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Abstract 

 This project develops a hash-cash based, streaming music payment system.  In our 

system, musicians are paid based on how long their works are listened to. Artists can 

upload their works to our proof-of-concept service so that people can discover and listen 

to them. While their works are being listened to, a mining process is run in parallel. The 

mining process discovers a “listening coin” based on the hash-cash algorithm. Users of 

our service would pay a monthly fee to access the music library. The monthly fees are 

then distributed to all artists proportionate to the number of virtual coins they received 

from users who have listened to the songs they have contributed to the library. The virtual 

coins are available for public inspection so that the artists can be assured that they are 

getting a fair share of the subscription fees. 
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1.  Introduction 

Recently, crypto-currencies such as bitcoin have become popular and more 

retailers are starting to accept those digital currency. Currently, 70,000 to 80,000 bitcoin 

transactions occur a day [ 1 ].  There are also many increasingly popular music streaming 

services such as Pandora, Spotify, etc. [ 2 ].  Unfortunately, music artists who upload 

their songs to these music streaming services are paid using the an royalty system such as 

described in article:[ 3 ].  In addition, there is no way for music artists to check how many 

times their music has been streamed by users. This project explores a hash-cash based 

music streaming payment system for music artists who allow their songs to be streamed 

by my software which will address all the problems that music artists currently face. 

My software allows music artists, via a web front end, to upload their music in 

MP3 format to a website I have implemented.  This site uses the artist’s name, content of 

music, timestamp, and the music listener’s IP address as seed in a hash-cash SHA256 

function for the artist to earn the new crypto-currency I have created.  The amount earned 

depends on how long the users of the website listen to the music.  While the music artists’ 

works are being streamed to a listener, a mining process is run in parallel.  This code use 

HTML5 Web Workers to allow the streaming and the mining processes to run in parallel.  

The mining process discovers a virtual coin when a hash-cash algorithm has generated a 

hash that meets a certain criterion such as a minimum number of leading zeros.  The 

artists and the website are paid a share of the monthly access fees for the music library by 

the public. The monthly fees are distributed to all artists proportionate to the number of 

http://thenextweb.com/apps/2014/07/21/11-music-subscription-services/13/
http://thenextweb.com/apps/2014/07/21/11-music-subscription-services/13/
http://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-and-what-1-million-plays-means-to-you/
http://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-and-what-1-million-plays-means-to-you/


12 

 

crypto-coins each artist earned while their work was listened to.  My software also has a 

ranking tool and a tool for verifying crypto-coins.  The ranking tool feature ranks artists 

by the amount of coins earned on a monthly basis. The ranking may be used by record 

labels or radio stations as a top of the charts list or for invitations to a concert or other 

events. The verification tool allows artists to check the crypto-coin count for a given 

month. 

This semester I worked on various experiments for the new currency system and 

music system, basically to combine them together.  As part of my earlier CS297, I 

researched the background of Bitcoin and how it works.  I have also implemented 

WebCL and Web Worker mechanisms to make my music function and hash function run 

in a parallel processing manner.  
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2. Background 
 

This section reviews the current payment mechanisms in the music industry, how 

they work, and what their problems are.  This review is needed to help understand my 

new payment system. 

2.1 Music Industry 

The most common payment mechanisms in the music industry are basically royalty 

systems. Many organizations and web sites are involved in the development of, management of, 

and distribution of the royalties.  Below is a review of some of these organizations.  One such 

organization is ASCAP, American Society of Composers, Authors, and Publishers.  Their 

About Page [ 4 ] describes their role and history as follows.  It was created by a group of 

prominent music creators at the Hotel Claridge in NYC on February 13th, 1914. As of 

December 2014, its members include more than 500,000 U.S. composers, songwriters, 

lyricists, and music publishers of all kinds of music.  Any decisions that ASCAP makes 

can influence society because it was created and controlled by composers, songwriters, 

and music publishers. The Board of Directors is selected by election by the members. The 

ASCAP protects its members’ rights by licensing, distributing royalties, and copyright for 

the music publicly.   

Rights holders have come a long way since the early day of radio when they 

would have to pay for their music to be heard.  Payola is a term for the practice where in 

radio stations are paid for playing music promoted by artists.  Today, radio stations have 

to disclose when a piece of music is being promoted, that is, when the radio station 
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receives compensation to play music.  In the past there were troubles for stations 

receiving the money from a record company or artist: 

As the Payola hearings got under way in February 1960, the public was treated to 

tales of a lavish disk-jockey convention in Miami bought and paid for by various 

record companies. One disk jockey, Wesley Hopkins of KYW in Cleveland, 

admitted to receiving, over the course of 1958 and 1959, $12,000 in "listening 

fees" from record companies for "evaluating the commercial possibilities" of 

records [ 5 ]. 

2.1.1 Pandora 

Pandora is free web radio station based on the music genome project. It started in 

the year 2000, and according to their company website: “Calendar year 2013 GAAP total 

revenue of $637.9 million and non-GAAP total revenue of $647.5 million, both growing 

56% year-over-year” [http://investor.pandora.com/phoenix.zhtml?c=227956&p=irol-

newsArticle&ID=1897339].  Pandora analyzes music based on many attributes such as 

characteristics and style. It provides a better match with a listener's interests and therefore 

retains audience and generates revenue through advertisement.  Artists are paid by 

dividing revenue divided from the royalty system.   

2.1.2 Spotify 

Spotify is free web music site that attracts listeners by providing free access to 

music from all kinds of devices: desktops, mobile, tablets, etc.  Advertising is its source 

of revenue.  According to the following quote from its website:  
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By bringing listeners into our free, ad-supported tier, we migrate them away from 

piracy and less monetized platforms and allow them to generate far greater 

royalties than they were before. Once they are using our free tier, we drive users 

to our premium subscription tier, at least doubling the amount that they spend on 

music, from less than $5 per month (the average spent by download consumers in 

The US) to $9.99 per month for Spotify.[ 6 ] 

Spotify also uses a royalty system to pay the artist. 

2.2 Distribution of Royalty System 

 

 From the above section, we see that most music websites pay artists who upload 

their music according to a royalty system.  The graph below shows how the Spotify 

royalty system works and most music websites use a similar method:  

 

Figure 1: Royalty System from [ 6 ] 

To explain each section in more detail: 

1. Total revenues generated by month from advertising and subscription fees. 
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2. Artist’s total stream (how many people have listened to this artist’s music) 

divided by Spotify’s total stream of the music (the total music listen by all users 

from all artists). 

3. Fee for labels and publisher in each territory.  In the graph above, Spotify takes 

away 70% of what the artist earns. 

4. The label or the publisher pays each artist according to that artist’s contractual 

royalty rates, so that each artist receives deals with a deduction from their 

respective labels and publisher (only independent artists can receive 100% of the 

royalty rate). 

5. At the end, royalty is paid out to the artist after those deductions by the web sites, 

record labels, and publishers.  

2. 3 Royalty System Issues            

The above method has some problems.  For example, if a website is more 

popular, then the artists will be paid less as explained by the first two boxes.  If a music 

website earns $500 in revenue, the total number of songs streamed is 10,000, and if an 

artist only had one song listened to by two users, this artist will earn five hundred 

multiplied by two, divided by one thousand.  However, if the website was twice as 

popular and the artists with songs on the website produce a lot of music each month, then 

the same artist on that website will earn five hundred multiplied by two divided by two 

thousand.  So, artists actually are paid less on more popular sites.  The graph below, from 

the website, “The Streaming Price Bible”, proves my point: 
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Music Streaming price Index as of Feb 1, 2014 

Store  Per Stream  Total in website Downloads 

Nokia 0.07411 9 

Google Play 0.04573 15 

Xbox Music 0.03212 22 

simfy 0.01626 43 

Napster 0.01578 44 

MediaNet 0.01140 61 

Rhapsody 0.01122 62 

Muve Music 0.00875 80 

Deezer 0.00754 93 

Rdio 0.00692 101 

Spotif 0.00521 134 

MySpace Music 0.00094 745 

Amazon Cloud 0.00012 5,862 

Figure 2: Music Stream Price Index from [ 7 ] 

The above shows us that the more popular a music website is, the less an artist is paid per 

song.  For example:  Amazon Cloud has the most downloads, but their artists are paid 

less than any other music website.  The main problem is that artists receive pay by the 

number of streams, which means if an artist has a good reputation for their music, but the 

music is horrible, people will just listen for a few seconds and then choose another one, 

but the artist who creates horrible music will still be paid as well.  The way my project 

will solve this problem is by having listening coins that are created by a hash-cash 

algorithm when it has generated a digest with the proper number of leading zeros (which 

in my implementation is four leading zeros).  The generation takes time and luck.  The 
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most important factor is time, so the longer a user listens to a song, the more chance the 

artist will have in earning a virtual coin.  This encourages artists to focus on quality rather 

than quantity, so that people listen for a long time without stopping or else they will end 

up earning nothing.  One artist can just upload one song and have a lot of people listen 

for long time, and another artist can produce a hundred songs every month, but have 

terrible music and still earn less.  When there are new songs released, people will like to 

listen to new music, which will be unfair for good artists.  My virtual coin combined 

music method will solve this problem.  People can only receive a virtual coin when others 

listen to his/her music long enough.    

2.4 My System vs Spolifys  

For my proposed system, I will take only ten percent of the total revenue for label 

and hosting the website.  Popular artists can participate and make more 

money.  Customers will like to visit to my website because they know that the quality of 

the music on this website is very good.  For example, the chart below shows the 

comparison of my system vs the royalty system.  For example, if my website and the 

royalty system generate the same revenue, assume that this artist is very good and one 

hundred users listen to his music for at least 5 minutes.  Let us also assume that every 

minute, one virtual coin will be generated, so this artist has 500 virtual coins.  If there are 

five hundred other artists who upload one song to each of the websites and their music is 

very bad and only one person listens to each of their songs for around one minute, 

generating an additional five hundred virtual coins, my website will have generated a 

total of one thousand virtual coins.  Assume all the artists are independent so they receive 

100% of the royalty payout.     
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 100 user listen to 5 min Artist earn 

My System $1000*(500 the artist own coin /1000 total coin) * *(my cut 70%) $150 

Royalty  $1000*(100 stream /600 stream) *(70% website cut) $50 

Table 1: My System vs Spotify table 

Even if my system charges the same rate as they did, which is 70%(my system only 

charges 10%) of artist’s income, the artist will end up with $150 dollars, which is still 

three times more than the royalty system for good artists. 
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3. Preliminary Work 

This section describes various experiments for we conducted new currency system. I 

researched the background of bitcoin and how it works, and implemented a hash function and tied 

it to a music player. The work was divided into four deliverables. The first deliverable involved 

doing research to understand Bitcoin virtual currency system, installing the Bitcoin wallet, and 

involved trying to do bitcoin mining. The second deliverable was using JavaScript to demonstrate 

a hash function to use for the new currency. The third deliverable was using JavaScript to 

implement SHA256 hash. The fourth deliverable was using JavaScript to implement function to 

compute hashes as long as audio is being played. 

 

3.1 Bitcoin Research   

The Bitcoin virtual currency system uses a peer-to-peer technology to operate 

without any central authority and there is no need to use banks to manage transactions. 

The issuing of bitcoins is done by the network.  Bitcoin is open-source; anyone can own 

or mine for bitcoins.  bitcoins are spent like real currency. Each transaction is broadcast 

to the Bitcoin framework with details such as the amount, source, destination, timestamp 

of the transaction, and the public keys of the bitcoins involved in the transaction.  Each 

bitcoin has a public key and a private key. The private key is used to determine who has 

ownership of the bitcoin and the public key is used to sign the bitcoin for owner 

verification during transactions. For example, suppose Owner 1 needs to buy a car from 

Owner 2. Owner 1 needs to transfer the some of bitcoins to owner 2 by digitally signing a 

hash of the previous transaction’s detail as mentioned above to change ownership of the 

bitcoins to Owner 2 using Owner 1’s private key. The public key will then be used by a 
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third party to verify that the bitcoin changed ownership to Owner 2 as the graph below 

shows: 

 

Figure 3: Bitcoin Transaction from [ 8 ] 

How do we prevent Owner 1 from double-spending the same bitcoin to buy other stuff 

from Owner 3? The solution is to use a timestamp. As mentioned before, the bitcoin 

system is peer-to-peer, so anyone who gains ownership of a bitcoin will know the 

transaction history of the bitcoin.  When someone gives someone else a bitcoin, then 

everyone else knows at what time the transaction occurred. This will prevent the use of 

the same bitcoin twice because once a transaction occurs, the record of the transaction 

will go public. Everyone will know what time that bitcoin was used, and the bitcoin will 

not be able to be reused by the same person twice in a row.   
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 How do we get bitcoins? There are two ways to get bitcoins: first, they can be 

bought from a bitcoin exchange website such as https://www.mtgox.com/ (now defunct) 

and https://coinbase.com/. The price for bitcoins fluctuates on a daily basis from about 

$100 to $1,000, similar to stocks. Second, one can get bitcoins by bitcoin mining. The 

mining system uses SHA256 to generate a digest of 32 hexidecimal digits. If the digest 

begins with a certain number of zeros, then you can do verification. Whenever there is 

any transaction moving bitcoins, people need to verify whether this coin was previously 

used or not by utilizing their computer’s processing power. Whoever is notified and 

verifies the transaction first will be paid a small reward, which is typically a small part of 

a bitcoin such as .00001 bitcoin or even less, depending on the amount of bitcoin in the 

transaction. Over time, more people are doing bitcoin mining, so it will become harder 

and harder to mine bitcoins. Previously, one could mine bitcoin using a string such as 

‘abc’ and by generating a 32 byte hexidecimal character string that starts with two zeroes 

like 00af21ac06aceb9cdd0575e82d0d85fc39bed0a7a1d71970ba1641666a44f530.  

However, now you would have to generate a hash string like with six leading zeros such 

as:  000000c71f1bda5b63f5165243e10394bc9ebf62e394ef7c6e049c920ea1b181 to 

successfully mine a bitcoin.  Bitcoin is a framework of coins made from digital 

signatures, which provides strong control of ownership and prevents double-spending. 

The only way to attack this framework may be to use fake nodes to send a lot of verify 

requests. The verifying will be very slow and during that time, the attacker can double-

send while verifications are not finished.  bitcoin exchange websites need to defend 

against this attack by coding carefully to prevent attackers from selling anything while 

the bitcoin is not finished verifying prior transactions. 

https://www.mtgox.com/
https://coinbase.com/
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 The next part of this deliverable was to install a bitcoin wallet and mine bitcoins. I 

went to the https://bitminter.com/ website and created an account, so that I have a wallet 

at the website. All the bitcoins I mine or receive are saved to this wallet. Then I installed 

the “BitMiner Client” application, which generates different hashes for me to mine 

bitcoins and do verification. All the bitcoins I obtained from mining are saved to my 

account in bitminter.com. A screenshot of the “BitMiner Client” application is shown 

below: 

 

Figure 4: BitMiner Client from https://bitminter.com/ 

The screenshot below shows how many bitcoins I received from mining: 

https://bitminter.com/
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Figure 5: Bitcoins I received from mining from https://bitminter.com/ 

The application examines my GPU processing power to determine how many hashes I 

can generate every second to send to the bitcoin framework and see if we can get any 

strings of hashes with starting zero the bitcoin machine wants. The mining tool can use: 

ASIC card, our CPU, and graphics card. The speed at which bitcoins are mined depends 

on how powerful our computer graphics card or ASIC machine we use to generate the 

hash is. The chart below shows how different ASIC machines, Nvidia graphic card, and 

AMD(ATI) graph card can mine bitcoins rate, and their current price. I got the 

information below from [ 9 ], [ 10 ],  [ 11 ], and http://www.Amazon.com/[ 12 ] : 

 

Product Name Generate  Mhash/s Price 

ASIC Avalon  Asic #1 107 $1299 

ASIC Avalon  Asic #2 117 $1499 

https://en.bitcoin.it/wiki/Mining_hardware_comparison/
https://en.bitcoin.it/wiki/Mining_hardware_comparison/
http://www.tomshardware.com/reviews/geforce-gtx-660-ti-benchmark-review,3279html/
http://www.tomshardware.com/reviews/geforce-gtx-660-ti-benchmark-review,3279html/
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ASIC Avalon Asic #3 117 $1499 

AMD(ATI) Radeon HD 7970 603.8 $350 

AMD(ATI) Radeon HD 7950 517 $229.99 

AMD(ATI) Radeon HD 6970 389.9 $169.99 

Nvidia GTX 770 123 $370 

Nvidia GTX 670 112 $289 

Nvidia GTX 660 Ti 96 $189 

Table 2: Chart for AISC machines, Nvidia graph card, and AMD (ATI) graph card mining bitcoins 

rate  

From the above, ATI graphics cards seem to be the best for bitcoin mining. For the same 

price, they are much faster than Nvidia. For example, the Nvidia GTX770 and ATI 

Radeon HD 7970 both cost around $350, but the GTX770 can only generate 123 hash 

strings while the Radeon HD 7970 can generate 603 hash strings. The Radeon HD7970 is 

four to five times faster at generating hashes than the GTX 770 for the same price. 
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3.2 Implementing a Hash Function  

 I am using JavaScript to demonstrate a hash function for use in a new currency. 

After the research I did on Deliverable 1, I found out how to generate hashes by having 

the user enter a string and how many zeroes they want at the start of the hash string, and 

then the hash function will return a hash string with the requested number of zeroes at the 

start. Below is a screenshot of my test application: 

 

Figure 6 My test application for Hash Function 

The “text to hash” input box allows a user to enter the text they want to hash and the 

“enter zero” input box will allows the user to choose how many zeros at the beginning are 

required to mine for a coin. The “calculate” section uses the MD5 hash algorithm [ 19 ] to 

generate the 32 hex digit to be displayed in the "result" text box from the string that the 

user entered in the "Text to hash" text box. The code was obtained from [ 13 ]. 

 

Clicking “ADDSTRING” button, generates the hash based on the user inputs in the “text 

to hash” and “enter zero” input boxes, using a function called “hex_add.” For example, if 
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a user entered ‘abc’, this function will add characters after it. I use a loop to determine the 

ASCII code from 0 to 255 to put into the MD5 function to see if the number of zeroes in 

the start of the hash string generated will match the value of the “Enter Zero” input box. 

If adding one character cannot generate a hash string as specified, then the function will 

keep changing and adding additional characters until the generated hash string satisfies 

the “Enter Zero” input. For example, given input ‘abc’ and ‘2’, character would result in 

string ‘bac1’, which will be changed to ‘abc2’ if ‘abc1’ does not generate a hash string as 

specified. If just adding one character does not generate a hash string starting with two 

zeroes, we will add another character at end, and it will be abc11, then abc12, and so on. 

Basically, it tries all 256 ASCII codes for each added character until we generate the 

desired hash string. The screenshot below shows how this code works. 
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 for (var i=0; i<len; i++) 

 { 

  var currentone = (str.charAt(i)).charCodeAt(0); 

  if (currentone <= 255){ 

   currentone = currentone+1; 

   var res = String.fromCharCode(currentone); 

   str = str.replaceAt(i,String.fromCharCode(currentone)); 

   var hash = hex_md5(userstring+str);  

   if (hash.charAt(0) == "0"){ 

    found = true; 

   }      

   for (var i=1; i<zerolength; i++) 

   {  

    if (hash.charAt(i) != "0"){     

        found = false; 

    } 

   } 

   if (found){ 

    break; 

   } 

  } 

  else 

  { 

   currentone = 0; 

   var init = String.fromCharCode(currentone); 

   str = str.replaceAt(i,String.fromCharCode(currentone)); 

   str += String.fromCharCode(0); 

  } 

 } 

 

 
Figure 7: Hash function implements
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3.3 Implementing Sha256 

As part of my CS297 preliminary work, I explored some hash functions, I decided 

to implement SHA256 using the pseudo code from [ 14 ].  SHA256 is a one way hashing 

method, meaning it can encrypt text but cannot be used to generate the original text. The 

implementation works like this: when a user enters a string, the input string is divided 

into 512 bit message blocks. Each message block and its prior intermediate hash value 

are processed by a message schedule and a compression function to produce a 256 bit 

intermediate hash value.  The initial hash value is the square root of the first eight primes 

2…19. Each message block is further broken down into 16 32-bit words. The 16 words 

are extended to a 64 entry message schedule array[ 20 ]. The message schedule function is 

to improve the compression function's quality because the compression function is 

operated on a longer message schedule array. The compression function consists of 

bitwise operations such as XOR, AND, OR, SHIFT operations, and so on.  I use the 

pseudo code for my implementation of the SHA256 algorithm as below: 

Initialize hash values: 

(first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19): 

var hash = new Array(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 

0x9B05688C, 0x1F83D9AB, 0x5BE0CD19); 

Initialize array of round constants: 

(first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311): 

var K = new Array(0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 

0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 

0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0xFC19DC6, 0x240CA1CC, 

0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 

0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x6CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 

0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 

0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 

0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 

0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 

0xBEF9A3F7, 0xC67178F2); 

 

Process the message in successive 512-bit chunks: 

function preProcess (str, l) { 

        var binarylist = Array(); 

        var move = (1 << 8) - 1; 
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        for(var i = 0; i < str.length * 8; i += 8) { 

            binarylist[i>>5] |= (str.charCodeAt(i / 8) & move) << (24 - i%32); 

        } 

   

  binarylist[l >> 5] |= 0x80 << (24 - l % 32); 

        binarylist[((l + 64 >> 9) << 4) + 15] = l; 

        return binarylist; 

} 

(The initial values in w[0..63] don't matter, so many implementations zero them here) 

    copy chunk into first 16 words w[0..15] of the message schedule array 

 

    Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array: 

    for i from 16 to 63 

        if (j < 16) 

 W[j] = m[j + i]; 

    else 

 

    Initialize working variables to current hash value: 

    a = hash[0]; 

            b = hash[1]; 

            c = hash[2]; 

            d = hash[3]; 

            e = hash[4]; 

            f = hash[5]; 

            g = hash[6]; 

            h = hash[7]; 

 

    Compression function main loop: 

    for ( var j = 0; j<64; j++) { 

                if (j < 16) 

 W[j] = m[j + i]; 

                else  

       

 W[j] = safe_add(safe_add(safe_add(s1(W[j - 2]), W[j - 7]), s0(W[j - 15])), W[j - 16]); 

     

                temp1 = safe_add(safe_add(safe_add(safe_add(h, S1(e)), ch(e, f, g)), K[j]), W[j]); 

                temp2 = safe_add(S0(a), maj(a, b, c)); 

                h = g; 

                g = f; 

                f = e; 

                e = safe_add(d, temp1); 

                d = c; 

                c = b; 

                b = a; 

                a = safe_add(temp1, temp2); 

            } 

 

    Add the compressed chunk to the current hash value: 

    hash[0] = safe_add(a, hash[0]); 

            hash[1] = safe_add(b, hash[1]); 

            hash[2] = safe_add(c, hash[2]); 

            hash[3] = safe_add(d, hash[3]); 

            hash[4] = safe_add(e, hash[4]); 

            hash[5] = safe_add(f, hash[5]); 

            hash[6] = safe_add(g, hash[6]); 



31 

 

            hash[7] = safe_add(h, hash[7]); 

 

Produce the final hash value (big-endian): 

digest := hash := h0 append h1 append h2 append h3 append h4 append h5 append h6 append h7 

Figure 8: Sha256 Implementation 

My implementation produced an identical hash results as test values from[ 15 ].  When I 

entered the string ‘abc’ as my input text and also enter the same input string to that 

website, both give the same result of  

ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad.  

 

 

Figure 9: Comparison of my sha256 code and website sha256 code 

http://www.movable-type.co.uk/scripts/sha256.html
http://www.movable-type.co.uk/scripts/sha256.html
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3.4 Music function 

 

As part of my experiment, I began working on the play music proof of concert.  

This deliverable combined the two functions that I implemented and described in the 

previous two sections.  I am using JavaScript to implement a function to compute hashes 

while playing audio. I used the function I implemented in Deliverable 2 to add a music 

bar into the GUI, which ran the hash function while the music player is played.  When the 

user presses play audio, it will ignore the “Enter Zero” input field. As it plays, my 

implementation will run a while loop and continually generate hashes with leading zeroes 

and keeping track of the hash value that has the highest number of leading zeros until the 

music is finished playing or the pause audio button has been pressed.. 

 

Figure 10: My test application for music function 

Once the music stops, the “Result2” field will contain the hash value with the highest 

number of leading zeros it has generated while the music was playing.  For example, the 

above screenshot shows in the ‘Result2’ field that during the ten second interval, it has 
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calculated a hash value with five zeros by use SHA256 function which I implemented in 

for the last section.  I used an HTML5 audio tag to get music from a local file and for the 

play audio button, I implemented a function called clickplay. When I press the play audio 

button, it will use the value from the ‘text to hash’ inputbox, which is used by my 

clickplay function. While the audio is playing, it will keep incrementing the zeroes to 

pass to the function hex add starting with only one zero. If it returns a value and the 

music is still playing, it will add another zero to hex_add function. If the music stops or is 

paused then it will return the last value generated to the ‘Result2’ output text box. 

 This function seems to be working perfectly, but it has a problem. When it runs, I 

cannot press the pause button because the JavaScript does not support multi-tasking.  So 

when I try to press the pause button, it will not work because it is still running in the 

while loop as well as playing audio and it creates a problem. The screenshot below shows 

the results: 

  

 

Figure 11: Browser stop 

Because JavaScript is single-threaded, I cannot use sleep() function in this method; I have 

to use setTimeout function instead. During the setTimeout, the code runs smoothly, but 
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once the timer expires, the problem shows up again. The only solution for this problem is 

to use WebCL; it supports parallel computing in HTML5 web browsers and will allow 

me to run two threads at same time, which are play audio function and clickplay function. 

It uses the GPU and CPU, unlike my example website that only uses the CPU, so it will 

be much faster. 

According to WebCL [ 16 ]:  

“WebCL 1.0 defines a JavaScript binding to the Khronos OpenCL standard for 

heterogeneous parallel computing. WebCL enables web applications to harness GPU and 

multi-core CPU parallel processing from within a Web browser, enabling significant 

acceleration of applications such as image and video processing and advanced physics for 

WebGL games. WebCL has been developed in close cooperation with the Web 

community and provides the potential to extend the capabilities of HTML5 browsers to 

accelerate computationally intensive and rich visual computing applications.” 

The problem with this approach is anyone who wants to run it must have both the 

OpenCL driver and the WebCL browser extension.  I use WebCL for my thesis 

implementation.   

https://www.khronos.org/webcl/
https://www.khronos.org/webcl/


35 

 

4. An MP3-based Currency System 

The technologies I am going to use are JavaScript for the front end of the website, 

PHP for the back end of the website, and new technologies like web worker to do the 

hash encryption for the currency coin.  My proposed MP3-based currency system will 

mimic the bitcoin architecture with a modified mining process and a slightly different 

transaction process.  Instead of using the hash-cash based proof-of-work system in 

mining bitcoin, this MP3-based currency system will award artists after they upload an 

MP3-based song and users listen to it. Like the bitcoin system, the amount of currency 

transferred is based on the length of time an artist’s song has been listened to.  I also 

created a ranking system to rank the artists from highest rank to lowest.  All artists who 

have their music listened to by users will be in the ranking system.  First place will be the 

most popular artist.  The artist with the highest rank will receive the most listening coins, 

which implies that their music is popular.  The rank depends on the amount of the virtual 

coins the artist owns, meaning the artist needs to create good music that encourages 

people to listen for a long time instead of just listening to a few seconds and then stoping.  

The record company will want to invite popular music artists to concerts so they can 

become famous quickly.  In addition there is a verification tool for artists to check 

whether another crypto coin is valid or not. 

4.1 Requirements and Design  

 

The MP3-based currency system is a large framework.  In my CS297 I was 

thinking that when users played music the artists would receive some kind of crypto-coin.  

After trying to come up with a workable system, I decided to use a subscription service 
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payment model.  Users are required to pay a five dollar per month subscription fee for 

listen the music.  At end of the month, the artist will be paid depending on their virtual 

coin amount divided by the total virtual coin amount and multiplied by revenue generate 

by subscription fees.  The operating cost for this project is around the $2000 to build a 

server which can store a lot of music and $200 for a business account with an internet 

service provider which can provide fast upload and download speed.  I will offer a seven 

day free trial period and our music quality will be very good because artists with bad 

music cannot make money, which may discourage them from uploading more bad music.  

I anticipate starting with one hundred users which will generate five hundred dollars of 

revenue.  The website will earn ten percent of that revenue which fifty dollars which will 

be a net loss.  Once this service becomes more popular and server is paid off, it will 

become profitable with at least four hundred and one users.  

The design will have the following requirements: 

1. System to upload the music 

2. A string for each individual virtual coin 

3. Use the Sha256 method to mine for virtual coins 

4. System to save the coin after the artist receives it 

5. Rank for who has the highest virtual coin count for each month 

6. To verify each coin 

After the requirements were gathered, the design was started. The requirements were 

converted into classes using object-oriented design. In MP3 system, all the classes and 

database can be seen in the figure below. 
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Figure 12: My system design 

 

Figure 13: My system’s application 

4.2 System to upload the music 

 If an artist wants to upload their music to my website, they click browse, select 

their music, and click the “upload the music” button. 
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Figure 14: Use my application upload music 

For example, if you are Harry, like the above screenshot, and have uploaded music before, 

clicking the “upload the music” button will take you to uploadmusic.php.  In there, you 

will save your songs in a folder call fileupload, and connect to the database music _data, 

save the artist name, song names, path of the song, and musicData hashString, which is 

generated from an MP3 file.  We use PHP function file_get_contents(the mp3 file) to 

convert it to a single long string, then use PHP library Sha256 function to change it into a 

hex string.  It then takes you back to the main page with an extra music line.  If you have 

never uploaded music onto the website before, after you upload the music, it will go to 

addinformation.php and will ask your email and password as screenshot below: 

 

Figure 15: Addinformation.php application 

After you enter your email and password, it will go back to the home page. 
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4.3 A string for each individual coin 

 

 Once the user clicks the play button on the music, the name of the artist who 

uploaded and their music data will be passed to the function audiPlay(name, music data).  

Inside audiPlay, the play button will make a string for artistname+music_data+timestamp 

(when the user pressed to play) +user IP address (converted into a hash string by the 

SHA256 function), which will be passed to the method startworker (string).  The 

timestamp is created in PHP by first setting the time zone date_default_timezone_set 

(‘America/Los_Angeles) and then creating a new DateTime() variable.  This new 

DateTime variable will contain the current timestamp. 

4.4 Use the Sha256 method to mine the virtual coin 

 

 The startworker method calls Web Worker to run:  

w = new Worker ("hash_workers2.js").   

The Inside hash_workers2.js file has hash function and implements Sha256.  As shown 

below, the w.possMessage(a) will pass the string to hash_workers2.js. It will keep 

generating the hash hex string until it finds 4 leading zero then will return the string 

(string pass to this method) + nonce (ASCII character added to the string, which will 

create the 4 leading zero hex string) using the function w.onmessage.  For example, if it 

found one coin, it will return a string without parentheses 

 (artistname)(music_data)(timestamp)(userIP address) (1)(nonce).   
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If it found two virtual coin at this music play length of time, it will return a string in this 

format without parentheses 

 (artistname)(music_data)(timestamp)(userIpaddress)(1)(nonce)--(artistname) 

(music_data)(timestamp)(userIp address)(2)(nonce).   

It should look like: 

  

Then, we save those messages in variable counNumber. 

 

Figure 16: Web Worker implementation  

 Once the music ends, or the user clicks stop, it will go to the method stopWorker().  It 

will terminate the Web Worker and stop generates the hash string and sends the variable 

countNumber to GainCoin.php file. 

4.5 System to save the coin after the artist receives it. 

GainCoin.php will split the countNumber variable string by splitting on pattern “- 

-“. Because the database cannot read some of the ASCII characters, I used the PHP 

function base64_encode($string) to encode the string so the database can read it and 
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increased the character length for the column for hash_coin  to ten thousand so it can be 

saved in the database by using SQL  

“Alter Table Hashcoin_wallet modify hash_coin varchar(10000)”.   

After doing that, I then save each hashcoin one by one to the Hashcoin_wallet database 

with the artistName.  If the current day is at the end of the month, then GainCoin.php will 

also connect to the member database and get the number of subscribers, multiply that by 

5, which is the subscription fee in dollars, to get the revenue.  Then it will connect to the 

Artist_data database to get each artist’s name and update the percentage the artist will 

receive.  Finally, it will connect to the Hashcoin_wallet database, calculate the sum of all 

the virtual coins that all of the artists have earned, then multiply that sum by the 

percentage each artist is due. 

4.6 Rank for who has highest coin of each month 

 

 If people or any record company wants to get the most famous music artist to play 

at their concert, then they can click on the ‘Rank’ link to get the current most popular 

artist, It will print out the all the virtual coins and which virtual coins belong to which 

artist.  It is also has ranks to show who has the most virtual coins from most to least.   

 



42 

 

 

Figure 17: Rank.php application 

Inside rank.php, I connect to the hashCoin_wallet database using PHP to perform the 

following query:  

$query ="SELECT * FROM hashcoin_wallet GROUP BY artist_Name ORDER 

BY COUNT(*) desc"  

then process the results to display the rank of the artist as shown at the top of Figure 17.  

On the bottom part of Figure 17, I used the following sql statement: 

SELECT * FROM hashcoin_wallet 

to then display all of the artist names, coins, and encoding base64 version of the 

hashcoins (for the purpose of verifying described in the next section). 

4.7 Verify the coin tool 

 After I created the ‘Rank’ table and showed all the HashStrings for each coin, I 

made a verify tool to test the hexString.  This is for the artist; if some the artists feel like 
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they should get more, or they think others’ music crypto-coin is invalid, they can use this 

tool to check other coin hexStrings.   On the home page, if you click “verify coin tool” 

link, it will take you to the verify tool page to test the hexString in testHashCoin.php, 

which will display the hex string for any input strings.  The screenshot below shows my 

tool for which I put string “88484” in the “Text to hash” field and clicked on “MY-

SHA256” button.  It will display the hex string with 4 leading zeroes in the result.  Thus, 

this tool can be used to verify the virtual coins created when users listen to enough music. 

 

Figure 18: Verify tool application 

There is another tool written for testing the base64 encoding version of the hashcoins.  

Some of the hashcoins cannot be read by the browser because some ASCII characters are 

unsupported by the browser.  Figure 19 shows my tool for which I input a string to 

encode using base64 of the hashcoin which I got from the verify coin base64 column in 

the “Text to hash” field and clicked on “MY-SHA256” button.  It will display the hex 

string with 4 leading zeroes in the result as expected.   
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Figure 19: Verify tool application for Base 64 

Then I used the SHA256 function I created and made a textbox allowing a user to enter a 

string.  After they click on the “MY-SHA256 button”, the text is passed to the SHA256 

method and the result will be displayed below the button.  In the verify tool function, I 

also made a search tool that allows users to search for whomever they want to search to 

see the virtual coins that person owns. 

 

Figure 20: Verify tool search application 

Once the user enters an existing artist name, they are taken to verifyCoin.php with the 

artist name they have entered on previous page and put into SQL statement:  

$query ="SELECT * FROM Hashcoin_wallet where artist_Name='$artist_name'”.   

This statement searches for all the virtual coins that the artist, Jack, has and uses PHP 

function base64_decode($string)  to decode the hash_coin string to display what the 

coins really look like in coin column, and uses PHP library SHA256 function to display 
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all of the hex strings for the artist to verify that Jack’s coins are all valid.  The results 

show as below: 

 

Figure 21: Verify tool search result
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5 Experiments 

5.1 WebCL: Implement Hash Function by using webcl 

 

I experimented using WebCL to implement the hash function used by my music player.  

As mentioned before, WebCL will utilize the GPU for processing instead of the CPU.  In 

figure 10, the “calculate” section uses for the hash function algorithm to generate the 32 

hex digit to "result" section from the string the user entered.  Let us start with the kernel 

description using OpenCL C language [ 21 ]. The idea is to add sixteen vectorIn1 element 

vectors in global memory, vectorIn1 to vectorIn16, and store the result to the vectorOut, 

vectorOut2. The kernel code is shown below. All code written in WebCL must inside.  

Because we can’t pass a struct that contains pointers (mention in [ 18 ]section 6.9) we 

need to declare each variable one by one instead of using pass vector array(). 
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<script id="clProgramVectorAdd" type="text/x-opencl"> 

…. 

 

…. 

</script> 

 

Figure 22: WebCL implementation  

The reason for passing 32-bit integers instead of strings is because WebCL only allows 

integers to be passed.  A work item is an instance of the kernel and 16 array elements can 

be executed in parallel to run in the hex_Sha256 function to generate the hash string, 

which I create in OpenCL C language.  The function call "get_global_id(0)" returns the 

identifier of the processed work item.   After calculating the hash value, it will check it 

has how many leading zero after converting to hexadecimal: 

 2 leading zero if less then decimal 16777216 
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 3 leading zero if less then decimal 1048576 

 4 leading zero if less then decimal 65536 

 5 leading zero if less then decimal 4096 

 6 leading zero if less then decimal 256 

 

If the hash value has more than 4 leading zeroes, vectorOut1 will return 1 or else it will 

return 0.   Vectorout2 will just return a 32 bit integer num, which can be converted to a 

hex string in Javascript so we can verify that if has four leading zeroes for testing 

purposes.  OpenCL kernel needs to be passed to OpenCL device so, therefore, we need a 

JavaScript utility function for finding and loading the kernel according to given id. The 

function shown below returns the kernel source code. 

 

Figure 23: LoadKernel implementaton 

The function vectorAdd represents an OpenCL host program. Before proceeding with 

actual host program, let us first check that WebCL is installed and generate 16 256-

element arrays to act as inputs to run the Sha256 algorithm.  Those 16 arrays are created 

by preprocessing method from previous Sha256 implementation.  We will add another 

character at end, and it will be ‘abc1’, then ‘abc2’, and so on. Basically, it tries all 255 

ASCII, adding additional ASCII characters if necessary to put into preprocessing method.  
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It will create 16 32-bit integers, which will put into an array.  They will end up with 16 

arrays, each containing 255 elements.   

function vectorAdd(name) { 

        var output = document.getElementById("output"); 

        output.innerHTML = ""; 

        try {            

            if (window.webcl == undefined) { 

                alert("Unfortunately your system does not support WebCL. " + 

                      "Make sure that you have both the OpenCL driver " + 

                      "and the WebCL browser extension installed."); 

                return false; 

            } 

            var vectorLength = 256; 

            var ulvector = new Array(); 

 

            for (var i = 0; i < 16; i++) { 

                ulvector[i] = new Uint32Array(vectorLength); 

            } 

Figure 24: JavaScript declare WebCL step 1 

Hosting OpenCL computation starts with reserving the required resources. WebCL 

context is created using the default device of the first available platform.  In addition, add 

18 buffers.  16 read only buffers for the inputs and two write only buffers for the output.  

The size of the buffers is given as bytes. 

var ctx = webcl.createContext(); 

 

            var bufSize = vectorLength * 4;          

            for (var i = 0; i < 16; i++) { 

                bufIn[i] = ctx.createBuffer(WebCL.MEM_READ_ONLY, bufSize); 

            } 

            var bufOut = ctx.createBuffer(WebCL.MEM_WRITE_ONLY, bufSize); 

            var bufOut2 = ctx.createBuffer(WebCL.MEM_WRITE_ONLY, bufSize); 

Figure 25: JavaScript declare WebCL step 2 

Next, create a program object. The kernel code is loaded with the loadKernel function 

and built for the defined device.  Then, the kernel code "clProgramVectorAdd" is selected 

for the kernel object.  It will load coded between the script tags  
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<script id="clProgramVectorAdd" type="text/x-opencl"> </script> 

            var kernelSrc = loadKernel("clProgramVectorAdd");  

            var program = ctx.createProgram(kernelSrc); 

            var device = ctx.getInfo(WebCL.CONTEXT_DEVICES)[0]; 

 

            try { 

                program.build([device], ""); 

            } catch (e) { 

                alert("Failed to build WebCL program. Error " 

                       + program.getBuildInfo(device, 

                                                      WebCL.PROGRAM_BUILD_STATUS) 

                       + ":  " 

                       + program.getBuildInfo(device, 

                                                      WebCL.PROGRAM_BUILD_LOG)); 

                throw e; 

            } 

 

        

            var kernel = program.createKernel("ckVectorAdd"); 

            for (var i = 0; i < 16; i++) { 

                kernel.setArg(i, bufIn[i]); 

            } 

            kernel.setArg(16, bufOut); 

            kernel.setArg(17, bufOut2); 

            kernel.setArg(18, new Uint32Array([vectorLength])); 

Figure 26: JavaScript declare WebCL step 3 

Next, create a command queue then local and global work sizes are defined.  The 

execution is enqueued with enqueueNDRangeKernel.  After the execution, the results can 

be read from the OpenCL device with enqueueReadBuffer.  The command queue is 

flushed with cmdQueue.finish.  Finally, cmdQueue.release() to release all the memory 

obtained during the execution. 
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            var localWS = [8]; 

            var globalWS = [Math.ceil(vectorLength / localWS) * localWS]; 

            output.innerHTML += "<br>Global work item size: " + globalWS; 

            output.innerHTML += "<br>Local work item size: " + localWS; 

            cmdQueue.enqueueNDRangeKernel(kernel, globalWS.length, null, 

                                          globalWS, localWS); 

                        outBuffer = new Uint32Array(vectorLength); 

            outBuffer2 = new Uint32Array(vectorLength); 

            cmdQueue.enqueueReadBuffer(bufOut, false, 0, bufSize, outBuffer); 

            cmdQueue.enqueueReadBuffer(bufOut2, false, 0, bufSize, outBuffer2); 

            cmdQueue.finish();  

            cmdQueue.release(); 

Then, we check for zeroes in the outBuffer in a loop, which we will break out of once a zero is found. 

for (var i = 0; i < vectorLength; i = i + 1) { 

                if (outBuffer[i] == 0) { 

                    notFound = false; 

                    break; 

                } 

                output.innerHTML += outBuffer[i] + ", "; 

            } 

Figure 27: JavaScript declare WebCL step 4 

If all the loops have finished running and we still cannot find any zeroes, I will use the 

function we created called the plusOne method in the section on implementing a hash 

function.  It will add one character at the end of the string and do it again from beginning.  

If just adding one character does not generate any zeros from the outBuffer, another 

character will be added.  Basically, it tries all 255 ASCII codes for each added character 

until we generate a zero at the buffer.   The webCL is good because it uses the GPU and 

runs everything in parallel, so the run time will be a lot faster because it is testing 255 

elements for hex_Sha256 at same time.   
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 It seems that WebCL will make the hashing algorithm run much faster than 

before, however, if we add the music function from the Music function section, we still 

have the same problem as below: 

 

The reason is that the browser is running the music and WebCL at same time, and the 

WebCL still gets called from JavaScript.  For Javascript, if some scripts take too long 

time to execute, it will complain about an unresponsive script.  Then, I need to use a time 

interval in java script to solve it, so I will stop the script before the page freezes.  

5.2 TimeInterval function For WebCL 

The idea to combine the music and WebCL together is to run the music and 

simultaneously run the WebCL for one second.  For WebCL part, if it finds 4 leading 

zeroes as we wish, or one second has passed, it will stop. After the one second later, it 

will resume the webCL part.  Because the browser does not consider it an unresponsive 

script anymore, the music and browser will run smoothly without stopping.  The code is 

below: 
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Figure 28: Use TimeInterval for WebCL 

But this creates another problem.  It is okay to generate the first virtual coin, and after 

that, it starts generating the second one if the music is still playing, but the problem is that 

playing the music still eats up a lot memory.  If the music is not stopped, the memory will 

not be released and at the same time, WebCL does need a lot of memory to generate the 

virtual coin, so the browser will run out of memory.  Even through WebCL is using the 

GPU, it also needs to use Javascript to call it.  In addition, every time an additional ASCII 

character is added, additional memory is required. 

 

Figure 29: Out of memory issue for WebCL 
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5.3 Web Worker Combine the music function and Hash function with Web Worker 

Because the WebCL has problems when it is called from JavaScript, I did some 

research about how to separate the music function and hash function. HTML5 has new 

technology call Web Workers, which allows you to spawn new thread, providing true 

asynchrony.  The new worker can run in the background while the main thread processes 

UI events.  Even if the worker thread is busy processing a heavy amount of data, it will 

not effect the background workers running.  Worker threads can pass the message in 

parallel, which is ideal for this project. 

Web Worker runs in an isolated thread.  As result, the code it executes needs to be 

contained in a separate file.  I created a new worker object in my main page, and put my 

hash function and Sha256 method in the hash_workers2.js file.  Script should be invoked 

like this: 

w = new Worker("hash_workers2.js").   

After a worker is created, I call the worker and pass the input string to hash_worker2.js to 

w.postMessage (name).  Name is input string from this main file.  It will keep returning 

the result: 

 w.onmessage = function(event) {var hashString = ""+event.data;} .   

It will continue finding inputs that generate 4 leading zeros in the hash value until it is 

terminated by w. terminate();  It will not bother the UI music player so everything runs 

smoothly.  It actually runs faster than WebCL even when I was using the old Javascript 

Sha256 method to generate.  The WebCL version is supposed to be faster because it uses 
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the GPU, but the reason is because I use time interval, which stops every second and 

starts again.  Web Worker can run without stopping.  The best way to do this project is 

put WebCL inside the Web Worker, but, unfortunately, the Web Worker and WebCL are 

new technologies, so Web Worker cannot support WebCL. 

5.4 Verification tool issue 

 After a virtual coin is created, it saves it to a data base.  I created a tool for a user 

to input their virtual coin string to the function I created to test whether it really has 4 

leading zeroes.  I found I cannot do that because some of ASCII characters are 

unreadable by the web browser.  So when I paste it, it will show up as below and the 

result will not have four leading zeroes. 

 

 

Figure 30: Verify tool issue 
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I compared the result between my hash256 hash function with the php library sha256 

function.  In the screenshot below, it still prints out the 4 leading zeroed. 

 

It will show that it has 4 leading zero as below: 

 

Figure 31: Proof of my code is working 

I have also saved them into the database, but I found out the database also does not 

support some of the ASCII characters because I made a function below.  After querying 

to the database, the value does not match what was stored. 

 

 

Figure 32: Store value 

The only way to fix this is to use base64 which was taken from this website[ 17 ]:  

Base64 is a generic term for a number of similar encoding schemes that encode 

binary data by treating it numerically and translating it into a base 64 

epresentation. The Base64 term originates from a specific MIME content transfer 

encoding.  
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Once it transfers the encoded binary data, it will support both web browsers and the 

database.  I use base64 function in JavaScript and PHP in my project. 

6  Conclusion 

My hash-based music streaming system allows music artists to upload their songs 

to my website.  The artist’s name, content of their music, timestamp, and music artist’s IP 

address are used as a seed to the hash function.  The "Play music" function has the ability 

to play songs while running the hash function to generate virtual coins in parallel, which 

can determine the amount earned by an artist based on how long the users of the website 

listen to their music.  Artists who upload their work on this system will be rewarded 

based on the number of virtual coins earned.  At the end of each month, each artist’s 

earnings in dollars will be calculated by taking the number of virtual coins they earned 

that month, dividing that by the number of the total number of virtual coins earned that 

month and then multiplying that by the total revenue.  In addition, a ranking page is 

available for people to see who the most popular artist in the website is, based on who has 

most virtual coins.  The most popular artists’ music should be better rewarded by my 

system because people listened to them for a long time without stopping.  Other features I 

implemented include verification tool, which lets anyone check the virtual coins an artist 

has earned and result of string to hexString after using the SHA256 function. 

Currently, there are numerous music websites like Spotify, Xbox Music, Amazon 

Cloud, etc., where music artists can upload their songs and be paid when people listen to 

their music.  They all use a similar system called the royalty system. 
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The royalty system has flaws, despite the fact its widespread use for a long time. The 

main flaw is its unfairness in that: 

1. Royalty may decrease when a web site becomes more popular. 

2. Royalty is not necessarily dependent on the length of time a song is listened to but, to 

some extent, depends on the frequency a song is sampled. 

The MP3-based payment system, on the other hand, gives virtual coins to the artists while 

a song is being played. The longer a song is played, the more virtual coins are paid out to 

the artist of the song.  This system addresses the problems the royalty system has. 

A possible future enhancement for the MP3-based payment system is adding 

support to WebCL for Web Worker, which should increase the mining speed. Another is 

to increase the number of leading zeroes because everyone will be mining faster. One 

problem to adding WebCL is that users who have better graphics card in their computer 

will generate virtual coins at a faster rate and will be unfair to the artists because 

everyone has a different computer. One issue I have experienced so far is that the browser 

is unable to display some ASCII characters, but I believe that in the future, browsers will 

be enhanced to have the ability to support all ASCII characters so that using copy and 

paste for my verify coin tool can show that all the virtual coins have the exact number of 

leading zeroes as expected. 
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