03 -

LAY | ot e 120a1 o490 280 361303+01 6603021652 34266020926 7433601 286240714010 TGFyenkd ZWFIMRZTEZODMOZG Ve V3 IMTRENIM2Z TV QeN22MD AwOWRIZTAWOWE Y TAZGQ3 YVjg2MmMY U3 O WEMAXNCO
 |LamyBeac221e13834defo2e 1496361224171 74 Tb862610379002014-12-03 . F—— DAROT WEIYTAS o By 3O T AN
Layy o S D536E30500 16603002 1032542662086 7433801 a TGEyenkd ZWEMjIxZ [EzODMOZG Vi Y IMTRENIM2Z TFEMjQxN2 LMD AwOWRIZ TAwOWE2 Y TA3ZGQ3 Yjg2MmMx YjUIOWInMAXNCO
Larry folelids3beladi1l TAATLEC216IION00NA205 | ot ZWEIMEZTEZODMOZG Vi ¥ IMTRENMZ TP M QeNTMD AwO WRIZ TAwOWE Y TA3ZGQ3 Vg MM fUB0WERMIARNCO

arry 289436£303€0166030221e525d266e200267433801a8£440 71203 2 ¥ e =) ¥ GQNNMDAWOWRIZTAWOWEZYTASZGQ3 Yjg2 JEURAY
odmant33dealbdel20%49af54£16504787445709ed1 71 7b4984b36888584700161c2014-12-03 . e NGO N A7 O , i N . R
Goodman o1 7oA5a 250436530360 16605000 1e5 956 266,200 26743330 1485440 T 101 R29vZG1hbj T2MIRIY THNGUwMBrmNDILZiUOZIFINTAONzg3NGQINZASZW QN 2F iZeml00 Tl YjNi ODgdNTgON2 ¥ wMDE2MWMy MDECL
. 3245566050 S0420£4£74586566002014-12-03 - . B
P IMIUOZTQS y - . NINm T MGUSMZENGU MM 2 N MTOH
Tim e 520506 H3E 2B I 01e VGHZmNIMIUOZTQSMDRINIEONTVm Y TZOTVIZDVEY WNINmIwMGUSMZENGU IM2V2NTAOMmImZG Y SNDUSZJUNBMDTwMT Q8
. 324358260054 2624336304 2084£7453815660:02014-12-03 - - B
¥ NIM2UOZTQSMDRIMIEONTY: AZDVEYWNINmEwMGUSMZENGU IMZMY 3D 2N MTQE
Tim 0400157 20a1 AR A36 A0 1660302523406 6e0526 433501 014407 1a02 0 VGHZmNIM2UOZTQSMDRIMIEONTVmY TZOTVIZDVEY WNINmwMGUSMZENGU IMZMZNTAOMmImZGY SNDUAZJUZNBMDIRMTQE
i 324358609 5ed 530650426 T458£5660002014-1 s . j
. NOUOZTOSMDRIM N n FWNINmwMGUS, JGUIMZM2NTAOMmImZGY3) JINBMDIWMIQY
Tim oo e Ao 00 360501860, ous VGIZmNIMIUOZTQSMDRIMZEONTVm ¥ TZOTVIZDVEY WNINmIwMGUSMjZENGU IMZVINT. YINDU4ZIUZNBMDIWMTQE

Figure 17: Rank.php application
Inside rank.php, | connect to the hashCoin_wallet database using PHP to perform the

following query:

$query ="SELECT * FROM hashcoin_wallet GROUP BY artist Name ORDER
BY COUNT(*) desc"
then process the results to display the rank of the artist as shown at the top of Figure 17.

On the bottom part of Figure 17, | used the following sql statement:

SELECT * FROM hashcoin _wallet

to then display all of the artist names, coins, and encoding base64 version of the

hashcoins (for the purpose of verifying described in the next section).

4.7 Verify the coin tool

After | created the ‘Rank’ table and showed all the HashStrings for each coin, |

made a verify tool to test the hexString. This is for the artist; if some the artists feel like
42

they should get more, or they think others’ music crypto-coin is invalid, they can use this
tool to check other coin hexStrings. On the home page, if you click “verify coin tool”
link, it will take you to the verify tool page to test the hexString in testHashCoin.php,
which will display the hex string for any input strings. The screenshot below shows my
tool for which I put string “88484” in the “Text to hash” field and clicked on “MY-
SHA256” button. It will display the hex string with 4 leading zeroes in the result. Thus,

this tool can be used to verify the virtual coins created when users listen to enough music.

Input Your Hashcoin Value

Text to hash 834384

Calculate MY-SHAZ56

Fesult: 0000a456eTb5a5eb05%e7211b431436883143101275c4077f83£T70298£56234d

Figure 18: Verify tool application

There is another tool written for testing the base64 encoding version of the hashcoins.
Some of the hashcoins cannot be read by the browser because some ASCII characters are
unsupported by the browser. Figure 19 shows my tool for which | input a string to
encode using base64 of the hashcoin which I got from the verify coin base64 column in
the “Text to hash” field and clicked on “MY-SHA256” button. It will display the hex

string with 4 leading zeroes in the result as expected.

43

Input Your Base64 Value

Text to hash BZ2%ZG1hbiYzMZRIY TJMNGLwMiBmMNDIh)L
Calculate MY-SHAZDE

Result: 000046a861417214db77c8c5009029158a28571 6a13a65decd4df54080809d5 T

Figure 19: Verify tool application for Base 64

Then I used the SHA256 function | created and made a textbox allowing a user to enter a
string. After they click on the “MY-SHA256 button”, the text is passed to the SHA256
method and the result will be displayed below the button. In the verify tool function, I
also made a search tool that allows users to search for whomever they want to search to

see the virtual coins that person owns.

Verfiy all the coin Artist has please enter his name:
Jack

Search

Figure 20: Verify tool search application

Once the user enters an existing artist name, they are taken to verifyCoin.php with the

artist name they have entered on previous page and put into SQL statement:
$query ="SELECT * FROM Hashcoin wallet where artist Name='$artist name"’.

This statement searches for all the virtual coins that the artist, Jack, has and uses PHP
function base64_decode($string) to decode the hash_coin string to display what the

coins really look like in coin column, and uses PHP library SHA256 function to display

44

all of the hex strings for the artist to verify that Jack’s coins are all valid. The results

show as below:

Artist Name Coin

Jack Jack0e2371b4fddec412c868762c583cc5e4888bbf3f40404dd4a08686d98458cc032014-12-03 04:36:5812cal Th49af2289436£3030166030a21e525d266e209267433801a8d4071a014p | 00005
Jack Jack0e2371b4fd4ec412c868762c583cc5e4888bbf3f40404dd4208686d98458¢c032014-12-03 13:36:3112cal Th49af2289436£303e0166030a21£325d266:209267433801a8£d4071201Z4p [0000b
Jack Jack0e2371b4fd4ecd12c868762c583cc5e4888bbf340404dd4a08686d98458cc032014-12-03 13:36:3112cal Tb49af2289436£303e0166030a21e325d266e209267433801a8fd4071a02kS | 0000e
Jack Jack0e2371b4fd4ecd12c868762c583cc5e4888bb3140404dd4a08686d98458cc032014-12-03 13:36:3112cal Tb49af22894361303e0166030a21e325d266e209267433801a81d4071a03+ | 00002

Figure 21: Verify tool search result

45

5 Experiments

5.1 WebCL: Implement Hash Function by using webcl

| experimented using WebCL to implement the hash function used by my music player.
As mentioned before, WebCL will utilize the GPU for processing instead of the CPU. In
figure 10, the “calculate” section uses for the hash function algorithm to generate the 32
hex digit to "result” section from the string the user entered. Let us start with the kernel
description using OpenCL C language [21]. The idea is to add sixteen vectorInl element
vectors in global memory, vectorinl to vectorInl6, and store the result to the vectorOut,
vectorOut2. The kernel code is shown below. All code written in WebCL must inside.
Because we can’t pass a struct that contains pointers (mention in [18]section 6.9) we

need to declare each variable one by one instead of using pass vector array().

46

<script id="clProgramVectorAdd" type="text/x-opencl">

kernel wvoid ckVectorZdd(global uint* vectorInl,
global uint* vectorIn2,
global uint* vectorIn3,
global uint* vectorInd,
global uint* vectorIn5,
global uint* vectorIné,
global uint* vectorIn?,
global uint* vectorIn8,
global uint* vectorIn9,
global uint* vectorInlO,
global uint* vectorInll,
global uint* wvectorInl2,
global uint* vectorInl3,
global uint* vectorInl4,
global uint* wvectorInl5,
global uint* vectorInlé,

global uint* vectoroOut,
global uint* vectorOut2,
uint uivVectorWidth) {
uint x = get_global id(0);
uint hash = hex shA256(vectorInl[x], vectorIn2[x], vectorIn3[x],
vectorInd[x], vectorIn5[x], vectorIné[x], vectorIn7[x],
vectorIng[x], vectorIn®[x], vectorInlO[x], vectorInll[x], vectorInlZ[x],
vectorInl3[x], vectorInl4d[x], vectorInl5[x], vectorInlé[x]):;

if (hash < 6553¢)
{
vectorOut[x] =0 ;

}

elze
{
vectorOut[x] =1 ;
}
vectorout2[x] = hash;

</script>

Figure 22: WebCL implementation

The reason for passing 32-bit integers instead of strings is because WebCL only allows
integers to be passed. A work item is an instance of the kernel and 16 array elements can
be executed in parallel to run in the hex_Sha256 function to generate the hash string,
which | create in OpenCL C language. The function call "get_global id(0)" returns the
identifier of the processed work item. After calculating the hash value, it will check it

has how many leading zero after converting to hexadecimal:

2 leading zero if less then decimal 16777216
47

3 leading zero if less then decimal 1048576

4 leading zero if less then decimal 65536

5 leading zero if less then decimal 4096

6 leading zero if less then decimal 256

If the hash value has more than 4 leading zeroes, vectorOutl will return 1 or else it will
return 0. Vectorout2 will just return a 32 bit integer num, which can be converted to a
hex string in Javascript so we can verify that if has four leading zeroes for testing
purposes. OpenCL kernel needs to be passed to OpenCL device so, therefore, we need a

JavaScript utility function for finding and loading the kernel according to given id. The

function shown below returns the kernel source code.

function loadKernel(id) {

var kernelElement = document.getElementById(id);

var kernelSource = kernelElement.text;

if (kernelElement.src l= "") {
var mHttpReq = new XMLHttpRequest();
mHttpReq.open("GET", kernelElement.src, false);
mHttpReq.send(null);
kernelSource = mHttpReq.responseText;

}

return kernelSource;

Figure 23: LoadKernel implementaton

The function vectorAdd represents an OpenCL host program. Before proceeding with
actual host program, let us first check that WebCL is installed and generate 16 256-
element arrays to act as inputs to run the Sha256 algorithm. Those 16 arrays are created
by preprocessing method from previous Sha256 implementation. We will add another
character at end, and it will be ‘abcl’, then ‘abc2’, and so on. Basically, it tries all 255

ASCII, adding additional ASCII characters if necessary to put into preprocessing method.

48

It will create 16 32-bit integers, which will put into an array. They will end up with 16

arrays, each containing 255 elements.

function vectorAdd(name) {
var output = document.getElementByld("output™);
output.innerHTML ="";

try {
if (window.webcl == undefined) {
alert("Unfortunately your system does not support WebCL. " +
"Make sure that you have both the OpenCL driver " +
"and the WebCL browser extension installed.");
return false;

}

var vectorLength = 256;
var ulvector = new Array();

for (vari=0;i<16;i++) {

ulvector[i] = new Uint32Array(vectorLength);
}

Figure 24: JavaScript declare WebCL step 1

Hosting OpenCL computation starts with reserving the required resources. WebCL
context is created using the default device of the first available platform. In addition, add
18 buffers. 16 read only buffers for the inputs and two write only buffers for the output.

The size of the buffers is given as bytes.

var ctx = webcl.createContext();
var bufSize = vectorLength * 4;
for (vari=0;i<16;i++) {
bufIn[i] = ctx.createBuffer(WebCL.MEM_READ_ONLY, bufSize);

}
var bufOut = ctx.createBuffer(WebCL.MEM_WRITE_ONLY, bufSize);

var bufOut2 = ctx.createBuffer(WebCL.MEM_WRITE_ONLY, bufSize);

Figure 25: JavaScript declare WebCL step 2

Next, create a program object. The kernel code is loaded with the loadKernel function
and built for the defined device. Then, the kernel code "clProgramVectorAdd" is selected

for the kernel object. It will load coded between the script tags

49

<script id="clProgramVectorAdd" type="text/x-opencl"> </script>

var kernelSrc = loadKernel("clProgramVectorAdd");
var program = ctx.createProgram(kernelSrc);
var device = ctx.getinfo(WebCL.CONTEXT_DEVICES)[0];

try {
program.build([device], ");

} catch (e) {
alert("Failed to build WebCL program. Error "
+ program.getBuildInfo(device,
WebCL.PROGRAM_BUILD_STATUS)
+ "w, n

+ program.getBuildInfo(device,
WebCL.PROGRAM_BUILD_LOG));
throw e;

¥

var kernel = program.createKernel("ckVectorAdd");
for (vari=0;i<16;i++) {
kernel.setArg(i, bufinl[i]);

}
kernel.setArg(16, bufOut);

kernel.setArg(17, bufOut2);
kernel.setArg(18, new Uint32Array([vectorLength]));

Figure 26: JavaScript declare WebCL step 3

Next, create a command queue then local and global work sizes are defined. The
execution is enqueued with enqueueNDRangeKernel. After the execution, the results can
be read from the OpenCL device with enqueueReadBuffer. The command queue is
flushed with cmdQueue.finish. Finally, cmdQueue.release() to release all the memory

obtained during the execution.

50

var localws = [8];
var globalWS = [Math.ceil(vectorLength / local WS) * localWS];
output.innerHTML += "
Global work item size: " + globalWs;
output.innerHTML += "
Local work item size: " + localWs;
cmdQueue.enqueueNDRangeKernel(kernel, globalWsS.length, null,
globalWs, localws);

outBuffer = new Uint32Array(vectorLength);
outBuffer2 = new Uint32Array(vectorLength);
cmdQueue.enqueueReadBuffer(bufOut, false, 0, bufSize, outBuffer);
cmdQueue.enqueueReadBuffer(bufOut2, false, 0, bufSize, outBuffer2);
cmdQueue.finish();

cmdQueue.release();
Then, we check for zeroes in the outBuffer in a loop, which we will break out of once a zero is found.

for (var i = 0; i <vectorLength;i=i+1){
if (outBuffer[i] ==0) {
notFound = false;
break;

}
output.innerHTML += outBuffer[i] + ", *;

}
Figure 27: JavaScript declare WebCL step 4

If all the loops have finished running and we still cannot find any zeroes, | will use the
function we created called the plusOne method in the section on implementing a hash
function. It will add one character at the end of the string and do it again from beginning.
If just adding one character does not generate any zeros from the outBuffer, another
character will be added. Basically, it tries all 255 ASCII codes for each added character
until we generate a zero at the buffer. The webCL is good because it uses the GPU and
runs everything in parallel, so the run time will be a lot faster because it is testing 255

elements for hex_Sha256 at same time.

51

It seems that WebCL will make the hashing algorithm run much faster than
before, however, if we add the music function from the Music function section, we still

have the same problem as below:

321 o0 il

RunwebCL

i .
Warning: Unresponsive script &J

0 A script on this page may be busy, or it may have stopped responding. You can stop the script now,
" open the script in the debugger, or let the script continue,

Script: chrome://nrowebcl/content/webclclientwrapper,js:203

[] Don't ask me again

’ Continue] l[}ebug script] [Stop script l

The reason is that the browser is running the music and WebCL at same time, and the
WebCL still gets called from JavaScript. For Javascript, if some scripts take too long
time to execute, it will complain about an unresponsive script. Then, | need to use a time

interval in java script to solve it, so | will stop the script before the page freezes.

5.2 Timelnterval function For WebCL

The idea to combine the music and WebCL together is to run the music and
simultaneously run the WebCL for one second. For WebCL part, if it finds 4 leading
zeroes as we wish, or one second has passed, it will stop. After the one second later, it
will resume the webCL part. Because the browser does not consider it an unresponsive

script anymore, the music and browser will run smoothly without stopping. The code is

below:

52

'qunction audiPlay(a)
=R
setTimeout (function() {timedCount(a)}, 1000);

il

function audiPause ()
=R
clearInterval (myHash) ;

¥

Hfunction timedCount (a) {

var musicCoin = vectorAdd(a) ;

document .getElementById("result”) .innerHTML = musicCoin;
myHash = setInterval (function() {timedCount2(a)}, 1000);

¥

Hfunction timedCount2(a) {
var musicCoin = vectorAdd(a) ;
document .getElementById ("result”) .innerHTML = musicCoin;

Figure 28: Use Timelnterval for WebCL

But this creates another problem. It is okay to generate the first virtual coin, and after
that, it starts generating the second one if the music is still playing, but the problem is that
playing the music still eats up a lot memory. If the music is not stopped, the memory will
not be released and at the same time, WebCL does need a lot of memory to generate the
virtual coin, so the browser will run out of memory. Even through WebCL is using the
GPU, it also needs to use Javascript to call it. In addition, every time an additional ASCII

character is added, additional memory is required.

Demonstration WebCL with timelInterval

Count numbers: 1

ERROR:

OUT_OF HOST MEMGCRY

Figure 29: Out of memory issue for WebCL

53

5.3 Web Worker Combine the music function and Hash function with Web Worker
Because the WebCL has problems when it is called from JavaScript, | did some
research about how to separate the music function and hash function. HTML5 has new
technology call Web Workers, which allows you to spawn new thread, providing true
asynchrony. The new worker can run in the background while the main thread processes
Ul events. Even if the worker thread is busy processing a heavy amount of data, it will
not effect the background workers running. Worker threads can pass the message in

parallel, which is ideal for this project.

Web Worker runs in an isolated thread. As result, the code it executes needs to be
contained in a separate file. | created a new worker object in my main page, and put my
hash function and Sha256 method in the hash_workers2.js file. Script should be invoked

like this:

w = new Worker(*"hash_workers2.js').
After a worker is created, | call the worker and pass the input string to hash_worker2.js to
w.postMessage (name). Name is input string from this main file. It will keep returning

the result:

w.onmessage = function(event) {var hashString = """"+event.data;} .
It will continue finding inputs that generate 4 leading zeros in the hash value until it is
terminated by w. terminate(); It will not bother the Ul music player so everything runs
smoothly. It actually runs faster than WebCL even when | was using the old Javascript

Sha256 method to generate. The WebCL version is supposed to be faster because it uses

54

the GPU, but the reason is because | use time interval, which stops every second and
starts again. Web Worker can run without stopping. The best way to do this project is
put WebCL inside the Web Worker, but, unfortunately, the Web Worker and WebCL are

new technologies, so Web Worker cannot support WebCL.

5.4 Verification tool issue

After a virtual coin is created, it saves it to a data base. | created a tool for a user
to input their virtual coin string to the function | created to test whether it really has 4
leading zeroes. | found | cannot do that because some of ASCII characters are
unreadable by the web browser. So when | paste it, it will show up as below and the

result will not have four leading zeroes.

Input Your Hashcoin Value

Text to hash ;25d2662209267433801a8fd4071af35 5B

Calculate MY-SHAZGE6

Fezult: 0880f8af35491808£3434080ab2 5f8ff763069395c5ad948e1901f44bef3de0f

Figure 30: Verify tool issue

55

I compared the result between my hash256 hash function with the php library sha256

function. In the screenshot below, it still prints out the 4 leading zeroed.

print ($hashValue ."
");
Shash name = hash ('sha25&', ShashValue)’

echo $hash name;
echo "
":

It will show that it has 4 leading zero as below:

1m453b006675b48441d45e52028a435507e 76297089389 1d09c59b662b3c5£12014-11-29 15:50:001
0000d975bb7c055febe0f5c88edf50b5fTb4ded353534fbe582d 13 f4bdddB4c7Tb1

Figure 31: Proof of my code is working

I have also saved them into the database, but | found out the database also does not
support some of the ASCII characters because | made a function below. After querying

to the database, the value does not match what was stored.

Artist Name Coin

Tim Timfee3ede4904e3a455fa6c95edIaace6b00e926ade33c65042bfdf7458£5660c02014-12-03 04:00:5712cal Tb49af2289436£303e0166030a21e325d266e209267433801a81d4071a01c€p | f263df:
Tim Timfee3e4e4904e3a455fa6c95ed5aacetb00e926ade53c65042bfdf7458£5660c02014-12-03 04:00:5712cal Tb49af2289436£303e0166030a21e525d266e209267433801a8d4071a02h | 2061be:
Tim Timfee3ede4904e3a455fa6c95edIaace6b00e926ade33c65042bfdf7458£5660c02014-12-03 04:00:5712cal Tb49af2289436£303e0166030a21e325d266e209267433801a8d4071a03€(| c4080a

Figure 32: Store value

The only way to fix this is to use base64 which was taken from this website[17]:

Base64 is a generic term for a number of similar encoding schemes that encode
binary data by treating it numerically and translating it into a base 64
epresentation. The Base64 term originates from a specific MIME content transfer

encoding.

56

Once it transfers the encoded binary data, it will support both web browsers and the

database. | use base64 function in JavaScript and PHP in my project.

6 Conclusion

My hash-based music streaming system allows music artists to upload their songs
to my website. The artist’s name, content of their music, timestamp, and music artist’s IP
address are used as a seed to the hash function. The "Play music" function has the ability
to play songs while running the hash function to generate virtual coins in parallel, which
can determine the amount earned by an artist based on how long the users of the website
listen to their music. Artists who upload their work on this system will be rewarded
based on the number of virtual coins earned. At the end of each month, each artist’s
earnings in dollars will be calculated by taking the number of virtual coins they earned
that month, dividing that by the number of the total number of virtual coins earned that
month and then multiplying that by the total revenue. In addition, a ranking page is
available for people to see who the most popular artist in the website is, based on who has
most virtual coins. The most popular artists’ music should be better rewarded by my
system because people listened to them for a long time without stopping. Other features |
implemented include verification tool, which lets anyone check the virtual coins an artist

has earned and result of string to hexString after using the SHA256 function.

Currently, there are numerous music websites like Spotify, Xbox Music, Amazon
Cloud, etc., where music artists can upload their songs and be paid when people listen to

their music. They all use a similar system called the royalty system.

57

The royalty system has flaws, despite the fact its widespread use for a long time. The

main flaw is its unfairness in that:

1. Royalty may decrease when a web site becomes more popular.

2. Royalty is not necessarily dependent on the length of time a song is listened to but, to

some extent, depends on the frequency a song is sampled.

The MP3-based payment system, on the other hand, gives virtual coins to the artists while
a song is being played. The longer a song is played, the more virtual coins are paid out to

the artist of the song. This system addresses the problems the royalty system has.

A possible future enhancement for the MP3-based payment system is adding
support to WebCL for Web Worker, which should increase the mining speed. Another is
to increase the number of leading zeroes because everyone will be mining faster. One
problem to adding WebCL is that users who have better graphics card in their computer
will generate virtual coins at a faster rate and will be unfair to the artists because
everyone has a different computer. One issue | have experienced so far is that the browser
is unable to display some ASCII characters, but | believe that in the future, browsers will
be enhanced to have the ability to support all ASCII characters so that using copy and
paste for my verify coin tool can show that all the virtual coins have the exact number of

leading zeroes as expected.

58

7 Reference:

(1]

(2]

[3]

(4]

[5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Gupta Shalen. (2014, November) Bitcoin Buzz bypasses Shopper. Retrieved
December 10, 2014, from http://fortune.com/2014/11/28/bitcoin-buzz-bypasses-

shoppers/

On-demand: 11 subscription music streaming services compared Retrieved from
(November 24, 2014) http://thenextweb.com/apps/2014/07/21/11-music-
subscription-services/13/

The Streaming Price Bible — Spotify (November 12, 2014). , YouTube and
What 1 Million Plays Means to You! Retrieved from (November 24, 2014
)http://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-
and-what-1-million-plays-means-to-you/

About ASCAP, Retrieved from http://www.ascap.com/about/(December 8, 2014
)

The Payola scandal heats up(Feb 11, 1960) , Retrieved from (December 5, 2014
). http://www.history.com/this-day-in-history/the-payola-scandal-heats-up

How is Spotify contributing to the music business? Retrieved from
http://www.spotifyartists.com/spotify-explained/ (December 7, 2014).

The Streaming Price Bible(November 12, 2014) — Spotify, YouTube and What 1
Million Plays Means to You! Retrieved from (December 12, 2014).
http://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-
and-what-1-million-plays-means-to-you/.

Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System. Bitcoin,
page 2-3 Retrieved from https://bitcoin.org/bitcoin.pdf (2009)

Mining Hardware comparison. Retrieved from (March , 8, 2014)
https://en.bitcoin.it/wiki/Mining_hardware comparison

Videocard Benchmarks Retrived from (March , 10, 2014)
http://www.videocardbenchmark.net/video_lookup.php?gpu=GeForce+GTX+670

GeForce GTX 660 Ti Review: Nvidia's Trickle-Down Keplernomics. Retrieved
from (March , 10, 2014) http://www.tomshardware.com/reviews/geforce-gtx-
660-ti-benchmark-review,3279-12.html

Amazon video card price, Retrieved from (February , 30, 2014)
http://www.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Daps&field-
keywords=graphic+card

59

http://fortune.com/2014/11/28/bitcoin-buzz-bypasses-shoppers/
http://fortune.com/2014/11/28/bitcoin-buzz-bypasses-shoppers/
http://thenextweb.com/apps/2014/07/21/11-music-subscription-services/13/
http://thenextweb.com/apps/2014/07/21/11-music-subscription-services/13/
http://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-and-what-1-million-plays-means-to-you/
http://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-and-what-1-million-plays-means-to-you/
../../../../../../../../../Downloads/About%20ASCAP,%20http:/www.ascap.com/about/
http://www.history.com/this-day-in-history/the-payola-scandal-heats-up
http://www.spotifyartists.com/spotify-explained/
http://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-and-what-1-million-plays-means-to-you/
http://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-and-what-1-million-plays-means-to-you/
https://bitcoin.org/bitcoin.pdf
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Mining_hardware_comparison
http://www.tomshardware.com/reviews/geforce-gtx-660-ti-benchmark-review,3279-12.html
http://www.tomshardware.com/reviews/geforce-gtx-660-ti-benchmark-review,3279-12.html

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

JavaScript MD5 Retrived from (April, 30, 2014)
http://pajhome.org.uk/crypt/md5/

SHA-2 Retrieved from (February, 23, 2014) http://en.wikipedia.org/wiki/SHA-2

SHA-256 Cryptographic Hash Algorithm. Retrieved from (May, 9, 2014)
http://www.movable-type.co.uk/scripts/sha256.html

WebCL Heterogeneous parallel computing in HTML5. web browsers Retrieved
from (September, 9, 2014) https://www.khronos.org/webcl/

BASEG64 Decode and Encode, Retrieved from (December, 9, 2014)
https://www.base64decode.org/

Aaftab Munshi (November 14, 2014)The OpenCL Specification, Khronos Group, section
6.9, page 233-235. Retrieved from (December, 10, 2014)
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code
in C. , 436-440. Canada. John Wiley & Sons, Inc 1996

National Institute of Standards and Technology. Descriptions of SHA-256, SHA-
384, and SHA-512, Computer Security Division Computer Security Resource
Center., page 4- 15, Retrieved from (December, 15, 2014)
http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf

Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, Dana Schaa.
Heterogeneous Computing with OpenCL, 2" Edition. Chapter 1- 7. Morgan
Kaufmann. December 31, 2012www

60

http://pajhome.org.uk/crypt/md5/
http://en.wikipedia.org/wiki/SHA-2
https://www.khronos.org/webcl/
http://www.base64decode.org/
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

